

Elżbieta Zająć, Lucyna Żurawska

THE SUBDIRECTLY IRREDUCIBLE DIAGONALIZABLE ALGEBRAS

The notion of a diagonalizable algebra was introduced by Magari ([2]). In this paper the author describes some algebraic properties of these algebras. For further information about diagonalizable algebras see [1], [3], [4].

It is known (see [2]) that the only simple diagonalizable algebra is the two-element algebra. In this paper we characterize all subdirectly irreducible diagonalizable algebras.

An algebra $A = \langle A, v, \wedge, \neg, \tau, 0, 1 \rangle$ of type $\langle 2, 2, 1, 1, 0, 0 \rangle$ is called a diagonalizable algebra, if it satisfies the following axioms:

- A1. $\langle A, v, \wedge, \neg, 0, 1 \rangle$ is a Boolean algebra,
- A2. $\tau(x \wedge y) = \tau(x) \wedge \tau(y)$,
- A3. $\tau(\tau(x) \rightarrow x) = \tau(x)$, where the symbol $x \rightarrow y$ denotes $\neg x \vee y$,
- A4. $\tau(1) = 1$.

It is known (see [2]) that the following properties hold in every diagonalizable algebra:

- w1. $\tau(x) \leq \tau(\tau(x))$,
- w2. if $x \leq y$ then $\tau(x) \leq \tau(y)$,
- w3. if $\tau(x) \leq x$ then $x = 1$.

A τ -filter of a diagonalizable algebra $A = \langle A, v, \wedge, \neg, \tau, 0, 1 \rangle$ is a filter F of the Boolean algebra $\langle A, v, \wedge, \neg, 0, 1 \rangle$ which satisfies the condition:

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Technical University of Warsaw (Wilga), May 22-25, 1986.

$x \in F$ implies $\tau(x) \in F$ (see [2]).

For each element x and for any τ -filters F_1, F_2 of a diagonalizable algebra \mathbf{A} we have:

- 1) $[\tau(x)]$ is a τ -filter,
- 2) if $\tau(x) = 1$ then $[x]$ is a τ -filter of \mathbf{A} ,
- 3) $F_1 \cap F_2$ is a τ -filter,
- 4) a filter generated by $F_1 \cup F_2$ is a τ -filter.

Let the symbol $\varphi(F)$ denote the congruence relation of a Boolean algebra which is induced by a filter F .

It is easy to prove that the following holds.

L e m m a 1. The following conditions are equivalent for every diagonalizable algebra \mathbf{A}^2 and each relation $\varphi \subseteq \mathbf{A}^2$

- 1) φ is a congruence relation on \mathbf{A} ,
- 2) there exists a τ -filter F of \mathbf{A} such that

$$\varphi = \varphi(F).$$

L e m m a 2. Let $F_\tau(\mathbf{A})$ be the lattice of all τ -filters of a diagonalizable algebra \mathbf{A} and $C(\mathbf{A})$ be the congruence lattice of \mathbf{A} . Then the mapping $f : F_\tau(\mathbf{A}) \longrightarrow C(\mathbf{A})$, $f(F) = \varphi(F)$ is a lattice isomorphism.

L e m m a 3. Let \mathbf{A} be a diagonalizable algebra. A τ -filter F is an atom in the $F_\tau(\mathbf{A})$ if and only if there exists a co-atom x in \mathbf{A} such that $F = [x]$ where $\tau(x) = 1$.

P r o o f. Let F be an atom in the $F_\tau(\mathbf{A})$, $x \in F$, $x \neq 1$ and consider the τ -filter $[\tau(x)]$. Let us notice that $[\tau(x)] \subseteq F$ and since by w3, $x \notin [\tau(x)]$, it follows that $[\tau(x)] \neq F$. Since F is an atom in the $F_\tau(\mathbf{A})$ it follows that $\tau(x) = 1$. Whence $[x]$ is a τ -filter. Obviously $\{1\} \neq [x] \subseteq F$. So we get $[x] = F$. Suppose on the contrary that there is y in \mathbf{A} such that $x < y < 1$. Then by w2, $\tau(y) = 1$. By the argument analogous to the previous one we get $[y] = F$ whence $x = y$, a contradiction.

It follows that x is a co-atom of \mathbf{A} . The converse implication is obvious.

Lemma 4. Let A be a diagonalizable algebra and let an element $x_0 \in A \setminus \{1\}$ has the following property:

(E) for each x in $A \setminus \{1\}$: $x \leq x_0$ or $\tau(x) \leq x_0$.

Then:

- 1) $\tau(x_0) = 1$,
- 2) x_0 is a co-atom of \underline{A} ,
- 3) for each co-atom $x \in \underline{A}$

$$\tau(x) = 1 \text{ implies } x = x_0,$$

- 4) x_0 is the unique element of the set $A \setminus \{1\}$ having the property (E).

Proof. 1. Suppose $\tau(x_0) \neq 1$. Then by (E) and w1, $\tau(x_0) \leq x_0$. Whence by w3, $x_0 = 1$, what is impossible.

2. Let $x_0 \leq y < 1$. By w2, we have $\tau(x_0) \leq \tau(y)$.

Since $\tau(x_0) = 1$ it follows that $\tau(y) = 1$. By (E) we have $y \leq x_0$ or $\tau(y) \leq x_0$. The first case implies $x_0 = y$, the second gives $x_0 = 1$, what is impossible.

3. Let x be a co-atom of \underline{A} such that $\tau(x) = 1$. By (E) we have $x \leq x_0$. Since both x and x_0 are co-atoms, it follows that $x = x_0$. The condition (4) is an easy consequence of (1), (2) and (3).

Theorem. A diagonalizable algebra \underline{A} is subdirectly irreducible if and only if there is $x_0 \neq 1$ in A such that for each $x \neq 1$ in A $x \leq x_0$ or $\tau(x) \leq x_0$.

Proof. Let A be a subdirectly irreducible algebra and F the unique atom of the lattice $F_\tau(A)$. By Lemma 3, $F = [x_0]$ where $\tau(x_0) = 1$ for some co-atom x_0 in A . Let $x \in A \setminus \{1\}$. If $\tau(x) = 1$, then $[x]$ is a τ -filter. Since \underline{A} is subdirectly irreducible $[x_0] \subseteq [x]$. Consequently $x \leq x_0$. Analogously for $\tau(x) \neq 1$ we have $\tau(x) \leq x_0$.

Now let $x_0 \in A \setminus \{1\}$ and for each $x \neq 1$ in A $x \leq x_0$ or $\tau(x) \leq x_0$. Using Lemma 4 we get that x_0 is a co-atom and $\tau(x_0) = 1$. Hence $[x_0]$ is a τ -filter and obviously $[x_0] \neq \{1\}$. We will show that for every τ -filter $F \neq \{1\}$ of $\underline{A}[x_0] \subseteq F$. Let $y \in F \setminus \{1\}$. From the assumption it follows that $y \leq x_0$ or $\tau(y) \leq x_0$. Hence $x_0 \in F$ and $[x_0] \subseteq F$, what completes the proof.

Corollary 1. If a diagonalizable algebra \underline{A} is subdirectly irreducible, then there exists exactly one co-atom x_0 of \underline{A} such that $\tau(x_0) = 1$.

Corollary 2. A finite diagonalizable algebra \underline{A} is subdirectly irreducible if and only if there exists exactly one co-atom x_0 of \underline{A} such that $\tau(x_0) = 1$.

Example. Let \underline{A} be a Boolean algebra and x_0 its co-atom. We define a operation τ on \underline{A} by

$$\tau(x) = \begin{cases} 1 & \text{for } x \in \{x_0, 1\} \\ x_0 & \text{for } x \notin \{x_0, 1\} \end{cases}.$$

It is easy to show that this satisfies the conditions A2-A4. Therefore \underline{A} is a diagonalizable algebra. By the above theorem the algebra \underline{A} is subdirectly irreducible.

REFERENCES

- [1] C. Bernardi : On the equational class of diagonalizable algebras, *Studia Logica* 34 (1975) 321-331.
- [2] R. Magari : The diagonalizable algebra, *Boll. Un. Mat. Ital.* (4) 12 - Suppl. Fasc. 3 (1975) 117-125.
- [3] R. Magari : Representation and duality theory for diagonalizable algebras, *Studia Logica* 34 (1975) 305-313.
- [4] F. Montagna : The diagonalizable algebras, *Universita Degli Studi di Siena. Rapporto Matematico n. 102* Maggio 1984.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
45-406 KIELCE, POLAND
Received April 3, 1986.