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ONE MORE CONCEPT OF MULTIADJOINTNESS

A concept of multiadjoint functor introduced here may be
treated as a generalization of a "ftunctor having a left muiti-
adjoint® in the sense of Diers [2] and simuitaneously it
generalizes s Gray s concept of "split tibration with small
fibres" [4]., The main idea of our approach is that for a
given functor U : A —C and C-object X instead of ons "uni-
versal arrow" with domain X (adjointness) or "the set univer=-
sal arrow" with domain X (discrete multiadjointness [2]) we
consider a "small category of universal arrow" with domain
X being a coreflective subcategory of a comma oategory (X | U).

1. Notation and preliminaries

Throughout U : A —=C 1is an arbitrary but fixed funotor
between categories with samall hom-sets. For each Xeob C,
objeots of a comma category (X {U) are called U-morphisme with
domain X, U-morphism (f,A) is ocalled U=-epi provided that
r,8 : A—=B and Uref = Usef imply r = 8. Let E be a class
of U-morphisms, By an E-factorization of a U-morphism (f,a)
we mean every pair ((e,B),g) with (e,B)€ E and Ugee = f,
For each C-morphism h 1+ Y—=X, h : (X4U)—=(Y 4U) 158 &
funotor such that h(f,A) = (fh,A) and h{¢p) = ¢ for esach

This paper is based on the lecture presented at the Confe-
rence on Universal Algebra held at the Technical University
of 'araaw.(w1lga), May 22-25, 1986,
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2 G.Jarzembski, A.Kurpiel

peMor(X ¢ U). Bach full coreflective subcategory D, of a given
category D will be described as a triple (21,G,6) where G is a
right adjoint right inverse to the embedding 21-—*32 and ¢ is
a counit of this adjoilntness,

Set, Cat, CAT denots eategories of sets, small oafegoriee
and all categories over given universum %, reepectively.
For all unexplained notations and symbols of category theory
we refer the reader to [6] and [10].

2. Motivations and general theory

We recall at first some well-known concepts of category
theory, We desoribe them in a non-conventional way but this
kind of description gives us a possibility to observe thelr
common structure:

(1) U : A —=C is right adjoint [6] iff for each C-objeot
X, (Xt U) aontains a full corefleotive suboategory (7, Gy» Cx)
such that 7 is a terminal category and, morsover, for each

A X
h : Y~—=X in £, Gyehes™ = 1dg o

(i1) U has a left multiadjoint [2] 1ff each (X {U) ocon~-
tains a full coreflective suboategory (fy,Gy.t*) such that Oy
is a discorete small category and, moreover, for each

L ¢ n
B : Y—=Xin C, Gychee™ = idGYh.

(i11) U is a fibration with small split oleavage [4] iff
each (X} U) contains a full coreflective suboategory
(U=1%,64,6%) such that U”'x is the fibre of U over X and for
sach b+ Y—=Xin C Gyehee¥ = 1dg,

This suggests the following definition,

Definition 2.1, By a speotrum of a funotor U
we mean a family S = (Sx,Gx,ex)xeob ¢ of full coreflective
suboategories of each (X} U), respectively, such that

eheg ¥ ~

for each C=-morphism h : Y —= X,
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Conocept of multiadjointness 3

Baoh speotrum S determines a functor S g°p-—-CAT sucih
that for each C-morphism h s+ Y —X, Sh 3 SX — SY and
SH = GYOE-Ex, where E; 1 SX<—~(X{U) is a full embedding.
Bote that every functor has a trivial speotrum ({(X +U),
id(x+U),id). We ¢call a spectrum S small if every SX is a small
category, If, moreover, for each X ¢ ob C every isomorphism
in SX is an identity then we call the spectrum S strongly
reduced,

Definition 2,2 A functor U is multiadjoint
if it has a small speatrum.

It may happen that a given funotor U has more then one
seall speotrum, Hence 1t will be convenient to intreduce the
following definition,

Definition 2,3, A pair (U,S8) such that §
is a small speotrum of U is called multiadjointness. If (U,S)
is a multiadjointness we oall U multiadjoint with respaot
to 8. A multiadjointness (U,8) is strongly reduced if S is
a strongly reduced spectrum,

*One oan prove that every adjointness and discrete multi-
adjointness is strongly reduwced. A small split oleavage of U
is strongly reduced if U is amnestio 1.e, every A-isomorphism
f with Uf being C-identity, must be an identity in A.

The definition of multiadjoint funotor introduced above
makes easy to note a conneotion with all previous concepts
mentioned in the begining of this section. But for applica-
tions 1t will be more convenient to have its modified version,
Using obvious one-~to-one eorrespondence between functors
P s+ D—(X+U) and paire (Jy 1 D—=A, pX 1 4X —UJy)
(where 4 18 a "oonstant" funotor into the funotor oategory)
¥ne oan prove the follewing proposition which can be treated
as & "looal definition" of multiadjoint functor.

Propobsition 2.4, U3 A—C is multiadjoint
iff for each C-object X there exists a small category SX
together with a funotor Jx t SX —4A and a natural transfor-
mation p¥ ¢ AX — UJ; such thet the following hold:
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4 Ge.Jarzembskil, A,Kurpial

(1) Bach U-morphism {f:X—Ui, A) has a distinguished
p=factorization ((Qf,JxI), (£,4)°%) such that for each p-fac-

torization ((Q?.ij),g) of {(f,A) there exists a unique

@: J—=1 in 5X with g = (£,4)%J4(9).
(11) (p3,3,1)° = 1d; 4, for esoh G-object X and te ob SK.

(iii) Por eaoch h : Y —=X in C and (f:X — UA,A), with
(£,4)° & Iyt —4, (£h,a)° = (£,8)°(ph,5,1)°.
‘P roof ., Wo omit technical details of the proof. Note
only that if U satisfies (i)-(1ii) above, then the funotion

(£,4) ~~(pX, J;1), where Jyi = dom(f,4)°,

defines a right adjoint right inverse functor to the embedding
SX— (X } U) and {(f,A)i}(f’“ebb(xw) 18 a counit of this
adjointness,

Conversely, for a given spectrum S = (Sx,Gx.éx)xeob
of U one oan define (f,A)° -fo a) for each (£,a)e (X 1U),
Note also that for each h : Y —-'x in C and 1€ ob SX,

Sh(1) = GyeReBy(1) = J where Jyj = aom(gg‘h, 3g1)°,

Hence we can desoribe a small spectrum of U as a 4~-tuple
(8,3,05( )°) where S 1 C°P — Cat, J = (J; 1 SX—=4)
p= (rzx 1AX—=UWylg on ¢ 804 ( )° assings to each U-morphism
(f,A), an A-morphiem (f,4)° and conditions (i)-(iii) of propo-
sition above are satisfied. (f£,4)° is called e universal p-ex-
tension of (f,4).

¥ow 1t is easy to observe that our concept of multiadjoint-
ness 1s stronger then that one introduced by Tholen (oompare
Theorem 2.4 (iv) [11]).

Obviously a multiadjointness (U,(S,J,p,( )°)} is an ad-
Jointness iff each SX 1s a terminal oategory. It is a split
clsveage iff Q{ = idx for each €-object X and ie ob SX.

In general, for a given multiadjointness (U,(S,J,p,{ )°)) one
can define a category Cq as follows [4]: objects of Cg are
pairs {X,i) with Xe ob C and 1€ ob SX and )

Gg((X,1),(1,3)) = {(h,9); heC(X,Y), peSsX(1,5h3)}
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Conoept of multiadjointness 5

{recall that Sh) = k, when Jxk = dom(fzg, JYJ)") and the ocom-
position is given by ruls (g,v)*(h,p) = (gh, Sh(y)-9).

A morphism (h,p) is strong cartesian iff ¢ is an identity,
Then U can be factorized ae U = P*G, where G 3 A—Cq is

a right adjoint (to P : Cg — A such %hat PX,i) = Iydy

P(h,p) = (Qgh, Jyj)o- Jx(9)) and P 1 Cg— C (an obvious pro-
Jeotion) 1is a small split fibration 1,e., there exists g split
oleveage (P,(5',3", p',{ 1%)),

Let « and B be a unit and oounit of the adjolntness
PG,

Nots that
(1) for eaoch Z e ob Cg,xg 18 a strong oartesian morphism,

(11) X = §'X, Jy = Fedy and p¥ = Pog for sach C-object X,

(111) (£,4)° = B8,°P((£,64)°) for each U-morphism (f,4).

Proposition 2,5, A (right adjoint, split
fibration) - faotorization of (U,(S,Jgp,( )°)) is determined
uniquely up to isomorphism i,e., if (G1,F1,a1,ﬁ1).
(P1,(S1,J1,Q1,( )¥)) is a pait consisting of an adjointness
and & ‘split fibration such that U = P,*G, and conditions
(1)-(111) above are satisfied, then there exists en isomorphism
K such that KeG = G, and P,*K = P,

We omit & proof since it only generalizes a method used
ip Propesition 141 [3]. We finish this seotion with a theorem
on preseryation of limits,

Proposition 2,6, Let (U,(S,7,0,( )°)) be
a multiadjointness and assume that A haes limits of a given
type. Then U preserves limits of this type 1ff every SX has
limits of thie type. Moreover, if these conditions ere sa-
tisfled, then for each h : Y —X in ¢ Sh : SI — SY preserves
limits of a gliven type.

Proof, LetK :D—A be a diagram of a given type
with a limit cone (w; : A-—---Bd)deob D° Having an admissible’
family (fd 1 X—=UHd) 4 0y D in. C let Jy1, be the domaim of

(fd,Hd)". Thus we may define a funotor 73 D —=SX such that
Hd = id for each de ob D,
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6 G.Jarzembski, A,Kurpiel

Let (pg # 4 —1i4)4.0p p Pe & limit cone of H in SX. Then
there exists s 1 Jyli ——A determined uniguely by the family
((£4,H8)°%35(p5) & JgL—=Hd)g oy p Leos wysUsep¥ = £, for
each d e ob D. Thus Us-rgf is a C~morphiem we are looking for,.
The proof of uniquenees 1is obvious,

To prove the converse asssume that H : D —-SX 1s a diegram
of a given type. Then 1im J exists in A, Now, by Theorem 2
p«117 of [6] for each C-object X, lim EyH exists in (x}vu)
and for each h : Y—=X in C, h preserves it. Hereover,

sinoe GY°h'elimH = 1d :_GYhExleimH _"GIh J1im H we have

Shlim H = GYﬁExle;lmH = GYB linE,H= limGfoExH = 14mShH.

The proof is complets.

3. Regular multiadjointness

Phroughout this seotion we assume that (U,(S J,Q,( 1°))
is a strongly reduced multiadjointness, For each A-object A,
we write ¢, instead of (1dUA’A)°

Definitilon 3.1, An A~morphism g : A—=B is
called S-regular iff ge¢, = (Ug,B)°

We shall use S-Reg to denote the class of all S-regular
morphisms,

Note that (U,(S,J,2,( )° 1) 18 a discrete multiadjointness
iff S~Reg = A, If it is a small gpiit fibration then the
notions of S-Regular morphism and strong ocarteslan morphism
coincide, . :
Proposition 3.2, PFor an arbitrary A-morphism

g t A— B the following are esquivalent
(1) g 1s S-regular,
(ii) Bach ocommutative square

of

X————UJ,i

,1 lw

va—% _ ous
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Concept of multiadjointness 7

has a uniqus diagonal d 3 in —= A making both triangles
ocommutativse,
(111) Uge(£,B)° = g{£,4)° for each U-morphism (f£,A),
{iv) Gg 1s strong cartesian in Cg {compare section 2),
Proof 1s straightforward,

Proposition 3.3 (Properties of S-Reg):

(1) S-Reg is a suboategory of A, Iso A cS-Reg.

(11) Bach U-morphism (f,4) has at most one p~factorization
((rzi,in),g) with ge S-Reg and, if i¥ is the case, g = (£,4)%

(111) Por each C-objeot X and pe Mor SX, ngois S=regular
iff ¢ is an identity.

The proof is of routine nature and will be omitted.

Definition 3.4, A (etrongly reduced) multi-
adjointness (U,(5,J,p,{ )°) s oalled regular if every uni-
versal p -extension is S-regular,

Note that each discrete multiadjointness and small split
clegvage 1s regular. In general we have

Proposition 3.5 A multiadjointness
(U, (8,340, }°) 48 pegular iff the olass of universal p~ex=
tensions is closed under composition,

 Proof ., The “"left-to-right" implication follows

direotly from Proposition 3.3 (i). To prove the converse
agsume that for a given U-morphism (£,4), (£,4)° : Iyl —A&.
Then (r,a)°-e;,x,_ 18 @ universal p-extension of (U(f,A)%,a)

1.0+, (£,4)° 18 S-regular,

It follows direotly from Proposition 3.2 (ii) that each
regular multiadjofnt funotor is a morphism - (E,M)-funotor
[9] for B = p and M = S-Reg, Conversely, if U is a morphism-
~-{B,M)=functor then U is regular multiadjoint with M = S-Reg
if C is E~co0looally small and M is a subcategory of A.

We oall two spectra S = (5,J,0,( )°) and T = (T,L,&,{ )*)
of a given functor U isomorphic if for each C-objeot X there
exists an isomorphism I; i SX—TX together with a natural
isomorphism 7% 1 Jy— LyTy euch that for sach U-narphisa

(£,4), (£,4)% 7% = (£,4)° 1.0, the following diagram
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XS ULy Iy i *

X
§1, i

is commutative,

Theorem 3.6, Suppose that multiadjointness
(U,8) and {U,T) are regular, Then the following are equivalent
f1) The speatra S and T are isomorphic,

{ii) S~Reg = T-Reg,

Proof. (i) implies (ii), Note that for sach
A-objeat &, (idy,,A)% 73t = (idy,,A)° for suitable 1eob SUA,
Thws if g : A —=B is T-regular, then g-(idUA,A)* = (Ug,B)™
and ge(1dy,»4)° = ge(1dy,,A) 37" = (Ug,B)%}* = (ug,)°
i.es g 1is S-regular., In the same way we prove S-Regc T-Reg,
{11) implies (i). For each C-object X and ie ob SX let Iyi
be a uniquo objeot im TX such that LxIxi is a domain of
(Qi,J 1)*. Thus from tae diageam

. i+ bx D) u(pX, 3,
U3, j - ULyl | —— > U3,

X
?X’ g%ki
X

and Proposition 3.3 (1), (iii) one can easily deduce that
J =1 and (gI g0 Dylgi)® = y{ i3 a natural isomorphism. Wow

it is a routlne to verify that Ix can be extended to an
isomorphism of categoriss and tnat consideied spectra are
isomorphic.

Hence the speotrum of a regular multiadjoinmtness (U,S)

is determined uniguely {up to isomorpnism) by the subeategomy
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Concept of multiadjointness 9

S~Reg of its regular morphisms., Thus we will often say "U is
multiadjoint with respect to a subocategory Dc A" instead of
“there exists a regular multiadjointness (U,S) and S~Reg= D",

4, Po-multiadjointness

Definition 4.1, A spectram (S,d,p,{ )°) of U
is called po=-spectrum if for each C-object X, SX is a partially
ordered set. A multiadjointness (U,(S,J,2,|( }°)) is called
po-multiadjointness if (5,J,p,( )°) is a po-spectrum.

Note that every po-multiadjolintness is strongly reduced.

Proposition 4.2, (U,(s,9,0,( )° 1s a po-
-multiadjointness iff Qi is U-epi for asach C-objeot X and
ieob SX.

Proposition 4.3, let A be g complete cate~
gory and U preserves all limits, Then sach small speotrum $
of U is a po-spectrum., More precisely, for each multiadjoint-
ness (U,S) and C-objact X, SX is a complete lattice.

Proof follows direotly from Proposition 2.6 and Proposi=-
tion 3 [6] p.110.

Below we prove that under some assumptions weaker then
in Proposition 4.3, we can "reduce” a given small spectrum
of U to a po-speotrum., The crucial point of our consideration
is the following lemma.

Lemma 4,4, Let D be e small oategory with equa-
lizers and limits of arbitrary chains. Then there exisis i
a full coreflective subocategory 21 of D such that Q1 is
a poset,

Proof., For each D-object 4, the class of all pa~-
rallel pairs of morphisme with domain 4,

i
S
f
2

is a set. Thus using equalizers and limits of chains one can
construct a limit of a disgram P(d) i.e. morphism
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ey = eq P(d} 3 dy—=d

such that f%e1 = fée1 for each (f%,f%)e P(d) and for every
h :d,—=a there exists a unique h, with h = eyeh, provided
that h equalizes each pair of P(d).

Let o be an ordinal number with card &> csrd(ob Dj}. We
define a ohain Fd : x°P—=D (% i a chein of ordinals less
then o treated as a category) as follows Fd(o) - d,

Fd(n+1——-n) = 8,1 = 99 P(Fd(n)) : Fd(n+1)—->Fd(n) and
for each limit ordinal B < &
d
¥ (3 —=n)
(@(p) Fn))y, .,

is a limit cone of a chain Fd|/3 :3°P_~p, By the smallness
assumption there exist n<m<o such that F(n) = F(m).
If m = n+1 then obviously FI(k) = Fd(m) for each k>n+l. If
m>n+1, then we have a commutative dlagram

d
x=F"(m>n)
F(m) . 7 (n)
y=F (m n+1)
Fd(m;n+2) €141
a ) ®he2 “~ _d
P (n+2) —= F" (n+1)

neq®ToX ¢ Fd(n)——-Fd(n). So we have e, ;*y°x*e, . =

nd Jexee, 4 = id, Thus y 1is split epi and, oonse-~
is an isomorphiem i.se. Fd(k) = Fd(m) for each

Note that e
= %nyq 8
guently e
k >n+1,

For each Q-objéct d we shall use d to denote an objeot
Fd(n) such that Fd(k) = Fd(n) for each n< k‘<0(. Note that for
every d'e ob D there exists at post one morphism from & to
d'. Now it is not hard to verify that the full subcategory
generated by objects {3, d ¢ ob 1_)} is that one we are looking
for.

n+2
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Theorem 4.5 Let A be a category with equalizers
and limits of arbitrary chains. Assume also that U preserves
limits of these types. Then the following are equivalent,

(1) U has a small spectrum,
(i1) U has a small po-spectrum,

Proof . The only nontrivial implication is (1i)=>(i1),
Let (5,J,7,l( )°) be a small spectrum of U, Then by Proposi-
tion 2,6 for each C-object X, SX has equslizers and limits of
chains. Hence by Lemma 4.4 there exist coreflective full sub=-
categories §Xc SX. For each i€ ob SX, by ¢4 : 1 —=1 we denote
a ooreflector of i in SX, Let us consider a 4=-tuple
(8,7 = 33, =0 5( )¥) where (£,8)% = (£,4)%J,(p;) for each
(£ + X—=UA, &) with J,1 = dom(£,4)% Obviously (5,3,7,( )%
satisfies (1) and (ii) of Proposition 2,4, Let h : Y—X
in C and 1 € ob SX, Let P : o°P—=SX be & chain that oon-
structs i, 1,0, 1 = 1im P4, Then, by Proposition 2,6,
sh 1 = 1im snFt,

P She.
A Pshi 1
sﬁ:} < Sni Shi — snl = 1im shpt

Por each k <« there exists exactly one morphism

Y t Shi-—*-ShFi(k). It follows that there exists a unique
Yo Shi——-shi and oonssquently Shi Shi. Now for each
U-morphism (£,A) with dom(£,4)° = Jxi we have (fh,a)*

= (£,4)%(pTh,371)%0 (05, ) = (f,u°-Jx(¢i)-(Q§n.in;* -

= (f, A)o(Q . in) i,0., condition (1ii) of Proposition 2.4
is also satisfied. The proof is complete,

5. Examples
The first group of examples is based on the following

observation,

Proposition 5.1, Assume, that C has a fac~
torization system (E,M) and C is colocally small with respect
to B, Then for every full suboategory D of C, closed with
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12 Ge.Jarzembski, A.Kurpiel

respect to M (i.e. Be ob D provided that there is m : B — A
with me M and Ae ob Dj, the full embedding D<—=C has a small
spectrum consisting of suitable full subcategories of By =

= small skelston o?f {ee E, dom{e) = X}.

If B< BEpi C then the speotrum described above is a pow-
~-3pectrum,

5¢1+1. The catagory of groups Gr, commutative rings CRng
or, in general, each variety or quasivaricty V has a factori-
zation system (Surjective Epi, Mono). Then the full embeddings
Finite Gr <« Gr, Finite CRng — - CRng, Finite V-V are po-mul=-
tiadjoint functiors with speotra consisting of all congruence
of a finitary index.

5¢1+2. Full embeddings Dom <~ CRng, Red = CRng,

Prim <« CRng etce.s.., where Dom, Red, Prim etc... ars full
suboategories of integral domains, reduced rings, primary
rings, etc.vs, are multiadjoint functors, The spectra of a
commutative ring A relatively to these embeddings are priaxe,
semiprime, primary etc... spectra of A considered here as

a poset [2].

5.1.3. Let Locc be a full subcategory of CRng with looal
rings as objects. Then the full embedding Logce <~ CRng is
po~multiadjoint. The speotrum of a commutative ring A is a
prime spectrum of A (with dualized order),

S5¢1e4s. An embedding of a full suboatsgory of all metri-
zable spaces into a category of all topological spaces is
po-multiadjoint.

5.2. The second group of examples is based on the obser-
vation that some compositions of po-multiadjoint functors
are po-multiadioint.

5¢2.1. Let TopVect R be a category of all topological real
vector spaces and linear continuous maps, Vect(R) be a cate~
gory of all real vector spaces and linear maps, Consider
a commubtative diagram of funotors
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Concept of multiadjointness 13

Veot{R)

TopVect(R)

U U

1

Top Set

One can easily prove, that Z, i3 po-multiadjoint, Then UZ1
is a po~multiadjoint functor,

5.2.2+ Lot Norm(R) be a category of all normed real vec-
tor spaces and linear maps f with ||[fll<1. The topology
associated witi a nora gives the functor U, : Norm(R)
—=TopVect{R). U, is a regular po-multiadjoint functor (for
a description of its spectrum see [2]). Regular morpnisms
with respsct to this spesctrum are norm~preserving linear maps.
It has been proved by Manss [T] that U, is right adjoint. Then
bota compositions U1U2 and Z.‘U2 are po-multiadjoint,

5¢2.3. Let Ban(R) be a full subsategory of Norm(R) with
real Banach spaces as objeots, The full embedding E:Ban{R)ec—
c~Norm(R) has a left adjoint and the unit of this adjointness
is point-wise a linear, norm-preserving map, Then the compo~-
sition U1U23 is a regular po~multiadjoint funotor.

5¢2+.4. Lot Ab be a category of abslian groups and Ordab
be a category of ordered abelian groups and order preserving
homomorphisms., Then the forgetful functor U:0rdAb — Ab is
po-multiadjoint {for a desoription of its speotrum see [2]).

Regular morphisms with respect to this spsctrum are pro-
per order preserving homomorphisms, i.e. ¥V x, (fx>0=>x3>0).
Then the composition OrdAb — Ab —Set is a regular po-multi-
adjoint functor,

5¢2.5. Lot Grph be a category of graphs i.e., objeots are
4-tuples (X,A4,{d,0):X —=4) and morphisms from {X,4,{d,c})
to (Y,B,(d1,o1)) are given by pairs of functions {f,g) such
that d1~f = ged and 01-f = geo, Let U:Grph —=Set, whare
U(x,a,{d,0)) = X, U(f,g) = £f. The {epi, mono)~-factorization
system in Set induces a natural factorization systea in Grphk;

{f,8) = (f,mg)'(id,eg), where g = m ey is an {epi, mono)}-fag-
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14 Ge.Jarzembski, A.Kurpiel

torization of g in Set. It follows that U is a po-multi-
adjoint functor with a spsctrum (5,J,7,( )°) where SX is
a poset of equivalence relations on the set X x 0,1}.

Since U’:Cat ——Grph is right adjoint, then the composi-
tion UU': Cat — Set is a po-multiadjoint functor.

Regular morphisms for this speotrum are functors with
injective objeot-function.

5.3, Partial monadic algebras [5 |, Throughout we will
write pb(f,g) = (f1 +84) if the square is a pullbacks

f

L]

L]
f
By a pb-monad over topos ¢ (Alexandroff’s monad in [8]) we
mean a monad T = (T,u,p) such that for each monomorphism
mt X—Yin C

pb(yy,l"rm) = (uy,Tm), pb(Tm,py) = (m4p5)

and for eaoh £ : 2 —Y, T preserves pullback of (f,m).

A partial monadic T=-algebra is a pair (A,(a,ao)) where

(aya,) : TA—=4 is a partial morphism such that (a,ao) 0P, =
= id , and (aye,) o (Ta,Ta,) = (a,a‘,)ouA where o is a com-
position of partial morphisms defined by pullbaok, Morphisms
from (A,(a,ao)) to (B,(b,b,)} are given by C-morphisms

b ¢+ A—=B such that h (a,ao)s(b,bo)o Th, where < 1s an
obvious order on the set of parallel partial morphisms,

Let PMA(T) be the category of all partial monadic I-alge-
bras and their morphisms. Then‘the obvious forgetful fanctor
U s+ PMA(T) —=C is regular po-multiadjoint with a spectrup
defined as follows:

For every object X in C, SX is a poset of all subobjects
of TX Xy % Xi——Tx such that: X

(1) ¢ x Tactors through x4, 1e6s 2y = 7303
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(i1) pb(px,xi) = (xl, Txioxg) for some xg : 2 —TXy.

Note that X, = (X;,(x],x{)) is a partial monadic T-algebra.
Then we define a functor Jy : SX — PMA(T) by Jx(xi) = Xy
let £ : x-—*-U(A,(a,ao)) = A. Its universal p-extension is

a morphism a*f, : (Xf,(x}.xg))——a—(A,(a.ao)). where (f1,xf) =

= pb(Tf,8).

One can prove that h : (A,(a,ao) ———(B,(b.bo)) is S-regular
iff h o(a,ao) = (b,bo)o Th. In particular, every universal
p-extension is S=-regular.

5.3.1. For all oategories gi listed below, monads gi
{i=1,.0.45) over Set, which satisfy the equation ¢, = Set¥i
are pb-monads:
g1 = Alg S2 = category of all algebras of a given type 22,

92 = Smgr = category of semigroups,

g3 = Latt = category of complete lattices with maps preserving

joins as morphisms i.e. 23 = power~set monad,

94 = CompHaus = category of compact Hausdorff spaces

i.0. 24 = ultrafilter monad.

CLatt = category of continuous lattices and maps pre-
serving direoted joins and arbitrary meets as
morphisms, i.e. Ty = filter monad [1].

Then, the categories of partial monadio Ei-algabrae are iso-

morphic to the following ones:

PMA 21 = category of all partial algebras of a given type Q2.

PMA T, = category of partial semigroups.

PMA T, = category of complete ordered sets [2] 1.6., posats
in whioch every upper-bounded subset has a join, with
maps preserving all existing Jjoins.

PMA 24 = category of looally ocompact Hausforff spaces.

PMA 25 = oategory of continuous complete posets i,e, posets
(X,<) such that (X,< °P)e ob PMA(T,) and for every
family {Di’ iGI} of directed subsets AN VDi,ieI} =
-V{/\{di, 1el}s (dg, LeI)eT{D, 1€I}} 1n that
sense, that the left hand side exists iff the right
hend side exists and then, they are equal. Morphism

(o]
U
[ ]
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are maps which preserve directed joins and all
existing meets,
5¢3.2. Let T be a pb-monad. A pair (A,(a,ao) : TA —4)
is called a weak partial monadic T-algebra, if (aoao)o Pa =
= id, and (a,a;) ouy;<la,a,) (Ta,Tao). Let WPMA(T) Dbe the
category of all weak partial monadic T-algebras with morphisms
defined im the same way as in PMA(T). Let U':WPMA T ——C be
the obvious forgetful funotor. We define a spectrum of U’ in
the same way as in 5.,3. One can easily prove that this multi-
adjointness is a po-multiadjointness but not regular,
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