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Anatolij Dvuredenskij

JOINT DISTRIBUTIONS OF OBSERVABLES
AND MEASURES WITH INFINITE VALUES

Joint distribution of observables in measures attaining
infinite values is ivestigated in the framework of gquantum
logics. .For a logic of a separable Hilbert space, dim H>3,
it is proved that any 6 ~-finite measure has a carrier, and
this result is applied to the problem of the existence of
a joint distribution,

1. Introdugtion

Let us suppose that the set, L, of all expsrimentally ve=-
rifiable propositlons of physical system torms a quantum lo=-
gic. Aoccording to Varadarajan [1], agssume that the guantum
logic L is an orthomodular orthocomplemented G -lattice with
the minimal and maximal elements O and 1, respectively, and
with an orthocomplementation L :ar——a*, a,a’e L, which sa=
tisries (1) (a")* = a, for any ael; (41) 4if a<b, taen
b"<a“; (111) avv' =1, for any aeLl; (iv) if a<b, taen
b=av({atab),

Two elements a and b of L are said to be (i} orthogonal
and we write a.b, if a<b'; (1i) compatible and write a<=b
if there are three mutually orthogonal elements 84, b1, c
such that a = a,vec, b= b1Vc.

Physical quentities are 1dentified with the observables
of the quantum logic. An observable on L is a map x from the
set, B(R1), of all Borel measurable subsets of the real line
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2 A.Dvuredenski]

R,, into L such that (1) x(R ) = 1; (11) x(B) L x(®) if ENF =

= @3 (14i) x(U By) = \/ x(By) whenever EinE;] - @, 1 # e

i=1
An observable x is bounded 1f there is a compact subset Cc R.‘
such that x(C) = 1. Two observables x and y are compatible if
%(E) «+=y(F) for any E,Fe B(R1).
Physical states are identified with the states of the
quantum logic, that ia, a state is map m:L —[0,1] with

(1) m(1) = 13 (i1) m(\/ a;) = Z-’I m(a,;) whenever 8y 4 aj

for 1 ¥ j. The more general notion as the state 1s a measure,
So, we say that a map m: L —-—R1 {oo} is said to be a measure

on L if (1) mr(\/ 8) = 1:.% m(ay) whenever a, L ay for 1 # 3

(ii) M(O) = U'

An element a 18 a carrier of a measuve m if m(b) = O
iff bLa, It is clear that if a carrier of a measure exists,
then it is unique, The measure m is (1) finite if m{a}j<oo,
for any eel, or, equivalently, if m(1)<eco; (i1) G-ﬁnii? ir

there is a sequenee of mutually orthogonal elements {ai}iﬂ
[~ ]

with }/ a, = 1 and m(a;)<c° for any 1. An observable x is
=l
O-finite with respect to a measure m if there 18 a sequence

{Ei}f:1c B(R1) suchoothat E,N BJ Foiti 4, m(x(By))<oo,

for any 1>1, and 1U By = By
=1

We say that a function m is continuous from below
(above) on an slement ae L 1r, for any a, <a,<... with
oo
M a; = a (a1>32> ese With {-} ay = a and at least for

one n, m(an )< o0) we have m(a) = lim m(a;). Similarly as
: i

in [2] we may prove that a finitely additive funotion on L
with m(0) = 0 is a measure iff m 1is continuous from below
on any element of L, or, eguivalently, m 1is continuoue
from above on the minimal element O.
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Joint distributions of observables 3

2. Joint distributions

Por an observable x, an event x(E) denotes that the
measured value, £, of tho corresponding physical quantity lies
in a Borel subset EeB(R1). If a quantum mechanical system is
described by a measure m, the expression

(2.1) (31 Xo-oXE ) = m(/\ xj(Ej))’

m
# x1o..x

E G B(R.‘)’ 331,..0'11,

J

denotes the measure of the simultaneous measurement of the
observable XqseeesXy whioch give measured quantities lying in
the Borel subsets E, € B(R1), i=1,e000,00

According to Gudder [3], we say the observables Xy,...X
have a joint distribution in a measure m .if there 1is =
measure‘uz veexy on the set B(R,) of all Borel subsets of R,

such that 12.1) holds.

Gudder [3] introduced the notion of the joint distribution
only for a state (it is named type I jolnt distribution, %oo).
This type has been studied in [5-12]. Urbanik [4] defined
another type of a-joint distribution in a state (type II joint
distribution): for the summable self-adjoint operators in a
Hilbert space, and Gudder [3] generalized this notion for
bounded observables on a sum loglo.

If m 1e a state (or a finite measure), then the joint
distrivution, if it exists, is determined unambiguously on
B(Rn)..For a measure m with m(1) = o0, the unignensss must
be studied in more detail,

The notion of joint distribution in a measurse may be ge-
neralized to any set {xtx t eT} of observables in a natural
way: w8 say that observables {xt: t eT} have a Jjoint distril-
bution in a measure m if any finite subset of {xtz te T}
has one. The generalization of this notion to ¢ ~homomorphisms
defined om a measurable space (X,p) is stiraightforward (here
¢ 1s a G-algebra of subsets of X and a map x: ¢ — L is
a 6 ~homomorphism if (i) x(X) = 13 (i1) x(B).L x(F) 1f BNF=¢;

(111)<x 1L=J1 Ei) = \/ x(8;), {B]< o).

i=1
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4 4, Dvuredensii]

S.P. Gudder in [7] posed the following problam: Can a joint
distribution be defined for noncompatible observables?
The answer to that question has been obtained in the papers
[5,6,13,14].

In the present note we solve this problem for measures
with m(1) = oo, The solution will contain the answer for measu~
res on a Hilbert space loglic, too.

In ths sequel we suppose that the observables XqsesesXy

are given and for the Joint distributionuy Of XqpeeeyX
1'

seX n

n
in a measure m we shall write simply u.

Leama 201, Let observables XyseeesXy be compatible,
®hen, for any measure m on L, there is a joint distribulion.
If a¥ least one observable is 6-finite with respect to m,
then the joint distribution is unique.

Proof, For compatible observables Xq,eseyX,, there
is a unique @~homomorphism x: B(R ) — L such that x(R1 XeeaX
By xees xRy ) = xi<Ei i= 1,...,n; ses [1, The 6.17]. Let us
put u{B) := m(x(B)), BeB(Rn). Then M is a well defined
joint distribution.

The uniguensss of the joint distribution follows from the
uniqueness.of the extension of G-finite measures defined on
the set of all rectangles of B(R,), [2]« Q.E.D.

Define

(2.2) a(B,,.00,By) = \v/ /A\ ( B ), EqyeeesBpeB(R,),

110001 =0 j =1

where 8 := R, - B, 'E := B,
We put (if it exists)

(2.3) 8o =/ \{a(ByseessBy) ¢ BypeeeyBre B(R,)} .

In the papsr [j}] it is shown that the element 8, exists, and,

20

moreover, there is a sequenoce {a(E?,...,Eﬁ&k=1 such that
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Joint distributions of observables 5

A k K
(204) ao = /\ 3(31,ooo,3n)0
k=1

The elemsnt a, 18 called a commutator of.x1,....xn, and the
main properties of the commutator are investigated in [12,13],

Lemma 2.2 Let XyrevesXy have a joint distribution
in m and let 8, is the ocommutator of XqseeesXpe Then

(i) m(a(E1’o-.’En)) = II(1), 81’|ao,Ene B(R1).

(2.5) n K n
(ii) H.I(/\ Xi(Ei)/\/\ G(B¥,o'o.8§), = m(l/\ xi(Ei))'
i=1 k=1 i=1

for any 31,010’En, El;,o.o.E:e B(R.‘), k= 1,..0,K, where K
may be an lnteger or o}

n n
(2.6) m(/\ xi(si,A‘m) = !‘(/\ xi(!i)])’
i1=1 =1

31 'u?."ne B‘R1 ).

(2.7, Il(ao) = ﬂ(1)o

Proof ., The part (i) is evident, and (ii) is same as
(2.6) in [6]. (2,6) follows from (2.5) and (2.4). For (2.7) it
is sufficient to put 31 =By = oo =, = R1. Qe.B.D.

Lemma 2,3. ILet x1,...§n have a joint distribution
in a measure m., If there is EeB(R1) and x; such that
m(x,(B})<oo, then

(2.8) m(x, (B) Aay) = O,

Proof . Prom the results of the paper [13] there
follows that a‘;“xj(r) for any Pe B(R,) and any § = 1,.4.,0

Henoe a; —+~x,(B) and from (2.6) we have
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6 A, Dvuredenskij

a(x;(E)) = m(x;(B)Aa)) + mlxy(B)Aay) = m(x;(E)) +

+ m(xi(E) A a;),

consequently, (2.8) holds,

Lemma 2.4, Let XyseeesXy have a jolnt distribution
in a measure m, If at least one observable is G -finite with
respect to m, then

(2.9) . m(a;) = 0,

Proof. Let {Bn}:_1cB(R1) be a sequence with
oo
Einlj =@, it 1 ¢ j, H E, = Ry, and, for some x,,
m(xi(En”<°°' n>1. Since °3‘*x1(3n)- for any n, then,
[~ -]

oo
due to [1, Lemma 6,10], aé/\}g/“ xi(En) = }4 (at/\xi(En)).
Check

oo
o0

m(a;)sm(a;/\ﬂ = m(a;/\\/ xy (B )| = Z m(a;/\xi(En)) = 0,
n=1 n=1

when we use (2.8),

Theorem 2.5 Let XyseeesXy be ohgervables and
let m be a measure., If (2.9) holds, then there is a joint
distribution of XyseoosXy in a measure m, If at least one
observable is 6~finite with respect to m, then the joint
distribution is uniqué. _

It XqseeesXy have a joint distribution in m and at least
one obsmervable is G-finite with respsct to m, then (2.9)
holds.

Proof . The first part of Theorem follows Trom the
following., Let a_ be the commutator of XyseeesXpe Then,
according to EJB?, xio(E) 1= xi(E)/\ao, ] eB(R1),’i-1,....n.
defines an observable Xy of a quantum logic L(O,ao) =

t= {'b: be L, b<ao} (here the greatest elewant is a , an
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Joint distributions of observables 7

orthocomplementation ", ' is defined via b' := bano (b'<a°)).
Morsover, Xqorere Xy, BT mutually compatible observables.
Hence, due to Lemma 2.1, Xq09***9%p0 have a joint distribution

in & measure m  := IL(O,ao)’ From (2.9) we have

n n n
m</\ xi(Ei)> = m(/\ xi(Ei) /\a°> + m(/\ xi(Ei)/\a‘;> =

i=1 =1 1=1

n
mo<;A\ xio(Eib 4
1=1

which entails that XqseeesXp have a joint distribution in m,
Repeating the same arguments as those in the proof of
Lemma 2,1 we establish the uniqueness of a joint distribution.

The second part of the assertion of Theorem follows from
Lemma 2.4,

Corollary 2.6, Lot ay be a carrier of a
measure m, 1f XqseeeyXy have a joint distribution in m
and at least one observable is 6-finite with respect to m,
then

(2.10) ap<a,,
and
(2.11) 8m<8(E1,ooo.En), for any 81,000,En€'B(R1,0

If (2.10) holds, or equivalently, (2.11) ia true, then
Xyrese9Xy have a joint distribution in m. 1f at least one
observables is G~finite with respect to m, then the joint
distribution is unique, '

Proof. (2.10) and (2.11) follows from the defini-
tion of a ocarrier, and from Theorem 2.5 and (2.4).

Note 1. The ocondition ”

(2.12)  m(a(By,ees,B,)") = 0, for amy B,,...,E,€B(R,),
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8 A, Dvursaenskij

is the necessary and sufficient condition for Xqre0e9Xy to
have a joint distribution in a state or a finite measure m
[5,6,13]s For a measure with m(1) = oo this condistions is
known only in partloular oases, see Lemma 2,6 and the follow~-
ing lemma,

Proposition 2.7 Let a logic L be G =conti~

nuous, that is, for any 84 <8y <ees and, any a, we have
(> -]

[» )
(\/ a;/Aa = \/ (a, Aa)e Lot there hold for a measure m
1=1 1 1a1 1

and observables X seeesX

n
n 2 n
(2.13) m(/\ x, (B uxg)> - n(/\ x, (8} )>.
=1 Kieeokpel ‘3= J

B nEd = ¢, 8, BleB(R,), d=1,000,m:

If at least one observable is O-finite with respect to a,
then there is a unique joint distribution of x,,¢4eyx, in m.
Proof. Itiseasy to verify that (2.13) implies
x}Bnl—--m(;’/:\1 IJ(EJ)>’ ie a finitely additive
function on the set F of all rectangles. The G~continuity
of a logio and the continuity of m from below entall that
¢ is @ G-additive and G-fipite function on # . Therefore

it may be extended to & measure on B(Rn). Q.E.D.

The results of all the above assertions may be extended
to the set of observables {x : t€ T} such that there is at
most countable subset f c R(xt) ¢ te'.l‘}», where /£ generates
the minimal subloglc of L containing the set U {R(xy): teT}
(here R(x) := {x(E) 3 BeB(R.‘)}). In particular, this is true
for g sequence of observables, For given observables {xt: teT}
we define the commutator, a,(T), of{xtz te'.l‘} (1f it exists)
via

that u E1 j}%ooo

(2.14) 8,(T) -/\{ao(l?) t F is a finite subset of T},
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Joint distributions of observables . 9

where ao(P) is the commutator of observables Xy veeesX,
1
and F = {t.‘,-co,tn}o
From [13] it follows that a (T) exists, and moreover,
there is a sequence of finite subsets F <X such that

n

o0

(2.15) a,(T) = /\ a,(F,).
h=1

Theorem 2.8 Let {xt: te'.l.‘} be a system of ob-
gservables ror whioh there is at most oountable subset £ C
kJ{R(xt)x teT}. where £ generates the minimal sublogic
of L containing all R(xy), t€ T, If {x,: t€ T} have a joint
distribution in m and at least one observable is G ~-finite
with respect to m, then

(2.16) m(a,(T)*) = 0,

If (2,16) holds, then there is a joint distribution of
{xg1 te T}, If at least one observable is G-finite with res-
pect-to m, then there is a unique 6~finite measurs « on

TT B(R1) such that
tel

n n
(2.17) ﬂ(ﬂ}r;1(33)> = m(/\ Xy (EJ)>, Eyyees B, €B(Ry),
j=1 9 j=1 3

where e is the t-th projeotion from R'f onto R1
Proof. Itis clear that if F,cF,cT, then ao(F2)<
<e (P). Iet x, be F-finite with respect to m. Theh (2.15)
)

implies
oo o0 o0 n

a(T) = /\ a,(Fp) >/\ ay(Fu{t,})>/\ ao(U (Fy u{to})>>
n=1 n=1 n=1 =1

>a (7).
n
. 4
Theorem 2.5 entails m(a (B,)”) = 0, n>1, where B, = L=j1 FyU
u{t,}. The continuity of m from below gives (2.16).
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10 A, Dvuredenskij

Conversely, let (2.,16) hold. Then, for any finite subset
FcT, we have m(ao(F}‘L) = O, Now we claim to show that there

is a unigue &« on ]—l B(R1) for whioh (2,17) holds. Let Xy
te

0
be 6 -~finite with respect to m, and let for some EeB(R )
have O<m(xt (E))< oo, Define a system of functions,{y%. F

igs a finits subaet of T}, on ]—[ B(R ) via

J=1

J=1

where E1,....Ene B(R1), F= {t‘!"”’tn}‘ The system {,ugz F
is a finite subset of T} fulfils the conditions of Kolmogorov's
consistence theorem [23], heince, there is a unique measure(aE

on | | B(R,) with (2,18), Define

teT
4(B) = ) utm),
i=1

where Be | | B(R,) and {E,},;7, is a measurable pertition
teT
of Ry with 0 <m(xy (By))<oe, 1>1. The funetion « is well
o
defined and it is 6 -additlive and 6-finite, It is easy to ocheck
that (2.17) is fulfilled, The uniqueness of u follows from
the extension theorem for 6~finite measure on the set of all

c¢ylindrical sets,

3. Hilbert space logic

One of the most important examples of quantum logics 1is
a set, L(H), of all closed subspaces of a Hilbert space H
over the real or complex fields C, This is a.,case of the great
importance in quantum mechanics. In this seotion ve apply
the general results on existence of ‘a joint distribution in
a measure with infinite values showing that any G -finite
measure on L(H) has a carrier for a separable Hilbert spacsh,
dim H>3,
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Joint distributions of observables 11

The famous Gleason theorem [15] asserts that any state m
on a separable Hilbert space H, dim H>3, is induced by a po-
sitive von Neumann operator T via the formula

{3.1) m(P) = tr(TP), Pe L(H).

Here we identify the subspace P with ite orthoprojector P
onto P. We recall that a bounded operator T on H is said to

be an operator with a finite trace if tr(T) := " (Txa,xa)
ae
is absolutely convergent series, independent of the used ortho-

normal basis {xa: aeI}.

The Gleason theorem has been generalized in [16,17] for
all bounded signed measures on L{H) for a separable Hilbert
space whose dimension is at least 3. Eilers and Horst [18]
proved Gleason'’s theorem for finite measures on L(H) for
a non-separable Hilbert space, and Drisch [19] extended (3.1)
for bounded signed measwres on a logic L(H) of a non-separabls
Hilbert space whose dimension is a non-real measurable cardi-
nal,

For measures on L(H) with m{H) = oo we need the following
notions. A bilinear form is a function t: D(t) x D(t) —=C,
where D(t) is a linear submanifold of H named the domain of t
such that t 1 lipear in the first argument and antilinear
in the seaond one. If %(x,y) = t(y,x) for all x,ye D(t), then
t 1is said to be symmetric; if for a symmetric bilinear form t
we have t(x,x)>0, thén t 4is said to be positive, Let ¢
be a symmetric bilinear form and B>0 be a self-adjoint ope-
rator., Then to B denotes a symmetric bilinear form defined via
t o B(x,y) = t(B”zx, B1‘/-2y), when the corresponding assump-
tions on the domains of ¢ and B1/2 are satisfied, Symmetric
bilinear form is said to be a bilinear form with a tinite
trace 1f (1) D(t) = Hy (14i) t(x,y) = (Tx,y) for all x,yeH,
where T 18 an operator with finite trace., We put tr t := tr(T),
and we write te¢ Tr(H), where Tr(H) is the set of all bounded
operators with finite irace.

Lugovaja and Sherstnev [20] proved that, for any 6-finite
measure m on L(H) of an infinite-dimensional separable Hil-
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12 A. Dvuredenskij

bert space there is a unigque symmetric bilinear positive
form ¢t with a dense domain such that

(3.2)

tr toP if toPelr(H),
m(P) =
= otherwise.

In the paper [21] this result has been extended to 6-fini-
te f-bounded signed measures on L(H) of a Hilbert space whose
dimension is s non-real measurable cardinal.,

The joint distribution of observables on L{H) in a state
has been studied in [3,5]. It was proved that x,,...,x, have
a join distribution in a state m induced by Te Tr(H) via
(3.1) iff

(303} Xi1(Ei1) eee xin(Ein)T = x1(E1) eee xn(En)T,

for any permutation (11,...,in) of (1,¢e0,n) and all
BqyseeesB, € B(Ry).

In the following we shall study the existence of a joint
distribution for a measure m on L(H) with m(H) = co , ang
the condition analogous to (3.3) will be proved. First of all
we begin with a finite-dimensional Hilbert space.

Lemma 3.1, {Lugovaja~Sherstnev [20]). Let dimH=3
and let m be a measurs on L(H) with m(H) =occ . If there are
a one-dimensional Q and a two~dimensional P with m{Q)< o,
m(P)< oo, then Q< P,

Denote

(3.4) Py =V {P: m(p)<oo}

The following lemma has been proved in [21].

Lenmna 3.2, Let 3<dim H< oc and let m be a mea-
sure with m(H) = oo , If there is a two~-dimensionsal Q, with
m(Q°)< oo, then m(Q)<ee iff Q<P

Lemma 3.3 Let 4<dim H< oo and let m be a mea~
sure with m(H) = co , Let there be a three-dimensional Q, with
m(Q°)<°° o If m(M) = m(N) = 0, then m(MVN) = O {the Jauch-
-Piron property).

s

- 132 -



Joint distributions of observables 13

Proof. Due to Lemma 3.2, m(Q)<oe 1iff Q« P, Hence,
w(N VN) <eo, Applying the Gleason theorem to m, := m|L(0’P ) =
= o|L(L,) we see that a{MVN) = O, o

Lemma 3.4, Let the conditions of Lemma 3.3 are
fulfilled, Then any measure @ on L(H) has a carrier,

Proof. Let us denote M= {P: n(P) = 0}. It is clear
that (i) M # @3 (ii) if Q<P, Pe M , then Qe M ; (iii) if
PLQ and P,QeMd , then PVvQe X ; (H)ifoam %eJ(,ﬂmn
Pyv P e X , where P, denotes the one-dimensional subspace ge-
nerated by a non-zero vector xe H, Let us put Pg = V{P:m(P) =O}.
Then from Lemma 3.3 and (i)-(iv) we have that m(P;) = O,

Define Am = P;*. Then Am is a carrier of a measure me QeBeDe
We recall that a subset M c L(H) witn (i)=(iv), from

the last proof, is said to be an ideal.
Theoraem 3.5, Let the conditions of Lemma 3.3

be fulfilled. If, for XqveeesXy, WO have

(305) xi1(Ei1) esre xin(Ein,)Am = x1(E1) e xn(En)Am,

for any permutation (11""’in) of {1,¢e.,4n) and any
Byyeee,B € B(R1), where A, is a oarrier of a measure m,
thgn XiseeerX, have a joint djstribution in m, Moreover,
the condition (3.5) is equivalent to

{3.6) Axi1 Axi Ap = Ax1 Axn A

n

for any permutation (11,...,1n) of (1,e0e,n), where A, is an
Hermitean operator corresponding to an observable x.
Proof. Itis known [22] that {3.5) implies

(‘x1(E1)A "'Axn(En”Am = x1(E1) coe xn(En)Am' Hencs
1
i i
- - Z 1 n -
a(E1 i"‘.’En)Am = x1( Et‘) e e Xn( En)Am =
11...in=0

m’
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14 A. Dvuredenskij

where I is the identical oparator on H. Therefore a(E1,...,En)>
aAm, for all E1,...,En, consequently, A°> Am’ where Ao is

the commutator of Xy,...,x, and m(Aj) = O. Repeating the first
part of the proof of Theoream 2.5 we finish the proof.

We see that measures with a(H) =oc on a finite~dimensio~-
nel Hilbert space are in some sense “pathological". Mors use-
ful information we may obtain in an infinite-dimensional se=-
parable Hilbert space.

Lemma 3.6, Any G-finite measure on L(H) of an
infinite~dimensional separable Hilbert space has a carrier,

Moreover, if m(Ma) = 0 for any ae 4, then m a\e/A M. )= 0.
Proof., If m(H)< oo, then ths assertion follows

immediately from Gleason®’s theorsm.

Let now m(H) = oo , Define M = {P: n({P) = O}. We claim
to show taat M is an ideal of L(H). For that it is necessary
to show that if Px,P € M, then P vP eM , We may limit our-
selves with P _th, P_ £ Py' The G-finitenass of m entails
that there is at least one three-dlmens:Lonal P such that
m{P)< oo and Px # O, Py ¥ O. Then there is z ¢ P such that
2lx and 2ly, Applying the Lugovaja-Sherstnev lemma to
a three-dimensional space Q := sz Px v P, we have that
m(va Py)<003 if not, thaen m(Q) = o and P,<P, ® Py. Using
the Glsason theorsm for a finite measure m, = n|L(Q) we have
m(vaPy) = O,

_Now we show that if P_ ,.ee,P_, e M, then P t= P V eee V
J1 In Jq .

va e M « Lemma 3.2 implies that m(P)< oo arnd Lemma 3.3
n

entails that m{P) =

Defihe the submanifold D generated by the ideal U via
D = {x : Pxe.l(} U _{()} and let M be a subspace of H generated
by D. Then M = V {P: m(P) = 0, dim P<oo} , The separability
of a Hilbert space implies that there is a sequsnoe of fini=~

te-dimensional subspaces of H, "{Pn}x:ﬂ with m(P ) = 0, such

o0
that M = M P {Pn};.] may be choosen sucu that P,<P,< ... .
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Joint distributions of observables 15

The continuity of m from below entails m{M) = O, The element
Ay = M is a carrier of a measurs m. The last assertion is
now evident.,

Note 2. The author does not know whather Lemma 3.6
holds for a non-separable Hilbert space whose dimension is
a non-real measurabls cardinal. For that it is neceasary and
sufficient to show that m(M)<oo , For more details, see the
proof of Lemma 3.9.

The following elementary Lemma has been proved in [5].

Lemma 3.7. Let M1,...,Mne L(H), where H is an
arbitrary Hilbert space. Let (i1,...,in) be any permutation

i i
Of (1,..0.“). If 0 # f(-': 1M1A OOOA nMn, Where OM = ML,

M ;= M, then

(3.7) Md1 ene Mjn f = M1 see Mn f'

for any permutation (31,...,jn) of (1,000,0}e

Theorem 3.8, LetH be an infinite~dimensional
se parable Hilbert space, If XqveeasXy have a joint distribu-
tion in m and at least one observable is 6-finite with res=-
pect to m, then (3.5) holds. If, additionally, XyresesrX
are bounded observables, then (3.6) holds,

If m is O-finite and, for X;,...,x, there holds (3.5),
then XyreeesXy have a joint distribution in m. If at least
one observable is G-Pinite with respect to m and (3.5)
holds, then the joint distribution is unique,

Proof. Since at least one observable is G-finitse
with respect to m, we see that o is 0 -finite measurs,
consequently, the ocarrier of m exists. Due to Lemma 2.b.

n

Ams Aog 3(E1 poee ,En)’

where A  is the commutator of X;,e..,Xx, defined by {2.4).
Therefore if fe A,, then fe-a(E1,...,En) and f is a finite

J J
linear combination of vectors from x1( 1E1>/\.../\xn( nEn)
for. some 31,...,jn = 0, 1« Due to Lemma 3.7,
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Xi1(Ei1) XX} xin(Ein)f =x1(E1) es e xn(En)f,

for any permutation of (11,...,1n) of (1,¢444n), and, conse~
guently, (3.5) holds,

For bounded observables, (3.6) is a consequence of the
spectral theorem for Hermitean operators.

The second part of the proof is analogous to the proof
of Theorem 3.5,

Notoe 3. Theorems 3,5 and 3.8 have been proved
in [3,5] for states using the conssquence of the Gleason
theorem that any state is a mixture of pure states, For mea-
sures with infinite values this is not true, in general. In
our proof we use the new approach: the existence of carriers
for G~finite measures.

In the following the previous Theorem will be extended to
a non-sepafable Hilbert space, We recall that a cardinal I
is sald to be non-real measurable if there is no positive
measure v, V¢ O on the power set of I with v ({a}) = 0 for
each acl,

Proposition 3.9 Let H be a Hilbert space
whose dimension is a non-real measurable ocardinal. Let m be
a measure on L(H) with m(H) = co « Let us put At = V{P:m(?)-o}.
If at least one observable is G-finite with respect to =
and XyseeesXy have a joint disiribution in m, then

(3.8) xi1(Bi1) .re xin(Ein)A = x1(E1)...xd(En)A,

tor any permutation (11,...,in) of {1,...,n) and all
E1""'EnelB(R1)'

If m{A )<oco, m 1is G-finite, and (3.8) holds, then
Xqseee9Xy have a joint distribution in m. If at least
one observable is G-finite with respect to m, then the
joint distribution is unique.

Proof., The first part of the proposition is similar
to that in Theorem 3,8,
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In the second part we show that m{A“)<oo implies m(A™)= 0
thet is, A will be a carrier of m. The generalized Gleason
theorem for a non-separable Hilbert space [21] entalls thst
there is a unique operator Te Tr(H) such that m{P) = tr(TP)
whenever P< A", The operator T has a form T = %E Ay £5 @ fi,

where fiJ'fj' if 1 £33, "fi" =1, fyeH, A;>0, for any 1,

f ® f: x+—=(x,£)f, xcH, Henoe m(P) = 0 iff PLF, for any 1
(here P11 £, denotes that x 1 f;, for all xe P). Henoe, At 1fy,
for any i, so that, m(A") = 0. For the rest of the proof we
apply Lemma 2,6.
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