

Anna Romanowska

SOME VARIETIES OF ALGEBRAS
DEFINED BY EXTERNALLY COMPATIBLE IDENTITIES

1. Introduction

Let \underline{V} be a variety of F -algebras. Let w and v be F -words. An identity

$$w = v$$

is called externally compatible if w and v are the same variable or

$$w = w_1 \dots w_n f$$

and

$$v = v_1 \dots v_n f$$

for some F -words w_1, \dots, w_n , v_1, \dots, v_n and n -ary operator f in F . (See [3]).

For a variety \underline{V} of F -algebras, where each f in F is at least unary, let \bar{V} denote the variety of the same type defined by all externally compatible identities satisfied in \underline{V} . Chromik [3] has given a representation theorem for algebras in \bar{V} in the case that all fundamental operations of algebras in \underline{V} are idempotent, and has shown how to construct a basis for the identities satisfied in \bar{V} when a basis for \underline{V} is given. To formulate Chromik's theorem in a form more suitable to our needs, let us recall two definitions.

Let \underline{W} be the class of all F -algebras and \underline{U} and \underline{V} be sub-varieties of \underline{W} . Let (A, F) be an algebra belonging to \underline{W} .

A congruence relation φ on (A, F) is said to be a $\underline{U} \cdot \underline{V}$ -congruence relation if $(A, F)/\varphi$ belongs to the variety \underline{V} and every φ -class that is a subalgebra of (A, F) belongs to the variety \underline{U} . The class of all algebras in \underline{W} having a $\underline{U} \cdot \underline{V}$ -congruence relation is called the product class $\underline{U} \cdot \underline{V}$ of \underline{U} and \underline{V} . (See [7]).

An algebra (A, F) is called a constant algebra if for each n -ary f in F the identity

$$x_1 \dots x_n f = y_1 \dots y_n f$$

is satisfied in (A, F) . In this case we denote

$$0_F(A) := x_1 \dots x_n f.$$

Let $\underline{C}(F)$ be the variety of all constant F -algebras.

1.1. Theorem [3]. Let \underline{V} be a variety of F -algebras. Suppose that for each n -ary f in F , the identity

$$x \dots x f = x$$

holds in \underline{V} . An algebra (A, F) belongs to the variety $\bar{\underline{V}}$ if and only if there is a $\underline{C}(F) \cdot \underline{V}$ -congruence relation φ on (A, F) such that the φ -classes are subalgebras and for each n -ary f in F and a_1, \dots, a_n in A

$$a_1 \dots a_n f = 0_F(a_1 \dots a_n f \varphi). \square$$

In this note we give a representation theorem of a similar type for algebras in a variety $\bar{\underline{V}}$ in case \underline{V} satisfies more general conditions than those of Chromik. We show as well that Chromik's method of finding a basis for the identities satisfied in $\bar{\underline{V}}$ from a basis for \underline{V} can be applied in this case, too. Some examples illustrating our results are then given.

For basic algebraic notions we refer the reader to [4], [9]. The notation is similar to that used in [4] and [9].

An F -word in variables x_1, \dots, x_n is denoted by $x_1 \dots x_n w$ and the corresponding derived operation \bar{w} when applied to elements a_1, \dots, a_n by $a_1 \dots a_n \bar{w}$. If $w = x_1 \dots x_n w$ and $w = w_1 \dots w_k f$ for some F -words w_1, \dots, w_k and k -ary f in F , then we write

$x_1 \dots x_n w_1 \dots w_k f$, and we denote the result of the derived operation \bar{w} when applied to elements a_1, \dots, a_n by $a_1 \dots a_n \bar{w}_1 \dots \bar{w}_k f$. Note that each externally compatible identity satisfied in \mathcal{V} has the form

$$x_1 \dots x_i y_1 \dots y_j w_1 \dots w_n f = x_1 \dots x_i z_1 \dots z_k v_1 \dots v_n f$$

for some n -ary f in F and F -words w_1, \dots, w_n , v_1, \dots, v_n , where one of the sets $\{x_1, \dots, x_i\}$, $\{y_1, \dots, y_j\}$ and $\{z_1, \dots, z_k\}$, or both the latter sets, may be empty.

2. Main results

In this section only algebras without nullary fundamental operations are considered. This is not a serious restriction, since instead of a constant operation c , we can always introduce a unary operation c' satisfying the identity $c'(x) = c'(y)$, without essential changes in the structure of the algebras in question. (See [11]).

To formulate the main theorem, let us introduce some definitions.

Define the following sequence of F -words

$$x_1 \dots x_n u_1 := x_1 \dots x_n f,$$

$$\begin{aligned} x_1 \dots x_n u_2 &:= x_1 \dots x_n f \dots x_1 \dots x_n f f = \\ &= x_1 \dots x_n u_1 \dots x_1 \dots x_n u_1 f \end{aligned}$$

and

$$x_1 \dots x_n u_{i+1} := x_1 \dots x_n u_1 \dots x_1 \dots x_n u_i f.$$

Note that for $i \geq 3$

$$(2.1) \quad x_1 \dots x_n u_i = x_1 \dots x_n u_2 \dots x_1 \dots x_n u_2 u_{i-2}.$$

Now let \mathcal{V} be a variety of F -algebras and $\tilde{\mathcal{V}}$ the class of all F -algebras (A, F) satisfying the following condition:

(2.2) there is a congruence relation φ on (A, F) such that

- (i) $(A, F)/\varphi$ belongs to the variety \underline{V} ,
- (ii) for each n -ary f in F and $a, a_1, \dots, a_n, b_1, \dots, b_n$ in A , if $a_1 \dots a_n f$ and $b_1 \dots b_n f$ are in a , then

$$b_1 \dots b_n f = a_1 \dots a_n f.$$

Let us denote

$$(2.3) \quad \theta_f(a\varphi) := a_1 \dots a_n f.$$

2.4. Theorem. Let \underline{V} be a variety of F -algebras satisfying the identities

$$(a) \quad x_1 \dots x_n f = x_1 \dots x_1 u \dots x_n \dots x_n u f$$

and

$$(b_i) \quad x_1 \dots x_n f = x_1 \dots x_n u_i \dots x_1 \dots x_n u_i f$$

for some natural number $i \geq 2$, each n -ary f in F , and some F -word u that is not just a variable.

Let B be a basis for the identities satisfied in \underline{V} . Let \bar{B} consist of the identities (a), (b_i) , all externally compatible identities of B and all the identities

$$w \dots w u = v \dots v u$$

for each not externally compatible identity $w = v$ of B .

Then the following three classes of F -algebras coincide:

- (i) the variety \underline{W} defined by \bar{B} ,
- (ii) the class \tilde{V} ,
- (iii) the variety \underline{V} .

Proof. A. $\underline{W} \subseteq \tilde{V}$. Let (A, F) be in the variety \underline{W} . It is easy to see that the relation φ defined on A by

$$a \varphi b \text{ if and only if } a \dots a \bar{u} = b \dots b \bar{u}$$

is an equivalence relation. Since by (a) for n -ary f in F and $a_i \varphi b_i$, $i = 1, \dots, n$, we have

$$\begin{aligned}
 & (a_1 \dots a_n f) \dots (a_1 \dots a_n f) \bar{u} = \\
 & = ((a_1 \dots a_1 \bar{u}) \dots (a_n \dots a_n \bar{u}) f) \dots ((a_1 \dots a_1 \bar{u}) \dots (a_n \dots a_n \bar{u}) f) \bar{u} = \\
 & = ((b_1 \dots b_1 \bar{u}) \dots (b_n \dots b_n \bar{u}) f) \dots ((b_1 \dots b_1 \bar{u}) \dots (b_n \dots b_n \bar{u}) f) \bar{u} = \\
 & = (b_1 \dots b_n f) \dots (b_1 \dots b_n f) \bar{u},
 \end{aligned}$$

it follows that φ is a congruence relation.

Let us note that substituting $x_1 \dots x_n f$ for each x_i , $i = 1, \dots, n$, in (a) we get the following identity:

(c)

$$\begin{aligned}
 & x_1 \dots x_n u_2 \\
 & = (x_1 \dots x_n f \dots x_1 \dots x_n f u) \dots \\
 & \quad (x_1 \dots x_n f \dots x_1 \dots x_n f u) f.
 \end{aligned}$$

Now if $a, a_1, \dots, a_n, b_1, \dots, b_n$ are in A and $a_1 \dots a_n f \varphi b_1 \dots b_n f$, then by (b₁), (2.1) and (c),

$$\begin{aligned}
 a_1 \dots a_n f & = a_1 \dots a_n u_1 \dots a_1 \dots a_n u_1 f \\
 & = (a_1 \dots a_n u_2 \dots a_1 \dots a_n u_2 u_{1-2}) \dots \\
 & \quad (a_1 \dots a_n u_2 \dots a_1 \dots a_n u_2 u_{1-2}) f \\
 & = (((a_1 \dots a_n f \dots a_1 \dots a_n f u) \dots \\
 & \quad (a_1 \dots a_n f \dots a_1 \dots a_n f u) f) \dots \\
 & \quad ((a_1 \dots a_n f \dots a_1 \dots a_n f u) \dots \\
 & \quad (a_1 \dots a_n f \dots a_1 \dots a_n f u) u_{1-2}) \dots \\
 & \quad ((a_1 \dots a_n f \dots a_1 \dots a_n f u) \dots \\
 & \quad (a_1 \dots a_n f) \dots a_1 \dots a_n f u) f) \dots \\
 & \quad ((a_1 \dots a_n f \dots a_1 \dots a_n f u) \dots \\
 & \quad (a_1 \dots a_n f \dots a_1 \dots a_n f u) u_{1-2}) f
 \end{aligned}$$

$$\begin{aligned}
&= (((b_1 \dots b_n f \dots b_1 \dots b_n f u) \dots \\
&\quad (b_1 \dots b_n f \dots b_1 \dots b_n f u) f) \dots \\
&\quad ((b_1 \dots b_n f \dots b_1 \dots b_n f u) \dots \\
&\quad (b_1 \dots b_n f \dots b_1 \dots b_n f u) f) u_{i-2} \dots \\
&\quad ((b_1 \dots b_n f \dots b_1 \dots b_n f u) \dots \\
&\quad (b_1 \dots b_n f \dots b_1 \dots b_n f u) f) \dots \\
&\quad ((b_1 \dots b_n f \dots b_1 \dots b_n f u) \dots \\
&\quad (b_1 \dots b_n f \dots b_1 \dots b_n f u) f) u_{i-2} f \\
&= (b_1 \dots b_n u_2 \dots b_1 \dots b_n u_2 u_{i-2}) \dots \\
&\quad (b_1 \dots b_n u_2 \dots b_1 \dots b_n u_2 u_{i-2}) f \\
&= b_1 \dots b_n u_1 \dots b_1 \dots b_n u_1 f \\
&= b_1 \dots b_n f
\end{aligned}$$

It follows that the condition (2.2ii) is satisfied.

Now if the identity

$$x_1 \dots x_i y_1 \dots y_j w = x_1 \dots x_i z_1 \dots z_k v$$

belongs to B then the identity

$$w \dots w u = v \dots v u$$

holds in W . Hence for $a_1, \dots, a_i, b_1, \dots, b_j, c_1, \dots, c_k$ in A ,

$$a_1 \dots a_i b_1 \dots b_j \bar{w} \varphi a_1 \dots a_i c_1 \dots c_k \bar{v}$$

which implies that $(A, F)/\varphi$ belongs to V . Consequently (A, F) is in the class \tilde{V} .

B. $\tilde{V} \subseteq \bar{V}$. At first we show that for an arbitrary F -word $x_1 \dots x_k w$ that is not just a variable, and for a_1, \dots, a_k in A ,

$$(2.5) \quad a_1 \dots a_k \bar{w} = 0_f(a_1 \dots a_k \bar{w}^\varphi),$$

where $w = w_1 \dots w_n f$. If $w = x_1 \dots x_n f$ for some f in F , then (2.5) coincides with (2.3). Now suppose that

$$w = x_{11} \dots x_{1i_1} w_1 \dots x_{n1} \dots x_{ni_n} w_n f$$

for some n -ary f in F and F -words w_1, \dots, w_n . Then for $a_{11}, \dots, a_{1i_1}, \dots, a_{n1}, \dots, a_{ni_n}$ in A , (2.3) implies that

$$\begin{aligned} a_{11} \dots a_{ni_n} \bar{w} &= a_{11} \dots a_{1i_1} \bar{w}_1 \dots a_{n1} \dots a_{ni_n} \bar{w}_n f = \\ &= 0_f(a_{11} \dots a_{1i_1} \bar{w}_1 \dots a_{n1} \dots a_{ni_n} \bar{w}_n f^\varphi) = \\ &= 0_f(a_{11} \dots a_{ni_n} \bar{w}^\varphi). \end{aligned}$$

Next let

$$(2.6) \quad x_1 \dots x_i y_1 \dots y_j w_1 \dots w_n f = x_1 \dots x_i z_1 \dots z_k v_1 \dots v_n f$$

be an arbitrary identity holding in \bar{V} . Then the first part of the proof and the fact that $(A, F)/\varphi$ is in \bar{V} imply that for

$$a_1, \dots, a_i, b_1, \dots, b_j, c_1, \dots, c_k \text{ in } A,$$

$$\begin{aligned} a_1 \dots a_i b_1 \dots b_j \bar{w}_1 \dots w_n f &= 0_f(a_1 \dots a_i b_1 \dots b_j \bar{w}_1 \dots w_n f^\varphi) = \\ &= 0_f(a_1^\varphi \dots a_i^\varphi b_1^\varphi \dots b_j^\varphi \bar{w}_1 \dots w_n f) = 0_f(a_1^\varphi \dots a_i^\varphi c_1^\varphi \dots c_k^\varphi \bar{v}_1 \dots v_n f) = \\ &= 0_f(a_1 \dots a_i c_1 \dots c_k \bar{v}_1 \dots v_n f^\varphi) = a_1 \dots a_i c_1 \dots c_k \bar{v}_1 \dots v_n f. \end{aligned}$$

Consequently, (2.6) is satisfied in (A, F) .

C. $\bar{V} \subseteq \bar{W}$. Obviously all the identities of \bar{B} and hence all the identities satisfied in \bar{V} are externally compatible. Hence $\bar{V} \subseteq \bar{W}$. \square

Let us note that if a^φ is a φ -class of an algebra (A, F) in \bar{V} , the elements $a_1, \dots, a_n, b_1, \dots, b_n$ are in a^φ and a^φ is a subalgebra of (A, F) , then

$$a_1 \dots a_n f = b_1 \dots b_n f.$$

It follows that the algebras in \bar{V} may be characterized as members of the product class $\mathcal{C}(F) \cdot V$ satisfying the condition (2.2.ii).

2.7. Corollary. Let V be a variety of F -algebras satisfying the assumptions of Theorem 2.4 and let B be a basis for the identities satisfied in V . Then the identities of \bar{B} form a basis for the identities satisfied in \bar{V} . In particular, if V has a finite basis for its identities, then so does the variety \bar{V} . \square

2.8. Corollary. The characterization given in Theorem 2.4 holds for varieties V satisfying one of the following conditions:

(i) For each n -ary f in F the identity

$$x \dots x f = x$$

holds in V .

(ii) There are unary and non-unary operators in F . For each n -ary f in F with $n \geq 2$,

$$x \dots x f = x;$$

and for each unary f in F ,

$$x f = x f f f$$

hold in V .

(iii) For each n -ary f in F the identity

$$(2.8) \quad x \dots x f \dots x \dots x f f = x$$

holds in V .

(iv) There are unary and non-unary operators in F . For each n -ary f in F with $n \geq 2$,

$$x \dots x f = x;$$

and for each unary f in F

$$x f f = x$$

hold in V . \square

Case (i) gives Chromik's Theorem 1.1. Case (iv) was also considered by Chromik [3].

3. Examples

One may apply Theorem 2.4 to all varieties V of algebras with idempotent fundamental operations, for example lattices, (F -) semilattices (in particular bisemilattices), modes and modals as defined in [9], and bands (idempotent semigroups). Let us give one more detailed example here. In the case that V is the variety \underline{Sl} of all semilattices, the variety $\underline{S^l}$ consists of commutative semigroups satisfying the identity $x \cdot y = (x \cdot y) \cdot (x \cdot y)$ and Theorem 2.4 gives a structural characterisation of such semi-groups. More generally, Theorem 2.4 can be applied to any variety of semigroups satisfying the identities

$$(a') \quad x \cdot y = x^k \cdot y^k;$$

$$(b'_i) \quad x \cdot y = (x \cdot y)^{2^i}$$

for some natural numbers i, k and any not externally compatible identity that in the case of semigroups has the form

$$x_1 \dots x_n w = x.$$

If we consider groupoids instead of semigroups, the identities (a) and (b'_i) take the form

$$(a'') \quad x \cdot y = (x \dots x u) \cdot (y \dots y u),$$

$$(b''_i) \quad x \cdot y = (x y u_1) \cdot (x y u_1),$$

and each externally compatible identity has the form

$$x_1 \dots x_n w = x.$$

Finally, according to Corollary 2.8 Theorem 2.4 may be applied to all varieties of algebras with idempotent n -ary F -operations with $n \geq 2$ and nonidempotent unary operations as for example Boolean algebras, p -algebras, double p -algebras, de Morgan algebras (as defined in [1]), then to pM -algebras [8], to ortholattices [6] and more general polarity lattices [10]

and to closure algebras [2]. (In all these algebras with lattice structure, the F-word u is taken to be $x + y$). The case of distributive p-algebras was considered independently in [5]. Theorem 2.4 do not apply to algebras having a group structure. For varieties \mathcal{V} of such algebras the problem of characterising algebras in \mathcal{V} remains open.

REFERENCES

- [1] R. Balbes, P. Dwinger: *Distributive lattices*, Univ. Missouri Press, Columbia, Miss. 1974.
- [2] W.J. Blok, P. Dwinger: *Equational classes of closure algebras I*, Ind. Math. 37 (1975), 189-198.
- [3] W. Chromik: *Varieties of Algebras Defined by Identities of Some Special Forms* (Polish), doctoral dissertation, Institute of Mathematics, Technical University of Warsaw, 1985.
- [4] P.M. Cohn: *Universal Algebra*, D. Reidel Publ. Comp., Dordrecht, 1981.
- [5] K. Halkowska: *Externally compatible identities in pseudocomplemented lattices*, this volume.
- [6] G. Kalmbach: *Orthomodular Lattices*, Academic Press, London, 1983.
- [7] A.I. Malcev: *Multiplication of classes of algebraic systems* (Russian), Sibirsk. Math. Z. 8 (1967), 346-365.
- [8] A. Romanowska: *Subdirectly irreducible pseudocomplemented de Morgan algebras*, Algebra Universalis 12 (1981), 70-75.
- [9] A. Romanowska, J.D.H. Smith: *Modal Theory - an Algebraic Approach to Order, Geometry and Convexity*, Heldermann Verlag, Berlin, 1985.

- [10] D. Schwaiger: Vollständige geometrische Verbande mit Polarität, Arch. Math. 28 (1977), 233-237.
- [11] W. Taylor: Characterizing Mal'cev conditions, Algebra Universalis 3 (1973), 351-397.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,

00-661 WARSZAWA, POLAND

Received March 21, 1986.

