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BIREGULAR AND UNIFORM IDENTITIES OF BISEMILATTICES

In this paper we study varieties of algebras with two bi-
nary operations + and ¢ defined by some special types of
identities introduced in [11] under the names of unifornm,
biregular, S-uniform and S-biregular. {Sse section 0 for the
definitions).

In section 1 we give a representation thieorem for algebras
in the variety defined by all uniform identities with two ope-
ration symbols + and <+ and we find a (finite) equational
base of it,

Seotion 2 is devoted to varieties defined by all uniform
{all biregular, all + ~ uniform) identitles satisfied in a
given variety of bisemilattices. For these varieties we obtain
similar and related results.

O, Preliminaries

Let T3 F —N be a type of algebras i.e. F is a set
of fundamental operation symbols and N is the set of non-nega-
tive integers. If ¢ ia a term of type 7~ then we denote by
var(p) the set of variables oocouring in ¢ and by F(p) the set
of fundamental operation symbols ooccuring in ¢ . An identity
@ =y is called regular if

var(p) = var(y) (see [9]).

Such identities were considered e.g. in [4~10]. The following
types of identities were defined in [11].
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2 Je. PXonka

Definition 1, An identity ¢ =y of type v is
called biregular if it is regular and F{p)} = F(y).

Definition 2 An identity ¢ = y of type T is
called uniform if F{gp) = F(y) and if F(¢) # F then ¢ =y is
regulear,

Sometimes we write $=y¥ to strese that the identity p=y
is uniform.

Now let S<F.

Definition 3. An identity ¢ =y of type T 1is
oalled S~biregular if it is regular and F(p)n S = F(y)Nn s,

Pefinition 4. An identity o = ¢ of type T
is called S-uniform if F(@)nS = Fly)n S and if Flp)jn S # S
then it is regulsar,

In [11] varieties of algebras defined by the identities
desoribed in Definitions 1 - 4 were investigated.

If E is a set of identities of type 7 we denote by V(E)
the variety of type ¢ defined by E and we denote by C(E)
the set of all identities of type 7  provable from E by
Birkhoff ‘s deriviation rules, For a variety K of type 7 we
denote by E(K) the set of all identities satisfied in K.

We say that a property p of identities is pressrved by
ccngequences if p satisfies the following condition:

if £ is a set of identities having the property p then
every identity from C(E) has this property, too.

4s it was noticed in [1ﬂ :

{1) each of the propsrties "to be regular", "to be bire=-
gular®, "tc be uniform", "to be S-biregular", "to be S~uni-
form" is preserved by conseguences,

Let us denote by R(K), B(K), U(K), By(K), Ug(K) the sets
of all regular, biregular, uniform, S-biregular, S~uniform
identities satisfied in K, respectively. It follows from (i)
that every of the sets of identities mentioned above is an
equational theory (see [14]).

If ¢ is a term of type 7 and var{y) = {xi1,‘..,xin}

then we sometimes write p(x; ,++,%; ) instead of ¢.
1 n
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Biregular and uniform identities 3

For two varisties K1 and K2 of the same type we dsnote
by K1v K2 the join of K1 and Kg. For varieties K1---'oKn. of
the same type we denote by K1 ® oo ®lg1the class of all
algebras isomorphic to a subdirect product of algebras

‘8(1,...,Zln where U ; €Ki, 1 = 1,000,00

iv

1. Uniform identities in algebras with two binary opsra-
tions

From now on we consider only algsbras of type TO:FO——N
where Fo = {+, -}, 'l'o(+) = ro(o) = 2, We denote by U(To) the
set of all uniform identities of type Tye

Let U™ be the set of the following iderntities:

(1.1) Xy + Xy = Xy + Xy,

(1.2) X4°Xy = XptXg,

(1.3) (xy + x5) + x5 = x9 4 (x5 +23),
(1.4) (xy°x5)ex3 = x40 (x50%5),
(1.5) Xy 4 Xq + Xy = X+ Xy,
(1.6) X oX Xy = Xy *Xp,

(1.7) (x; + xy)exy = (x4°x5) + Xgo

The following theorem explains the role of the identities U¥
for the variety V(U(To)).
Theorem 1. The set U¥is an equational base
for the variety V(U(To)).
For to prove Theorem 1 we need some lemmes.
Lemma 1. .
(d1) It q:(xi) is a term of type T, and Flp(x;)) = {+}
then the identity gp(xi) = x; + x; belongs to c(u*).
(dz) Ir go(xi) is a term of type T, and F((p(xi)) = {0}
then the identity (p(xi) = Xxj+Xx; belongs to c{U*),
(d3) 1r ¢(xi1,...,xin) is a term of type 7, such that
n>1 and F(¢(xi1....,xin)) = {+} then the identity
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go(xi yeeesXy ) = Xy + Xy o+ oeee + Xy belongs to C(U¥)
n 1 2 n
where {11’...'111} = {j1gcoo’jn} and J1<32<ooo <jn.

(a if cp(xi1,...,xi )} 1is a term of type 7, such that

n
n>1 and F((,o(xi1,...,xin)) = {'} then the identity

Plxg yonesXy ) = Xj *%y * seo °X;  Dbalongs to c(u*)

n 2 In
where {1i,0eeydip} = {J1000esdp) 8RG §,<3,< een<ipe
Proof. It is obvious and follows directly from

the identities (1.1)~(1.6}.
In the segquel we write xilq), whenever we substitute a
term y for a variable x; in a term ¢,
Lemma 2. If ¢ is a term of type 7, and F(p) =
= { +,'} then the identity ¢= X Xp+Xy belongs to C(U™),
Proof. Pirst we prove that the following two iden-
tities belong to C(U¥)

(1.8) Xq*Xy + X3 = Xy0Xg + Xg,

(1.9) (3:14~Jr2)'::3 = X °Xq + XyeXq.

Indeed we get (1.8) by the following subs¥itutions x,|x,,

x5|x2, xg|x3 in {(1.7) and by uwsing (1.7) again. Similarly,

we get (1.9) substituting Xy |Xqp X5 |X3s Xg|Xp°X3 in (1e7)e
Now using the distributivity (1.9) we infer that one of

the following identities (1.10) and (1.11) belongs to C(U%)

(1010) P= p1 + P2 + eoee + pr,

where r >1 and any p; is & product of at lsast two variables,

(1.11) ¢= p1 + e0e + p' + xi1 + s0e + xit,

where 8,t >1 and any P is a product of at least two varlables,
Assume that Py = Xp*qy where gq 18 a variable or product

of variables and substitute x4|xk. x5|q, 16192 + eee + P

in (1.8). Then (1.10) implies that the identity p; + pp + e

+ Pp = Xy°X, + xq belonge to C(U™) and we g6t the statement
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Biregular and uniform identitlaes 5

of our leama, Analogously sudstituting x4|xk, x5|q.
Xg|Xg + Xy + eee X5 4 Py + ese + Pg in {(1.8) and using
2 t

(1411) we get the same statement. Q.E.D.

Proof of Theoream 1, We have to prove that C(U¥) =
= U(TD). By (1) we have C(U(T,)) = U(7 ). Since each of tae
identities (1,1) - {1.7) is uniform it follows that U*gu(to),
and oonsequently C{U¥)c c{u(r,)) = u(T,)e Now we prove that
u(z,)sc(u e Lot

{1.12) p=y

be a uniform identity of type r,. If (1.12) is of tae form

Xy =Xy then obviously it belongs to C(U%*}, If var Ps=

= var Y = { 1} and F(@) = Fly) = {+ than by (d ) the identi-
ties @= x; + x; and Y= x; + x; belongs to u(U*) and conse=
quently (1.12) does. If var ¢ = var y = {xi} and Flp) =

= Fly) = {'} then by (d ) the argument is analogous. If

var 9" var wg {xi1,..o,xin}, n>1, and F(¢) = F(W) {+

then by (d;) each of the identities g= Xy + «ee + x4 and
1 n
Y= Ty 4 ees Xy belongs to C{U¥), whence (1.12) belongs
1 n
to C(U®). The case var(p) = var(y) = {xi1,...,xi }, n>1,
n

and F(p) = Fly) = {+} is similar, Finally if F{p) = P(y) =
={ +,+} then by Lemma 2 the identity [1.12) belongs to C(U*¥)
as well. - Q.EDD.

The next theorem explains the structure of algebras in
V(U(T ))e To formulate it we need some definitions.

We define three varieties K1, K2, K3 of type T, as fol~-
lows,
K1 is defined by the identities

(1.13) X, + X, = Xy,
Xy + Xp = Xy + Xy,

(x1 + Xp) + Xy = xy + (x2 + x3),
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(1.14) X °Xy = X3°X,,
Xy + Xq4°Xy = X40X55
K, is defined by the identities

2
(1.15) X 0%y = Xq,

20Xy = XXy
(X1'X2)'x3 = x10(x2'x3) »
(1.16) Xy + Xy = X3+ Xy
x1-(x1 + x5) = Xy + Xp}
K3 is defined by the identity
{(1.17) x1'+ Xy = X30X,.

Obviously each algebra from K1 has a join=semilattice siruc-
ture where Xq°Xp is the unit element. Analogously sach algebra
from K2 has a meat-semilatitice structure where Xy + X, is the
zero element., In glgebras of the variety K3 both operations
are equal to the same constant,
Theorea 2, NN%HzKpmwm3=@®%®%.
For to prove Theorem 2 we nead some definitions and lemmas.
Let %= (A} +, *) be an algebra belonging to V(U(T,)). We
define in U three relations Ryy Ry, R3 a8 follows. For a,b e\,

aR, b<s=a+a=>b+bh,

1
a R2 b <=a+a = bed

a R3 b 1iff one of the following
conditions holds

(01) a=Db,
(92) a+a
(a3) asa =

angd b+b=b,

and beb = b,

(04) a+a=a and beb =b,

(05) aeg = and b+ b =xh,

In the sequal we write q+(x) for x + x and q.(x) for X+X.

o n
[

®
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Biregular and uniform identities 7

Leama 3. The relation R1 is s congruencs on U
such that ‘?)(Z/R1 € K1.

Proof. Recall that % belongs to V(U(tb)) and all
unifora identities of type 7, are satiasfied in V(U(Tb));

Obviously 81 is an equivalence relation on %, If a Ry ¢
and b R, d then {a+b) + (a+b) =U(a+a) + (b+t) = (c+c) +
+ (3+d) = (o+d) + {o+d) and similarly {aeb) + (asb) =y (a+a)e
o{b+b) = (c+c)e(d+d) =y {(o°d) + (0+*d). Hence R, has the sud-
stitution property.

Now for x,,X,,X3,X, € & We have q+(x *X5) =y q+(x3°x4),
whenoce (x1-x2) R1 (13-x4) and $0R1 satlsfies XqtXy = X30Xye
Furthex q+(x1+x1-x2) =y q+(x1-x2) and g (x4+x4) =y q+(x1).
Consequently %/R, satisfiss (1.14) and the first identity
of {1.13). The remaining identities of (1.13) are satisfied
in ZZ/R1 sinoce they are satisfied in W. Q.E.Ds

Lemma 4. The relation R? is a congrusnags on U
and %/R,e€K,.

The proof is dual to tnat of Lemma 3,

Lemma 5e The relation R3 is a congruence on U
such that u/RBG K3.

Proof. Obviously R3 is an equivalence. For
a,b,c,d€ A we have

q+(a +b) sya+bd and
q,(ced) = c-d.

Henoce R3 has the substitutlon property and ﬂVRB satisfies
(1¢17)e  QeBeDe

Lemma 6, R1f\R2f1R3 = w, where w 1is the equality
relation,

Proof. TLetabeh and a(R1nR20R3)b. We consider
five case@,
(f;) We mssume that q_(a) = g _(b), q (&) = q_ (b) and (ey)
hold, where 1 = 1,ee445¢

Obviously in the cases (f1)-(f3), a = b, In the oase (f4)
we have
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a=a+8=Db+Db=Dbeb + beb = gea + a*a
=y (a+a)+(a+g) = a*a = beb = b,

The case (fg) is similar. Q.E.D.

Proof of Theorem 2, Obviously K1® K2®K3Q
§K1VK2V K3. By theorem 1 1% is easy %o check that K;<
Q;V(U(Tb)) for 1 = 1,2,3 since axioms of K, imply (1.1)~(1.7).
Hence K, VK,V K3g v{u( T,) )+ To complete the. proqf it is enough
to show that if 2leV(U(zb)) then ¥ 1is decomposable into a
subdirect product of algebras 7%, U,, ﬂé whers ﬂi € K
But this follows directly from Lemmas 3-6 and Birkhoff’s theo~-
rem (ses [5] ppe123). Q.E.D,

2, Uniform and biregular identities in bisemilattices
An algebra % of type T, is called a bisemilattice
(see [8]) if it satisfies the following identities

{(2.1) X + X = XeX = X,
(2.2) X+Y =3 + X, X'y = y°X,
(2.3) (x +3) +2=x+(y +35), (xeylez = xe(yes),

In the mequel we write g(x) for q+(q.(x)).

Let X be a variety of bisemilattices. Let G be an equa=
tional base of the variety K. We define the set G* of idensi-
ties of type 7, a8 follows,

(gq) The identities (1.1) - (1.6) belong to 6*;

(g5) the identities q.(x1+x2) = q(xy) + q(xz) and
q(xyex,) = a{x;)+a(x,) belong to &%

(53) if an identity ¢ = ¥ belongs %o G then the identity
alp) = qly) = q(y) belongs %o G™j

(g4) the identities q(x1+xz) = X4 + q(zz) and q(x1°x2) =
= x,+9(x,) belong to G*s

(55) the identities q((x1+12)-.x3) = (11:14-::2)%:3 and
q(x1-x2+x3) = Xy eXgtx, belong to G

(8g) the met G*™ containe exactly the identities mentiondd
in (51)-(85)0
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Biregular and uniform identities 9

Theorem 3, For any variety K of bisemilattices
V(U(K)) = KVV(U(t )) = K@V(U(t ))e Moreover if G is an equa-
tional base of K then ¢*4ie an equational base of V{U(K)).

First we prove some lemmas, Let = (A +, *) be an slge-
bra belonging to V(G*), We define in ‘Ul two relations Q, and
02 as follows

&Q, b<>qla) = q(b);

aQ, be>a =Db or g{a) = a and gq(b) = b,

Lenmma 7. The kelation Qy is a congruence on U
such that ﬂ/Q.| € K.

Prooft, Obviously Q1 is an equivalence. Q has the
substitution property by (52) and 2(/Q16K by (33). Q.E.D.

Lemma 8, The relationQ, is a comgruence on %
such that zl/Qee v(u(z,)).

Proof, Obviously Q2 is an equivalence, We check
¢he mubstitution property. Let a 02 ¢c and b 02 de If a = ¢
and b = d then a + b = ¢ + d and a*b = o*d and we are done.

If a = 0, q{b) = b and q{d) = d then by (54) we have q(a+b) =
= a+q(b) = a+ b and similarly g(a + d) =0 + q{d) = o + d
and so (a + b) Qz'(o + d). Analogously we check the substitu-
tion property for ¢, If.g(a) = a, g(b) = b, q(e) =

q{(d) = d, then the substitution property is satisfied by (52).

Now by (85) the identities (1.7) hold in U/Q,. The iden-
tities (1.1) - (1.6) are satisfied in '”/Q sinoce b;y (g ) they
are satisfied in %. Thus U/Q, satiefies (1.1) - (1.7) and
by Theorem 1 2!/02'6 V(U(‘ro)). Q.E.D.

Lemma 9. QuNQ,; ~w.

The proof is obvious.

Proof of Theorem 3, Obviously K@V(U(t ) e

va(U('r ))s Since U(K) = B(K) nu(t ) is follows that
Kvv(u(z, )) = V(U(K}). Sinoe each of the identities from G*
is satiafied both in K and 1in v(u(z,)), 1t follows that
V(U(K))<= V(G*)s Recall that operations + and ¢ ars idempotent,
commutative and assoociative, To complete the proof we have
to show that if % € V(G™) then % is decomposable into a
subdireet product of algedbras 2(1 and 1(2 where Zl1 €K and
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ﬂ% eV(U(tb)). This however followe from Lemmas 7 = 9 and
Birkhoff ‘s theorem (see [5], Ps123}e QeZeDe

From Theorem 3 we obtain some interesting corollaries.
Let K be a variety of bisemilattices.

Corollary Te If K is finitely based then
V(U(K)) is finitely based.

Let L, Lm, Ld be the varieties of lattices, modular latti-
ces and distributive lattices, respectively.

Corollary 2. Each of the sets U(L}, U(Lm),
U(Ld) hes a finite equational base,

Corollary 3. IfR(K) has s finite equational
base then so does B(K).

Proof. It followe by Corollary 1 since B(K) =
= R(K) nU(z,) whence V(B(K)} = V(U(V(R{K}))})s QeEeDs

Let B(TD) denote the set of all biregular identities of
typs T, and let R{r,) denote the set of all regular identi-
ties of type Tye

Corollary 4. The set B(To) has a finite equa-
tional base.

Proof. In fact R(To) has a finite equational base
defined by the identities (2.1) - (2.3) and x; + x, = X,°X,.
Now the corollary follows by applying Corollary 3 to K =
= V(R(z,)). Q.E.D,

Corollary 5. Each of the sets B(L), B(Ly),
B(Ld) has a finite equational base.

Proof . Itwae proved in [8] that any of the sets
R(L), R(Ly), R(Ld) hae a finite base. Now the corollary follows
by Corollary 3. Q.E.D.

Other examples of finitely based varieties of bisemilatti-
ces can be found in [2], [3] and [12], [13].

From Theorems 2 and 3 we get a representation theorems
for algebras from V(U(K)) and V{B(K)).

Theorem 4. Lat K be a variety of bissmilattioces,
Then an algebra % belongs to V(U(K)) iff % is isomorphio
to a subdirect product of algebras ¥, ‘211, ?/12, 373 where
‘Zloe K and Wie Ki, i=1,2,3
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Theorsa 4. Let K be a variety of Hissmilattices,
Then an algsbra ¥ belongs to V(B(X)) iff % is isomorrhic ¢-
a subdireot product of algebras %%, ﬂ%, ”2, %3 whers
U e V(R(K)) and %, eK;, i = 1,2,3,

In fact, if K is a variety of bissmilattices than VIR(K))
is a variety of bissmilatticaes too, sinee (2.1) - (2,3} are
regular, Moreover B(K) = U(R{K)} so we can apply Theoiam 4
to the variety V{R(K)).

Let us denote by U (7 ) the set of all {+} ~unifora identi=-
ties of type Tye Studylng tus sat of all { }-unlfh*” idanti-
ties of type T is a dual process. We denote by U the set of
identities (1.:5) and (1.16),

Theoren 5e The set U: is an equational bass of
the set U+(T°).

Proof. By (i) we have C(U+(T°)) = U+(To). Eaen
the identities (1.15) and (1.16) is {+}-uniform whence

_U(T ) and c(UX)cu (z ).

To prove the converse 1nc11510n recall that U is an equa-
tional base of K and by Theorem 2, K2 is a subvariety of
V(U(T ))e It follows that esach of the identities {1.1) = {1.7)
belongs to C(U Je

¥ow using Lemmas 1 and 2 and applying (1.15) and (1.16)
we gat the following.

10 If‘¢(xi) is a term of type T, and F(¢(xi)) = {°} then

the identity ¢ (x;) = x; belongs to C(UY).
2° If‘¢(x.1,...,xi }» n>1, is a term of typs r, and

F(¢(xl1,.~.,x n?) {’} then th: identity go(xi1,...,xi ) =

»*
= X, belongs to C(U+) where {11,...,in} =

u1 ‘]2. .OO Jn
= {31,...,3 } and §y<dp<ese<dp.

3° If p is a ter: ~f type T, and {+}§;F(¢) then the identity
P=x +x belo.::s to C(U:).
Let the identity

(2.4) ' Vo=,

belong to U+(T°). Ir F(w1) = F(yz) = §§ then (2.4) must be of

‘the-form x, = X; and obviously belongs to C(U}). If PFly,) =
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= Fly,) = {¢} then (2.4) must be regular and by 1° or 2°
belongs to C(UJ). If {+}QP(\y1) = Ply,) then (2.4) belongs
to C(U}) by 3%  Q.E.Ds
Corollary 6. V(U (1)) =Ky
Let K be a variety of bisemilattices and let U+(K) de—
nots the set of all {+}-uniform identities satiafied in K,
The lgat theorsm explains the structure of algebras in
V(U+(K)) and gives an equational base for it, At firet we
need some definitions and leamas,
Let H be an equational base of K. We define the set H™
of identities of typs T, as follows.
(h1) The identities (1.15) belong to H™;
(hz) the identities q"_(x1 +x5) = q+(x1) + q+(x2) and
9,(xqex,) = q(x,)eq{x;) belong to H™;
for each identity ¢ = y from H the identity q+(¢) =
= g (y) belongs to |
(h4) the 1dentities q+(x1+xz)*- x, + q+(x2) and q+(x1-x2) =
= x1oq+(x2) belong 0 H"j
(hS) the identities q+((x1 + xz)ox3) - (x1 :x2)~x3 and
q‘._(x1 + X)) = (x1 + X,) belong to c(ul)s
(h6) the set H¥ oontains exaotly the identities mentioned
in (h1) - (hs)o
Let W= (A} +, ) be an algebra belonging to V(H*), We
define on U two relations 1‘1 and Tz as follows.

al, bssq (a) = q.(b)s

8T, bepa=>b or q+(a) = & and q+(b) = b,

Proofs of the following lommas are simlilar to those
of 7=9,

Lemma 10. The relation T, is a ocongruence on w
and %/T,€ V(H).

Proof. It follows by (h1) - (h3).

Lenmnma M. The relation '1‘2 is a congruence on U
and ?I/Tze V(U+(To)).

Proof. It follows by (h4), (hS‘ and Theorem 5,

Lenmma 12, T1012-w.

(y)

- 106 =



Biregular and uniform identities 13

Theorem b, V(U(K)) =KvV(U(T)) =
= KeV(U (r,)). Meweover if H is an equational base of K

then H” 1s an equational base of V(U _(K)).
Proof . Obviously K@V(U+(r°)); KvV(U+(r°)) =

= V(U (K)), Purther v(n+(x))<;V(n*) since H*cU (K). Using
Lemmas 10 - 12 we conolude that V(H*)c K®V(U (T ))e  QeBeDs

Let B+(td) denote the set of all {+}-biregular identities
of typs T, and for a variety K of bisemilattices let B+(K)
denote the set of all {+}-birogular 1dentities from B(X).
The last theorem implies the following.

Corollary T« The corollaries 1=5 remain $rme
if we write U+(U) instead of WK), B _(K) instead of B(K),
B (7,) instead of B(to).

Problem. Let K be an arbitrary variety of algebras,
Find a representation of algebras from V(U(K)) and from
V(B(K)) by means of algebras from K, .
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