

Jerzy Płonka

BIREGULAR AND UNIFORM IDENTITIES OF BISEMILATTICES

In this paper we study varieties of algebras with two binary operations $+$ and \cdot defined by some special types of identities introduced in [11] under the names of uniform, biregular, S-uniform and S-biregular. (See section 0 for the definitions).

In section 1 we give a representation theorem for algebras in the variety defined by all uniform identities with two operation symbols $+$ and \cdot and we find a (finite) equational base of it.

Section 2 is devoted to varieties defined by all uniform (all biregular, all $+$ - uniform) identities satisfied in a given variety of bisemilattices. For these varieties we obtain similar and related results.

0. Preliminaries

Let $\tau : F \rightarrow N$ be a type of algebras i.e. F is a set of fundamental operation symbols and N is the set of non-negative integers. If φ is a term of type τ then we denote by $\text{var}(\varphi)$ the set of variables occurring in φ and by $F(\varphi)$ the set of fundamental operation symbols occurring in φ . An identity $\varphi = \psi$ is called regular if

$$\text{var}(\varphi) = \text{var}(\psi) \quad (\text{see [9]}).$$

Such identities were considered e.g. in [4-10]. The following types of identities were defined in [11].

Definition 1. An identity $\varphi = \psi$ of type τ is called biregular if it is regular and $F(\varphi) = F(\psi)$.

Definition 2. An identity $\varphi = \psi$ of type τ is called uniform if $F(\varphi) = F(\psi)$ and if $F(\varphi) \neq F$ then $\varphi = \psi$ is regular.

Sometimes we write $\varphi =_U \psi$ to stress that the identity $\varphi = \psi$ is uniform.

Now let $S \subseteq F$.

Definition 3. An identity $\varphi = \psi$ of type τ is called S -biregular if it is regular and $F(\varphi) \cap S = F(\psi) \cap S$.

Definition 4. An identity $\varphi = \psi$ of type τ is called S -uniform if $F(\varphi) \cap S = F(\psi) \cap S$ and if $F(\varphi) \cap S \neq S$ then it is regular.

In [11] varieties of algebras defined by the identities described in Definitions 1 - 4 were investigated.

If E is a set of identities of type τ we denote by $V(E)$ the variety of type τ defined by E and we denote by $C(E)$ the set of all identities of type τ provable from E by Birkhoff's derivation rules. For a variety K of type τ we denote by $E(K)$ the set of all identities satisfied in K .

We say that a property p of identities is preserved by consequences if p satisfies the following condition:

if E is a set of identities having the property p then every identity from $C(E)$ has this property, too.

As it was noticed in [11] :

(i) each of the properties "to be regular", "to be biregular", "to be uniform", "to be S -biregular", "to be S -uniform" is preserved by consequences.

Let us denote by $R(K)$, $B(K)$, $U(K)$, $B_S(K)$, $U_S(K)$ the sets of all regular, biregular, uniform, S -biregular, S -uniform identities satisfied in K , respectively. It follows from (i) that every of the sets of identities mentioned above is an equational theory (see [14]).

If φ is a term of type τ and $\text{var}(\varphi) = \{x_{i_1}, \dots, x_{i_n}\}$ then we sometimes write $\varphi(x_{i_1}, \dots, x_{i_n})$ instead of φ .

For two varieties K_1 and K_2 of the same type we denote by $K_1 \vee K_2$ the join of K_1 and K_2 . For varieties K_1, \dots, K_n of the same type we denote by $K_1 \otimes \dots \otimes K_n$ the class of all algebras isomorphic to a subdirect product of algebras $\mathcal{U}_1, \dots, \mathcal{U}_n$ where $\mathcal{U}_i \in K_i$, $i = 1, \dots, n$.

1. Uniform identities in algebras with two binary operations

From now on we consider only algebras of type $\tau_0: F_0 \rightarrow N$ where $F_0 = \{+, \cdot\}$, $\tau_0(+) = \tau_0(\cdot) = 2$. We denote by $U(\tau_0)$ the set of all uniform identities of type τ_0 .

Let U^* be the set of the following identities:

$$(1.1) \quad x_1 + x_2 = x_2 + x_1,$$

$$(1.2) \quad x_1 \cdot x_2 = x_2 \cdot x_1,$$

$$(1.3) \quad (x_1 + x_2) + x_3 = x_1 + (x_2 + x_3),$$

$$(1.4) \quad (x_1 \cdot x_2) \cdot x_3 = x_1 \cdot (x_2 \cdot x_3),$$

$$(1.5) \quad x_1 + x_1 + x_2 = x_1 + x_2,$$

$$(1.6) \quad x_1 \cdot x_1 \cdot x_2 = x_1 \cdot x_2,$$

$$(1.7) \quad (x_1 + x_2) \cdot x_3 = (x_4 \cdot x_5) + x_6.$$

The following theorem explains the role of the identities U^* for the variety $V(U(\tau_0))$.

Theorem 1. The set U^* is an equational base for the variety $V(U(\tau_0))$.

For to prove Theorem 1 we need some lemmas.

Lemma 1.

- (d₁) If $\varphi(x_i)$ is a term of type τ_0 and $F(\varphi(x_i)) = \{+\}$ then the identity $\varphi(x_i) = x_i + x_i$ belongs to $C(U^*)$.
- (d₂) If $\varphi(x_i)$ is a term of type τ_0 and $F(\varphi(x_i)) = \{\cdot\}$ then the identity $\varphi(x_i) = x_i \cdot x_i$ belongs to $C(U^*)$.
- (d₃) If $\varphi(x_{i_1}, \dots, x_{i_n})$ is a term of type τ_0 such that $n > 1$ and $F(\varphi(x_{i_1}, \dots, x_{i_n})) = \{+\}$ then the identity

$\varphi(x_{i_1}, \dots, x_{i_n}) = x_{j_1} + x_{j_2} + \dots + x_{j_n}$ belongs to $C(U^*)$
 where $\{i_1, \dots, i_n\} = \{j_1, \dots, j_n\}$ and $j_1 < j_2 < \dots < j_n$.

(d₄) If $\varphi(x_{i_1}, \dots, x_{i_n})$ is a term of type τ_0 such that
 $n > 1$ and $F(\varphi(x_{i_1}, \dots, x_{i_n})) = \{\cdot\}$ then the identity
 $\varphi(x_{i_1}, \dots, x_{i_n}) = x_{j_1} \cdot x_{j_2} \cdot \dots \cdot x_{j_n}$ belongs to $C(U^*)$
 where $\{i_1, \dots, i_n\} = \{j_1, \dots, j_n\}$ and $j_1 < j_2 < \dots < j_n$.

Proof. It is obvious and follows directly from the identities (1.1)-(1.6).

In the sequel we write $x_1|\psi$, whenever we substitute a term ψ for a variable x_1 in a term φ .

Lemma 2. If φ is a term of type τ_0 and $F(\varphi) = \{+, \cdot\}$ then the identity $\varphi = x_1 \cdot x_2 + x_3$ belongs to $C(U^*)$.

Proof. First we prove that the following two identities belong to $C(U^*)$

$$(1.8) \quad x_1 \cdot x_2 + x_3 = x_4 \cdot x_5 + x_6,$$

$$(1.9) \quad (x_1 + x_2) \cdot x_3 = x_1 \cdot x_3 + x_2 \cdot x_3.$$

Indeed we get (1.8) by the following substitutions $x_4|x_1$, $x_5|x_2$, $x_6|x_3$ in (1.7) and by using (1.7) again. Similarly, we get (1.9) substituting $x_4|x_1$, $x_5|x_3$, $x_6|x_2 \cdot x_3$ in (1.7).

Now using the distributivity (1.9) we infer that one of the following identities (1.10) and (1.11) belongs to $C(U^*)$

$$(1.10) \quad \varphi = p_1 + p_2 + \dots + p_r,$$

where $r > 1$ and any p_i is a product of at least two variables,

$$(1.11) \quad \varphi = p_1 + \dots + p_s + x_{i_1} + \dots + x_{i_t},$$

where $s, t \geq 1$ and any p_i is a product of at least two variables.

Assume that $p_1 = x_k \cdot q$, where q is a variable or product of variables and substitute $x_4|x_k$, $x_5|q$, $x_6|p_2 + \dots + p_r$ in (1.8). Then (1.10) implies that the identity $p_1 + p_2 + \dots + p_r = x_1 \cdot x_2 + x_3$ belongs to $C(U^*)$ and we get the statement

of our lemma. Analogously substituting $x_4|x_k, x_5|q,$
 $x_6|x_{i_1} + x_{i_2} + \dots + x_{i_t} + p_2 + \dots + p_s$ in (1.8) and using
(1.11) we get the same statement. Q.E.D.

Proof of Theorem 1. We have to prove that $C(U^*) = U(\tau_0)$. By (i) we have $C(U(\tau_0)) = U(\tau_0)$. Since each of the identities (1.1) - (1.7) is uniform it follows that $U^* \subseteq U(\tau_0)$, and consequently $C(U^*) \subseteq C(U(\tau_0)) = U(\tau_0)$. Now we prove that $U(\tau_0) \subseteq C(U^*)$. Let

$$(1.12) \quad \varphi = \psi$$

be a uniform identity of type τ_0 . If (1.12) is of the form $x_i = x_i$ then obviously it belongs to $C(U^*)$. If $\text{var } \varphi = \text{var } \psi = \{x_i\}$ and $F(\varphi) = F(\psi) = \{+\}$ then by (d₁) the identities $\varphi = x_i + x_i$ and $\psi = x_i + x_i$ belongs to $C(U^*)$ and consequently (1.12) does. If $\text{var } \varphi = \text{var } \psi = \{x_i\}$ and $F(\varphi) = F(\psi) = \{+\}$ then by (d₂) the argument is analogous. If $\text{var } \varphi = \text{var } \psi = \{x_{i_1}, \dots, x_{i_n}\}$, $n > 1$, and $F(\varphi) = F(\psi) = \{+\}$ then by (d₃) each of the identities $\varphi = x_{j_1} + \dots + x_{j_n}$ and $\psi = x_{j_1} + \dots + x_{j_n}$ belongs to $C(U^*)$, whence (1.12) belongs to $C(U^*)$. The case $\text{var}(\varphi) = \text{var}(\psi) = \{x_{i_1}, \dots, x_{i_n}\}$, $n > 1$, and $F(\varphi) = F(\psi) = \{+\}$ is similar. Finally if $F(\varphi) = F(\psi) = \{+, \cdot\}$ then by Lemma 2 the identity (1.12) belongs to $C(U^*)$ as well. Q.E.D.

The next theorem explains the structure of algebras in $V(U(\tau_0))$. To formulate it we need some definitions.

We define three varieties K_1, K_2, K_3 of type τ_0 as follows.

K_1 is defined by the identities

$$(1.13) \quad \begin{aligned} x_1 + x_1 &= x_1, \\ x_1 + x_2 &= x_2 + x_1, \\ (x_1 + x_2) + x_3 &= x_1 + (x_2 + x_3), \end{aligned}$$

$$(1.14) \quad \begin{aligned} x_1 \cdot x_2 &= x_3 \cdot x_4, \\ x_1 + x_1 \cdot x_2 &= x_1 \cdot x_2; \end{aligned}$$

K_2 is defined by the identities

$$(1.15) \quad \begin{aligned} x_1 \cdot x_1 &= x_1, \\ x_1 \cdot x_2 &= x_2 \cdot x_1, \\ (x_1 \cdot x_2) \cdot x_3 &= x_1 \cdot (x_2 \cdot x_3), \\ (1.16) \quad \begin{aligned} x_1 + x_2 &= x_3 + x_4, \\ x_1 \cdot (x_1 + x_2) &= x_1 + x_2; \end{aligned} \end{aligned}$$

K_3 is defined by the identity

$$(1.17) \quad x_1 + x_2 = x_3 \cdot x_4.$$

Obviously each algebra from K_1 has a join-semilattice structure where $x_1 \cdot x_2$ is the unit element. Analogously each algebra from K_2 has a meet-semilattice structure where $x_1 + x_2$ is the zero element. In algebras of the variety K_3 both operations are equal to the same constant.

Theorem 2. $V(U(\tau_0)) = K_1 \vee K_2 \vee K_3 = K_1 \otimes K_2 \otimes K_3$.

For to prove Theorem 2 we need some definitions and lemmas. Let $\mathcal{U} = (A; +, \cdot)$ be an algebra belonging to $V(U(\tau_0))$. We define in \mathcal{U} three relations R_1, R_2, R_3 as follows. For $a, b \in A$,

$$\begin{aligned} a R_1 b &\iff a + a = b + b, \\ a R_2 b &\iff a \cdot a = b \cdot b \\ a R_3 b &\text{ iff one of the following} \\ &\text{conditions holds} \end{aligned}$$

- (e₁) $a = b$,
- (e₂) $a + a = a$ and $b + b = b$,
- (e₃) $a \cdot a = a$ and $b \cdot b = b$,
- (e₄) $a + a = a$ and $b \cdot b = b$,
- (e₅) $a \cdot a = a$ and $b + b = b$.

In the sequel we write $q_+(x)$ for $x + x$ and $q_ \cdot (x)$ for $x \cdot x$.

Lemma 3. The relation R_1 is a congruence on \mathcal{U} such that $\mathcal{U}/R_1 \in K_1$.

Proof. Recall that \mathcal{U} belongs to $V(U(\tau_0))$ and all uniform identities of type τ_0 are satisfied in $V(U(\tau_0))$.

Obviously R_1 is an equivalence relation on \mathcal{U} . If $a, b, c, d \in A$ and $a R_1 b$, $c R_1 d$ then $(a+b) + (a+b) =_U (a+a) + (b+b) = (c+c) + (d+d) =_U (c+d) + (c+d)$ and similarly $(a \cdot b) + (a \cdot b) =_U (a+a) \cdot (b+b) = (c+c) \cdot (d+d) =_U (c \cdot d) + (c \cdot d)$. Hence R_1 has the substitution property.

Now for $x_1, x_2, x_3, x_4 \in A$ we have $q_+(x_1 \cdot x_2) =_U q_+(x_3 \cdot x_4)$, whence $(x_1 \cdot x_2) R_1 (x_3 \cdot x_4)$ and \mathcal{U}/R_1 satisfies $x_1 \cdot x_2 = x_3 \cdot x_4$. Further $q_+(x_1 + x_1 \cdot x_2) =_U q_+(x_1 \cdot x_2)$ and $q_+(x_1 + x_1) =_U q_+(x_1)$. Consequently \mathcal{U}/R_1 satisfies (1.14) and the first identity of (1.13). The remaining identities of (1.13) are satisfied in \mathcal{U}/R_1 since they are satisfied in \mathcal{U} . Q.E.D.

Lemma 4. The relation R_2 is a congruence on \mathcal{U} and $\mathcal{U}/R_2 \in K_2$.

The proof is dual to that of Lemma 3.

Lemma 5. The relation R_3 is a congruence on \mathcal{U} such that $\mathcal{U}/R_3 \in K_3$.

Proof. Obviously R_3 is an equivalence. For $a, b, c, d \in A$ we have

$$q_+(a + b) =_U a + b \quad \text{and}$$

$$q_+(c \cdot d) =_U c \cdot d.$$

Hence R_3 has the substitution property and \mathcal{U}/R_3 satisfies (1.17). Q.E.D.

Lemma 6. $R_1 \cap R_2 \cap R_3 = \omega$, where ω is the equality relation.

Proof. Let $a, b \in A$ and $a(R_1 \cap R_2 \cap R_3)b$. We consider five cases.

(f₁) We assume that $q_+(a) = q_+(b)$, $q_-(a) = q_-(b)$ and (e_i) hold, where $i = 1, \dots, 5$.

Obviously in the cases (f₁)-(f₃), $a = b$. In the case (f₄) we have

$$a = a + a = b + b = b \cdot b + b \cdot b = a \cdot a + a \cdot a$$

$$=_{\mathcal{U}} (a+a) \cdot (a+a) = a \cdot a = b \cdot b = b.$$

The case (f_5) is similar. Q.E.D.

Proof of Theorem 2. Obviously $K_1 \otimes K_2 \otimes K_3 \subseteq$
 $\subseteq K_1 \vee K_2 \vee K_3$. By theorem 1 it is easy to check that $K_i \subseteq$
 $\subseteq V(U(\tau_0))$ for $i = 1, 2, 3$ since axioms of K_i imply (1.1)-(1.7).
Hence $K_1 \vee K_2 \vee K_3 \subseteq V(U(\tau_0))$. To complete the proof it is enough
to show that if $\mathcal{U} \in V(U(\tau_0))$ then \mathcal{U} is decomposable into a
subdirect product of algebras $\mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3$ where $\mathcal{U}_i \in K_i$.
But this follows directly from Lemmas 3-6 and Birkhoff's theorem (see [5] pp.123). Q.E.D.

2. Uniform and biregular identities in bisemilattices

An algebra \mathcal{U} of type τ_0 is called a bisemilattice
(see [8]) if it satisfies the following identities

$$(2.1) \quad x + x = x \cdot x = x,$$

$$(2.2) \quad x + y = y + x, \quad x \cdot y = y \cdot x,$$

$$(2.3) \quad (x + y) + z = x + (y + z), \quad (x \cdot y) \cdot z = x \cdot (y \cdot z).$$

In the sequel we write $q(x)$ for $q_+(q_-(x))$.

Let K be a variety of bisemilattices. Let G be an equational base of the variety K . We define the set G^* of identities of type τ_0 as follows.

- (g₁) The identities (1.1) - (1.6) belong to G^* ;
- (g₂) the identities $q(x_1 + x_2) = q(x_1) + q(x_2)$ and
 $q(x_1 \cdot x_2) = q(x_1) \cdot q(x_2)$ belong to G^* ;
- (g₃) if an identity $\varphi = \psi$ belongs to G then the identity
 $q(\varphi) = q(\psi) = q(\psi)$ belongs to G^* ;
- (g₄) the identities $q(x_1 + x_2) = x_1 + q(x_2)$ and $q(x_1 \cdot x_2) =$
 $= x_1 \cdot q(x_2)$ belong to G^* ;
- (g₅) the identities $q((x_1 + x_2) \cdot x_3) = (x_1 + x_2) \cdot x_3$ and
 $q(x_1 \cdot x_2 \cdot x_3) = x_1 \cdot x_2 \cdot x_3$ belong to G^* ;
- (g₆) the set G^* contains exactly the identities mentioned in (g₁) - (g₅).

Theorem 3. For any variety K of bisemilattices $V(U(K)) = K \vee V(U(\tau_0)) = K \otimes V(U(\tau_0))$. Moreover if G is an equational base of K then G^* is an equational base of $V(U(K))$.

First we prove some lemmas. Let $\mathcal{U} = (A; +, \cdot)$ be an algebra belonging to $V(G^*)$. We define in \mathcal{U} two relations Q_1 and Q_2 as follows

$$a Q_1 b \iff q(a) = q(b);$$

$$a Q_2 b \iff a = b \text{ or } q(a) = a \text{ and } q(b) = b.$$

Lemma 7. The relation Q_1 is a congruence on \mathcal{U} such that $\mathcal{U}/Q_1 \in K$.

Proof. Obviously Q_1 is an equivalence. Q_1 has the substitution property by (g_2) and $\mathcal{U}/Q_1 \in K$ by (g_3) . Q.E.D.

Lemma 8. The relation Q_2 is a congruence on \mathcal{U} such that $\mathcal{U}/Q_2 \in V(U(\tau_0))$.

Proof. Obviously Q_2 is an equivalence. We check the substitution property. Let $a Q_2 c$ and $b Q_2 d$. If $a = c$ and $b = d$ then $a + b = c + d$ and $a \cdot b = c \cdot d$ and we are done. If $a = c$, $q(b) = b$ and $q(d) = d$ then by (g_4) we have $q(a + b) = a + q(b) = a + b$ and similarly $q(a + d) = c + q(d) = c + d$ and so $(a + b) Q_2 (c + d)$. Analogously we check the substitution property for \cdot . If $q(a) = a$, $q(b) = b$, $q(c) = c$, $q(d) = d$, then the substitution property is satisfied by (g_2) .

Now by (g_5) the identities (1.7) hold in \mathcal{U}/Q_2 . The identities (1.1) - (1.6) are satisfied in \mathcal{U}/Q_2 since by (g_1) they are satisfied in \mathcal{U} . Thus \mathcal{U}/Q_2 satisfies (1.1) - (1.7) and by Theorem 1 $\mathcal{U}/Q_2 \in V(U(\tau_0))$. Q.E.D.

Lemma 9. $Q_1 \cap Q_2 = \omega$.

The proof is obvious.

Proof of Theorem 3. Obviously $K \otimes V(U(\tau_0)) \subseteq K \vee V(U(\tau_0))$. Since $U(K) = E(K) \cap U(\tau_0)$ it follows that $K \vee V(U(\tau_0)) = V(U(K))$. Since each of the identities from G^* is satisfied both in K and in $V(U(\tau_0))$, it follows that $V(U(K)) \subseteq V(G^*)$. Recall that operations $+$ and \cdot are idempotent, commutative and associative. To complete the proof we have to show that if $\mathcal{U} \in V(G^*)$ then \mathcal{U} is decomposable into a subdirect product of algebras \mathcal{U}_1 and \mathcal{U}_2 where $\mathcal{U}_1 \in K$ and

$\mathcal{U}_2 \in V(U(\tau_0))$. This however follows from Lemmas 7 - 9 and Birkhoff's theorem (see [5], p.123). Q.E.D.

From Theorem 3 we obtain some interesting corollaries. Let K be a variety of bisemilattices.

Corollary 1. If K is finitely based then $V(U(K))$ is finitely based.

Let L , L_m , L_d be the varieties of lattices, modular lattices and distributive lattices, respectively.

Corollary 2. Each of the sets $U(L)$, $U(L_m)$, $U(L_d)$ has a finite equational base.

Corollary 3. If $R(K)$ has a finite equational base then so does $B(K)$.

Proof. It follows by Corollary 1 since $B(K) = R(K) \cap U(\tau_0)$ whence $V(B(K)) = V(U(V(R(K))))$. Q.E.D.

Let $B(\tau_0)$ denote the set of all biregular identities of type τ_0 and let $R(\tau_0)$ denote the set of all regular identities of type τ_0 .

Corollary 4. The set $B(\tau_0)$ has a finite equational base.

Proof. In fact $R(\tau_0)$ has a finite equational base defined by the identities (2.1) - (2.3) and $x_1 + x_2 = x_1 \cdot x_2$. Now the corollary follows by applying Corollary 3 to $K = V(R(\tau_0))$. Q.E.D.

Corollary 5. Each of the sets $B(L)$, $B(L_m)$, $B(L_d)$ has a finite equational base.

Proof. It was proved in [8] that any of the sets $R(L)$, $R(L_m)$, $R(L_d)$ has a finite base. Now the corollary follows by Corollary 3. Q.E.D.

Other examples of finitely based varieties of bisemilattices can be found in [2], [3] and [12], [13].

From Theorems 2 and 3 we get a representation theorems for algebras from $V(U(K))$ and $V(B(K))$.

Theorem 4. Let K be a variety of bisemilattices. Then an algebra \mathcal{U} belongs to $V(U(K))$ iff \mathcal{U} is isomorphic to a subdirect product of algebras $\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3$ where $\mathcal{U}_0 \in K$ and $\mathcal{U}_i \in K_i$, $i = 1, 2, 3$.

Theorem 4'. Let K be a variety of bisemilattices. Then an algebra \mathcal{U} belongs to $V(B(K))$ iff \mathcal{U} is isomorphic to a subdirect product of algebras $\mathcal{U}_0, \mathcal{U}_1, \mathcal{U}_2, \mathcal{U}_3$ where $\mathcal{U}_0 \in V(R(K))$ and $\mathcal{U}_i \in K_i$, $i = 1, 2, 3$.

In fact, if K is a variety of bisemilattices then $V(R(K))$ is a variety of bisemilattices too, since (2.1) - (2.3) are regular. Moreover $B(K) = U(R(K))$ so we can apply Theorem 4 to the variety $V(R(K))$.

Let us denote by $U_+(\tau_0)$ the set of all $\{+\}$ -uniform identities of type τ_0 . Studying the set of all $\{\cdot\}$ -uniform identities of type τ_0 is a dual process. We denote by U_+^* the set of identities (1.15) and (1.16).

Theorem 5. The set U_+^* is an equational base of the set $U_+(\tau_0)$.

Proof. By (i) we have $C(U_+(\tau_0)) = U_+(\tau_0)$. Each of the identities (1.15) and (1.16) is $\{+\}$ -uniform whence $U_+^* \subseteq U_+(\tau_0)$ and $C(U_+^*) \subseteq U_+(\tau_0)$.

To prove the converse inclusion recall that U_+^* is an equational base of K_2 and by Theorem 2, K_2 is a subvariety of $V(U(\tau_0))$. It follows that each of the identities (1.1) - (1.7) belongs to $C(U_+^*)$.

Now using Lemmas 1 and 2 and applying (1.15) and (1.16) we get the following.

- 1° If $\varphi(x_i)$ is a term of type τ_0 and $F(\varphi(x_i)) = \{\cdot\}$ then the identity $\varphi(x_i) = x_i$ belongs to $C(U_+^*)$.
- 2° If $\varphi(x_{i_1}, \dots, x_{i_n})$, $n > 1$, is a term of type τ_0 and $F(\varphi(x_{i_1}, \dots, x_{i_n})) = \{\cdot\}$ then the identity $\varphi(x_{i_1}, \dots, x_{i_n}) = x_{j_1} \cdot x_{j_2} \cdot \dots \cdot x_{j_n}$ belongs to $C(U_+^*)$ where $\{i_1, \dots, i_n\} = \{j_1, \dots, j_n\}$ and $j_1 < j_2 < \dots < j_n$.
- 3° If φ is a term of type τ_0 and $\{+\} \subseteq F(\varphi)$ then the identity $\varphi = x_1 + x_2$ belongs to $C(U_+^*)$.

Let the identity

$$(2.4) \quad \psi_1 = \psi_2$$

belong to $U_+(\tau_0)$. If $F(\psi_1) = F(\psi_2) = \emptyset$ then (2.4) must be of the form $x_1 = x_2$ and obviously belongs to $C(U_+^*)$. If $F(\psi_1) =$

$= F(\psi_2) = \{\cdot\}$ then (2.4) must be regular and by 1° or 2° belongs to $C(U_+^*)$. If $\{+\} \subseteq F(\psi_1) = F(\psi_2)$ then (2.4) belongs to $C(U_+^*)$ by 3°. Q.E.D.

Corollary 6. $V(U_+(\tau_0)) = K_2$.

Let K be a variety of bisemilattices and let $U_+(K)$ denote the set of all $\{+\}$ -uniform identities satisfied in K . The last theorem explains the structure of algebras in $V(U_+(K))$ and gives an equational base for it. At first we need some definitions and lemmas.

Let H be an equational base of K . We define the set H^* of identities of type τ_0 as follows.

- (h₁) The identities (1.15) belong to H^* ;
- (h₂) the identities $q_+(x_1 + x_2) = q_+(x_1) + q_+(x_2)$ and $q_+(x_1 \cdot x_2) = q(x_1) \cdot q(x_2)$ belong to H^* ;
- (h₃) for each identity $\varphi = \psi$ from H the identity $q_+(\varphi) = q_+(\psi)$ belongs to H^* ;
- (h₄) the identities $q_+(x_1 + x_2) = x_1 + q_+(x_2)$ and $q_+(x_1 \cdot x_2) = x_1 \cdot q_+(x_2)$ belong to H^* ;
- (h₅) the identities $q_+((x_1 + x_2) \cdot x_3) = (x_1 + x_2) \cdot x_3$ and $q_+(x_1 + x_2) = (x_1 + x_2)$ belong to $C(U_+^*)$;
- (h₆) the set H^* contains exactly the identities mentioned in (h₁) - (h₅).

Let $\mathcal{U} = (A; +, \cdot)$ be an algebra belonging to $V(H^*)$. We define on \mathcal{U} two relations T_1 and T_2 as follows.

$a T_1 b \iff q_+(a) = q_+(b)$;

$a T_2 b \iff a = b$ or $q_+(a) = a$ and $q_+(b) = b$.

Proofs of the following lemmas are similar to those of 7-9.

Lemma 10. The relation T_1 is a congruence on \mathcal{U} and $\mathcal{U}/T_1 \in V(H)$.

Proof. It follows by (h₁) - (h₃).

Lemma 11. The relation T_2 is a congruence on \mathcal{U} and $\mathcal{U}/T_2 \in V(U_+(\tau_0))$.

Proof. It follows by (h₄), (h₅), and Theorem 5.

Lemma 12. $T_1 \cap T_2 = \omega$.

Theorem 6. $V(U_+(K)) = K \vee V(U_+(\tau_0)) = K \otimes V(U_+(\tau_0))$. Moreover if H is an equational base of K then H^* is an equational base of $V(U_+(K))$.

Proof. Obviously $K \otimes V(U_+(\tau_0)) \subseteq K \vee V(U_+(\tau_0)) = V(U_+(K))$. Further $V(U_+(K)) \subseteq V(H^*)$ since $H^* \subseteq U_+(K)$. Using Lemmas 10 - 12 we conclude that $V(H^*) \subseteq K \otimes V(U_+(\tau_0))$. Q.E.D.

Let $B_+(\tau_0)$ denote the set of all $\{+\}$ -biregular identities of type τ_0 and for a variety K of bisemilattices let $B_+(K)$ denote the set of all $\{+\}$ -biregular identities from $E(K)$. The last theorem implies the following.

Corollary 7. The corollaries 1-5 remain true if we write $U_+(U)$ instead of $U(K)$, $B_+(K)$ instead of $B(K)$, $B_+(\tau_0)$ instead of $B(\tau_0)$.

Problem. Let K be an arbitrary variety of algebras. Find a representation of algebras from $V(U(K))$ and from $V(B(K))$ by means of algebras from K .

REFERENCES

- [1] S. Burris, H.P. Sankappanavar : A Course in Universal Algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1981.
- [2] J. Dudek : On bisemilattices III, Math. Sem. Notes Kobe Univ. 10 (1982) 275-279.
- [3] J. Dudek, A. Romanowska : Bisemilattices with four essentially binary polynomials, Colloq. Math. Soc. Janos Bolyai 33 (1983) 337-360.
- [4] E. Graczyńska : On regular identities, Algebra Universalis 17 (1983) 369-375.
- [5] G. Grätzer : Universal algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- [6] R. Jahn : On classes of algebras definable by regular equations, Colloq. Math. 36 (1976) 17-21.

- [7] B. Jonsson, E. Nelson: Relatively free products in regular varieties, *Algebra Universalis* 4 (1974) 14-19.
- [8] R. Padmanabhan: Regular identities in lattices, *Trans. Amer. Math. Soc.* 158 (1971) 179-188.
- [9] J. Płonka: On a method of construction of abstract algebras, *Fund. Math.* 61 (1967) 183-189.
- [10] J. Płonka: On equational classes of abstract algebras defined by regular equations, *Fund. Math.* 64 (1969) 241-247.
- [11] J. Płonka: On Varieties of algebras defined by Identities of some special forms, *Houston Journal of Mathematics*, in print.
- [12] A. Romanowska: On bisemilattices with one distributive law, *Algebra Universalis* 10 (1980) 36-47.
- [13] A. Romanowska: Subdirectly irreducible distributive bisemilattices, *Demonstratio Math.* 13 (1980) 767-785.
- [14] A. Tarski: Equational logic and equational theories of algebras, in: *Contributions to Mathematical Logic*, Colloquium, Hannover, 1966, North-Holland, Amsterdam (1968) 275-288.

MATHEMATICAL INSTITUTE, POLISH ACADEMY OF SCIENCES,

50-449 WROCŁAW, POLAND

Received February 6, 1986.