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BIREGULAR AND UNIFORM IDENTITIES OF BISEMILATTICES 

In this paper we study v a r i e t i e s of algebras with two b i -
nary operations + and • defined by some spec ia l types of 
ident i t i e s introduced in [11] under the names of uniform, 
biregular , S-uniform and S-biregular . (See seotion 0 for the 
de f in i t ions ) . 

In section 1 we give a representation theorem for algebras 
in the variety defined by a l l uniform ident i t i e s with two ope-
rat ion symbols + and • and we find a ( f i n i t e ) equational 
base of i t . 

Seotion 2 i s devoted to va r i e t i e s defined by a l l uniform 
( a l l b iregular , a l l + - uniform) ident i t i e s s a t i s f i e d in a 
given variety of b i semi la t t ioes . For these va r i e t i e s we obtain 
s imilar and related r e s u l t s . 

0 . Preliminaries 
Let r j P —-H be a type of algebras i . e . P i s a set 

of fundamental operation symbols and N i s the set of non-nega-
tive integers . I f 9 i s a term of type r then we denote by 
var(9) the set of var iables ooouring in $0 and by F(p) the set 
of fundamental operation symbols oocuring in <p . An identity 
(p = <// i s cal led regular i f 

var(9?) * var(iy) (see [ 9 ] ) . 

Such ident i t i e s were considered e . g . in [4-10]. The following 
types of i d e n t i t i e s were defined in [11] . 
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2 J . Pionka 

D e f i n i t i o n 1. An i d e n t i t y <p = y of type r i s 
ca l led b i r egu la r i f i t i s r egu la r and P(<p) = F(if) . 

D e f i n i t i o n 2. An i den t i t y <p - y of type r i s 
ca l led uniform i f F($£>) = F(i//) and i f ?(cp) 4 F then <p = y i s 
r e g u l a r . 

Sometimes we wr i te if to s t r e s s that the i d e n t i t y <p = y/ 
i s uniform. 

Now l e t SO.P. 
D e f i n i t i o n 3. An i d e n t i t y <p = v of type r i s 

oal led S -b i regu la r i f i t i s r egu l a r and F($c>)n S = F(if) n s . 
D e f i n i t i o n 4. An iden t i t y (p = i// of type r 

i s ca l led S-uniform i f P(^) n s = P( if/) n S and i f P(^)n s / S 
then i t i s r e g u l a r . 

In [ll] v a r i e t i e s of a lgebras defined by the i d e n t i t i e s 
desoribed i n Def in i t ions 1 - 4 were i n v e s t i g a t e d . 

I f E i s a se t of i d e n t i t i e s of type x we denote by V(E) 
the va r i e ty of type r defined by E and we denote by C(E) 
the set of a l l i d e n t i t i e s of type r provable from E by 
B i r k h o f f ' s d e r i v i a t i o n r u l e s . For a va r i e ty K of type r we 
denote by E(K) the se t of a l l i d e n t i t i e s s a t i s f i e d in K. 

We say tha t a property p of i d e n t i t i e s i s preserved by 
consequences i f p s a t i s f i e s the following condi t ion : 

i f 3 i s a se t of i d e n t i t i e s having the property p then 
every i d e n t i t y from C(E) has t h i s property, too. 

As i t was noticed in [ll] : 
( i ) each of the proper t ies " to be r e g u l a r " , " to be b i r e -

g u l a r " , " to be uniform", " to be S - b i r e g u l a r " , " to be S -un i -
form" i s preserved by consequences. 

Let us denote by R(K), B(K), U(K), Bg(K), Ug(K) the s e t s 
of a l l r e g u l a r , b i r e g u l a r , uniform, S -b i r egu l a r , S-uniform 
i d e n t i t i e s s a t i s f i e d i n K, r e s p e c t i v e l y . I t fol lows from ( i ) 
tha t every of the s e t s of i d e n t i t i e s mentioned above i s an 
equat ional theory (see [ l4 ] ) . 

I f <p i s a term of type r and var(^) = jx.. 1 
1 1 n > 

then we sometimes wri te ( x i , . . . , x i ) instead of f . 
1 n 
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Biregular and uniform i d e n t i t i e s 3 

For two v a r i e t i e s K̂  and Kg of the some type me denote 
by y K 2 the jo in of K1 and K2. For v a r i e t i e s K ^ , . . . , K n of 
the same type we denote by K̂  ® . . . ® the c l a s s of a l l 
a lgebras isomorphic to a subdirec t product of a lgebras 

, . . . w h e r e Z^eK^ , i = 1 , . . . , n . 

1. Uniform i d e n t i t i e s in a lgebras with two binary opera-
t ions 

From now on we consider only algebras of type ^ 0 s F 0 — N 
where FQ = {+, •} , rQ(+) = r

0 ( * ) * 2. We denote by U(rQ) the 
s e t of a l l uniform i d e n t i t i e s of type rQ. 

Let U* be the se t of the fol lowing i d e n t i t i e s : 

(1.1) x.| + Xg = x2 + X 1 ' 

(1.2) x1*x2 = x2*x1» 

(1.3) (xq + * 2 ) + X3 » x., + ( x 2 , 

(1.4) ( x ^ x g j ' x ^ « x 1 «(x 2 «x 3 ) , 

(1.5) x.j + + x2 = x . j + x 2 , 

(1.6) x ^ . x ^ x g = x ^ x g , 

(1.7) (xq + x2)*x^ = (x^«x^) + xg. 

The fol lowing theorem explains the ro le of the i d e n t i t i e s U* 
f o r the va r i e ty V(U(rQ)) . 

T h e o r e m 1. The se t U * i s an equat ional base 
f o r the va r i e ty V(U(r o ) ) . 

For to prove Theorem 1 we need some lemmas. 
l e m m a 1. 

(d.,) I f ^ ( x ^ i s a term of type rQ and F(9f(x i)) - {+} 
then the i d e n t i t y cp(x^) = x̂ ^ + xA belongs to C(U*). 

(d2) I f i s a term of type r and F(<p[x^)) • {•} 
then the i d e n t i t y ^ ( x ^ = x i ' * i belongs to C(U*). 

(d-J I f <p(xs , . . . , x . ) i s a term of type r such tha t 
1 n r , n > 1 and F(joix* , . . . , x 1 )) » { + } then the i d e n t i t y 

1 n 
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4 J . P i o n k a 

i ) = i . + x . + . . . + b e l o n g s t o C ( U * ) 
1 n J 1 J 2 " n 

where { i . , , . . . , i n } = { ^ , . . . , } and < J 2 < . . . < 3 n . 

( d ^ ) I f «pfx.^ . . . . . X j ^ ) i s a t e r m o f t y p e r Q s u c k t h a t 
1 n 

n > 1 and 2{<p[x± , . . . , x . ) ) = { • } t h e n t h e i d e n t i t y 
1 n 

<p(x* ) = x . »XJ • . . . * x . b e l o n g s t o C ( U * ) 
3-1 xn J1 z2 3n 

where { i 1 t . . . f i n } = { 3 - , . • , 3 n } and j . , < 3 2 < . . . < 3 n . 

P r o o f . I t i s o b v i o u s and f o l l o w s d i r e c t l y f r o m 

t h e i d e n t i t i e s ( 1 . 1 M 1 . 6 ) . 
I n t h e s e q u e l we w r i t e x ^ i y , w h e n e v e r we s u b s t i t u t e a 

t e r m y f o r a v a r i a b l e x ^ i n a t e r m (p. 

L e m m a 2 . I f 99 i s a t e r m o f t y p e tQ and ?[<p) = 

= { + , • } t h a n t h e i d e n t i t y <p= x ^ x g + x ^ b e l o n g s t o C ( U * ) . 

P r o o f . F i r s t we p r o v e t h a t t h e f o l l o w i n g two i d e n -

t i t i e s b e l o n g t o C ( U * ) 

( 1 . 8 ) x 1 * x 2 + x 3 * * 4 * * 5 + * 6 » 

( 1 . 9 ) ( x - j + x g l ' x j = X 1 * X 3 + x 2 * x 3 * 

I n d e e d we g e t ( 1 . 8 ) by t h e f o l l o w i n g s u b s t i t u t i o n s x ^ | x 1 t 

x 5 | x 2 , i n ( 1 . 7 ) and by u s i n g ( 1 . 7 ) a g a i n . S i m i l a r l y , 

we g e t ( 1 . 9 ) s u b s t i t u t i n g x ^ j x . , , , x 5 | X j , x g l x g ' x ^ i n ( 1 . 7 ) . 

Now u s i n g t h e d i s t r i b u t i v i t y ( 1 . 9 ) we I n f e r t h a t one o f 

t h e f o l l o w i n g i d e n t i t i e s ( 1 . 1 1 0 ) and ( 1 . 1 1 ) b e l o n g s t o C ( U * ) 

( 1 . 1 0 ) <p= p 1 + p 2 + . . . + p r , 

where r > 1 and any p^ i s a- p r o d u o t o f a t l e a s t two v a r i a b l e s , 

( 1 . 1 1 ) 50 = p., + . . . + p_ + x 4 + . . . + x., , 
1 8 X 1 x t 

where s , t and any p^ i s a p r o d u c t o f a t l e a s t two v a r i a b l e s . 

Assume t h a t p^ = x ^ . q , where q i s a v a r i a b l e o r p r o d u c t 

o f v a r i a b l e s and s u b s t i t u t e x ^ x ^ , x ^ | q , X g | p 2 + . . . + p r 

i n ( 1 . 8 ) . T h e n ( 1 . 1 0 ) i m p l i e s t h a t t h e i d e n t i t y p 1 + P 2 + . . . 

+ p p * x ^ X g + X j b e l o n g s t o C ( U * ) and we t,et t h e s t a t e m e n t 
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Biregular and uniform i d e n t i t i e s 5 

of our lemma. Analogously subst i tut ing x^|q, 
x 6 l x i + x i + • • • + * ! _ + p2 + . . . + pa in ( 1 . 8 ) and using 

1 2 t 
(1 .11) we get the same statement. Q . E . D . 

P r o o f of Theorem 1. We have to prove that C{U*) = 
= U(r o ) . By ( i ) we have C(U£ ^ ) ) = U(rQ ) . Since each of the 
i d e n t i t i e s ( 1 . 1 ) - (1 .7 ) i s uniform i t follows that ' J*"£U(ro ) , 
and consequently C(U*) Q. C(U( tQ)) = U(rQ ) . JIow we prove that 
U ( r o ) £ c (U*) . Let 

(1 .12) pM If) 

be a uniform identi ty of type rQ . I f (1 .12) i s of the form 
x. - x± then obviously i t belongs to C(U*). I f var <p * 
= var V - { x j J and F(<p) = F(<f) = {"+} than by (d.,) the i d e n t i -
t i e s x i + x± and y = x^ + x^ belongs to C(U*) and conse-
quently (1 .12) does. I f var p = var y = j x j J and F(p) = 
= 3 { * } ' t i l o n t h 9 ^S11®011* i s analogous. I f 
var <p* var y « j j ^ J , n > 1 , and F(<p) *= P(y) = {+} 

then by (d-J eaoh of the i d e n t i t i e s 00= Xj + . . . + and 

V = x^ + . . . +• x- belongs to C(U*), whence (1 .12) belongs 
J 1 J n 

to C(U*). The oase var(p) = var(<f) = |x i , . . . , 3 ^ J , n > 1 , 

and F[<p) = F(y) « { • } i s s imi lar . Finally i f . F[<p) = P(tf)) » 
= { + , • } then by Lemna 2 the identi ty |1.12) belong« to C(U*) 
as wel l . Q.E.D. 

The next theorem explains the structure of algebras in 
V(U(To)) . To formulate i t wa need some d e f i n i t i o n s . 

We define three v a r i e t i e s ^ , Kg, K̂  of type rQ as f o l -
lows. 
K1 i s defined by the i d e n t i t i e s 

(1 .13) x . + x, e x1t 1 1 ' 
x2 • 
• x 1 + (x2 + x^) 3 " 
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6 J. Pionka 

(1.14) X1*X2 s x3*x4» 
x1 + x1*x2

 = X1*X2» 

K, 2 is defined by the identities 
(1.15) x1*x1 " X1' 

(1.16) x1 + x 2 » x^ + x4, 

x1«(x1 + x2) «= x1 + X2J 

K^ is defined by the identity 

(1.17) x1 + x 2 » x3'x4* 
Obviously each algebra from K1 has a join-semilattioe struc-
ture where x1«x2 is the unit element. Analogously each algebra 
from Kg has a meet-semilattioe structure where x^ + x 2 is the 
zero element. In algebras of the variety K^ both operations 
are equal to the same constant. 

T h e o r e m 2. V(U(r0)) = ^vKgVK-j = K ^ ^ ® ^ . 
For to prove Theorem 2 we need some definitions and lemmas. 

Let (A; +, •) be an algebra belonging to V(U(ro)). We 
define in ft three relations R1, Rg, R^ as follows. Par a,b eA, 

a R1 b <i=s>a + a » b + b, 
a R 2 b - b*b 
a R^ b iff one of the following 

conditions holds 
(e1) a = b, 
(e2) a + a = a and b + b - b, 
(e3) a*a *> a and b.b - b, 
(«4) a + a = a and b*b « b, 
(e5) a« a • a and b + b * b. 
In the sequal we write q+(x) for x + x and q^(x) for x*x, 
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Biregular and uniform identities 7 

L e m m a 3. The re lat ion Ĥ  i s a congruence on IK 
such that IX./R^ e K^. 

P r o o f . Recall that U belongs no V(U( r Q ) ) and a l l 
uniform identit ies of type tQ are sat is f ied in Y(U( r 0 ) ) • 

Obviously R.j is an equivalence re lat ion on 21!, I f a S1 o 
and b R1 d then (a+b) + (a+b) ^ ( a + a ) + (b+t) = (c+c) + 
+ (d+d) =y (o+d) + (o+d) and similarly (a»b ) + (a*b) =y (a+a)» 
• (b+b) = ( c +cMd+d ) =JJ (o»d) + ( o »d ) . Hence R1 has the sub-
st itution property. 

Now for x1 e A we have q + ( x *x2 ) q + i ^ * ^ ) . 
whence (x.j*x2 ) R-| and tt/R1 s a t i s f i e s = x3*x4* 
Further q + ( x 1 +x 1 »x 2 ) = y q + ( x 1 * x 2 ) and q + ( x 1 +x 1 ) =y q + ( x 1 ) . 
Consequently tf/R^ sa t i s f i e s (1.14) and the f i r s t identity 
of (1 .13) . The remaining identit ies of (1.13) are sat i s f ied 
in since they are sat i s f ied in W. Q.E.D. 

L e m m a 4. The re lat ion Rp is a congruence on Ui 
and € K2. 
The proof is dual to that of Lemma 3. 

L e m m a 5. The re lat ion R^ is a congruence on W 
such that 1?/R3 e K.j. 

P r o o f . Obviously R^ i s an equivalence. For 
a ,b ,c ,d e A we have 

q + ( a + b ) « y a + b and 

q # ( c *d ) c»d. 

Henoe R^ has the substitution property and W/R^ sa t i s f i e s 
(1 .17) . Q.B.D. 

L e m m a 6. R̂  n Hg n B j » w , where oo i * the'equality 
re lat ion. 

P r o o f . Let a,b € A and a(R^ nBj f l R^)b. We consider 
f ive oaee£. 
( f ^ ) We assume that q + (a ) = q + ( b ) , q # ( a ) = q . ( b ) and ( e i ) 
hold, where i = 1 , . . . , 5 . 

Obviously in the oases ( f - j J - i f ^ ) , a = b. In the oase ( f ^ ) 
we have 
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8 J.Pionka 

a = a + a = b + b x b*b + b*b « a*a + a*a 

(a+a)«(a+a) = a*a » b*b = b. 

The case (f^} is similar. Q.B.D. 
P r o o f of Theorem 2. Obviously K̂  ® Kg ® K̂  

SK^KgVK^. By theorem 1 it is easy to oheck that K±£ 
^V(U(rQ ) ) for i » 1,2,3 einoe axioms of imply (1.1)-(1.7). 
Hence ^ v Kg v K^c v(U( r 0 ) ) . To oomplete the. proqf it is enough 
t|o show that i f ?CeV(U(r0)) then U is decomposable into a 
subdireot product of algebras liy, I X w h e r e £ K ĵ, 
But this follows directly from Lemmas 3-6 and Birkhoff's theo-
rem (see [5] pp.123). Q.B.D. 

2. Uniform and blregular identities in bisemllattices 
An algebra S* of type rQ is oalled a bisemilattioe 

(see [8]) if it satisfies the following identities 

(2.1) x + x • x»x « x, 

(2.2) x + y - y + x, x»y - y«x, 

(2.3) (x + y) + b - x + (y + z), (x»y)*s - x«(y*s). 

In the sequel we write q(x) for q + (q # (x ) ) . 
Let K be a variety of bisemiliattioes. Let G be an equa-

tional base of the variety K. We define the set 0* of identi-
ties of type zQ as follows. 
(g1) The identities (1.1) - (1.6) belong to 0*; 
(g2) the identities q-fx-j+xg) - q(x.,) + q(Xg) and 

qfx^xg) - qfx^.qixgj belong to G*j 
(g^) if an identity <p = 4/ belongs to G then the identity 

q [cp) - q (if/) - qif ) belongs to G*| 
(g^) the identities q^+Xg) » + q ) and qix^xg) « 

* x^q.fxg) belong to G*j 
(g5) the identities q ( ( x ^ x g ) - (x-j+xgj'x^ and 

qfx-j'xg+x^) = x^.xg+x^ be-long to G*| 
(gg) the sat G* contains exaotly the identities mentioned 

in ( g - jMg j ) . 
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Biregular and ludform ident i t i e s 9 

T h e o r e m 3. For any variety K of bisemilat t ices 
V(U(K) ) - KW(U(r 0 ) ) « K®V(U(r0)}. Moreover i f G i s an equa-
t ional base of K then G* i s an equational baee of V(U(K)). 

First we prove eome lemmas. Let tt- (A; +, •) be an a lge-
bra belonging to V(G*), We define in W two re la t ions Q̂  and 
Q2 as follows 

b <F>q(a) * q(b) j 
a Q2 b<=>a * b or q(a) « a and q(b) = b. 
L e m m a 7* The delation Q1 i s a congruence on % 

such that W/Q̂  €. K. 
P r o o f * Obviously Q1 i s an equivalenoe. Q1 has the 

substitution property by (g 2 ) and if/Q1e K by (g-j). Q.E.D. 
L e m m a 8. The re la t ion Q2 i s a congruence on 

such that «7Q 26V(U(f 0 ) ) . 
P r o o f * Obviously Q2 i s an equivalenoe. Ve check 

•h'e vubstitution property. Let a Q2 c and b Qg d. If a « 0 
and b * d then a + b = c + d and a*b • o*d and we are done* 
I i a * 0, q(b) • b and q(d) * d then by (g^) we have q(a + b) -
• a + q(b) » a + b and s imilar ly q(o + d) • 0 + q(d) « c + d 
and so (a + b) (0 + d) . Analogously we check the subst i tu-
tion property for * . If qfa) - a, q(b) - b, q(e) = 0, 
q(d) • d, then the substitution property i s s a t i s f i ed by ( g 2 ) . 

How by (g5 ) the ident i t i e s (1.7) hold in S«7Q2. The iden-
t i t i e s (1.1) - (1.6) are s a t i s f i ed in W/Qz since by (g.,) they 
are s a t i s f i ed in IX, Thus U/Q2 s a t i s f i e s (1.1) - (1.7) and 
by Theorem 1 U/Qz e V(U( r Q ) ) . Q.B.D. 

L e m m a 9* Q1 n - OJ. 
The proof i s obvious. 
P r o o f of Theorem 3. Obviously K®V(U(r0)) c 

c K W ( u ( r 0 ) ) . Sinoe U(K) - B(K) n u( rQ) i t follows that 
KW(U(r 0 ) ) = V(U(K)-). Since eaoh of the ident i t i e s from G* 
i s sa t i s f i ed both in K and in V(U(rQ)) t i t follows that 
¥(U(K))£ v(G*), Recall that operations + and • are idempotent, 
commutative and associat ive. To complete the proof we have 
to show that i f U € V(G*) then Vl i s decomposable into a 
subdirect product of algebras V. and where Zf1 e K and 
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£V(U( r o ) ) . This however follows from Lemmas 7 - 9 and 
Birkhoff'b theorem (see [5] , p.123). Q.2.D. 

From Theorem 3 we obtain some interesting corollaries. 
Let K be a variety of bisemilattioes. 

C o r o l l a r y 1, I f K is finitely based then 
V(U(K)) is finitely based. 

Let L, Lm, L^ be the varieties of lattices, modular l a t t i -
ces and distributive lattices, respectively. 

C o r o l l a r y 2. Bach of the sets U(L), U(Lm), 
U(L^) bias a finite equationai base. 

C o r o l l a r y 3. If R(K) has s finite equationai 
base then so does B(K). 

P r o o f . It follows by Corollary 1 since B(K) = 
« R(K)nU( f 0 ) whence V(B(K)) = V(U(V(R{K))) ) . Q.E.D. 

Let B(rD) denote the set of al l biregular identities of 
type r0 and let R(rQ) denote the set of a l l regular identi-
ties of type t q . 

C o r o l l a r y 4. The set B(rQ) has a finite equa-
tionai base. 

P r o o f . In fact has a finite equationai base 
defined by the identities (2.1) - (2.3) and + x2 = xi*x2* 
Now the corollary follows by applying Corollary 3 to K • 
= V(R(r 0 ) ) . Q.E.D. 

C o r o l l a r y 5. Eaoh of the sets B(L), B(Lm), 
B(Ld) has a finite equationai base. 

P r o o f . It was proved in [8] that any of the sets 
R(L), R(iLm), R(Ld) has a finite base. How the corollary follows 
by Corollary 3. Q.E.D. 

Other examples of finitely based varieties of bisemilatti-
oes oan be found in [2 ] , [3] and [12] , [13]. 

Prom Theorems 2 and 3 we get a repressntation theorems 
for algebras from V(U(K)) and V(B(K)). 

T h e o r e m 4. Let K be a variety of bisemilattioes. 
Then an algebra W belongs to V(U(K)) i f f "UI is isomorphic 
to a subdirect product of algebras , where 

e K and IX^ 6 K±, i = 1,2,3. 
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Biregalar and uniform ident i t i es 11 

T h e o r e m 4 ' . Let K be a variety of '-ir.jir.iidtticsE. 
Then an algebra W belongs to V(B(K)) i f f Vt i s isomorphic t-
a subaireot product of algebras ff^, ® whore 
5f0tT(R(K|) and i = 1,2 ,3 . 

In f ac t , i f K i s a variety of biaaai i lat t ices then V(R(KJ) 
i s a variety of bisamilatt icas too, since (2.1) - (2.3) are 
regular . Moreover B(K) = U(R(K}} so we can apply Theorem 4 
to the variety V(R(K)). 

Let us denote by U+ £ rQ) the set of a l l {+}-uniform ident i -
t i e s of type tQ . Studying tne set of a l l {.}-unifcra Quanti-
t i e s of type rQ i s a dual process. We denote by U* the aet of 
ident i t i e s (1.15) and (1.16) . 

T h e o r e m 5. The set U* i s an equ&tionai base of 
the set U+(ro) . 

P r o o f . By ( i ) we have C(U+(rQ)) * U+(r0>. Each * 
the ident i t i e s (1.15) and (1.16) i s {+}-uniform wheiioe 
U*£U+(r0) and C(U*)<=U+(ro). 

To prove the converse inclusion reoa l l that U* i s an equa-
tional base of and by Theorem 2, K2 i s a subvariety of 
V(U(ro)). It follows that each of the ident i t i e s ( 1 . 1 ) - (1.7) 
belongs to C(U*). 

Nov/ using Lemmas 1 and 2 and applying (1.15) and (1.16) 
we get the following. 
1° If y i x ^ i s a term of type rQ and F(<p(x1)) = {•} then 

the identity <p ( x i ) = x.̂  belongs to C(U*). 
2° If (p[x- , . . . , x H ) , n>1, i s a term of type r and 

1 n , . 
F(9(x. , . « . , x i )) = •{•} then tha identity y?(x. . . . . . x , ) = 

1 , n * r 1 n 
» x.. «x, • . . . 'XJ belongs to C(U?) where = 

o-] J2 Jn + 1 1 D> - { j ^ - ' i J n } and < j 2 < . . . <3n . 
3° If p i s a tern if type rQ and (+Jci( jp) then the identity 

9= x1 + x2 belo-v,s to C(U*). 
Let the ident i ty 

(2.4) - V2 

belong to U+(rQ). If F(y1) = = # t h e n (2.4) must be of 
the-form x^ = x^ and obviously belongs to C(U*). If F(y.,) -
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» P(y2) « {•} than (2.4) oust; be regular and by 1° or 2° 
belongs to C(U*). I f {+}cP(y1) - ?(y2) then (2.4) belongs 
to C(U*) by 3°. Q.B.D. 

C o r o l l a r y 6. V(U+(ro)) - Kg. 
Let K be a var ie ty of b i semi la t t i ces and l e t U+(K) de-

note the aet of a l l {+}-uniform i d e n t i t i e s s a t i s f i e d in K. 
The lqs t theorem explains the s t ruc ta re of algebras in 
Y(U+(K)) and gives an equational base f o r i t . At f i r s t we 
need some def in i t ions and lemmas. 

Let H be an equational base of K. Ve define the set H* 
of i d e n t i t i e s of type Tq as fol lows, 
(h^) The i d e n t i t i e s (1.15) belong to H*j 
(h,) the i d e n t i t i e s Q+(*-| + " + 

q+(x1»x2) - q(x. ,>q(x2) beleag to H*| 
(k^) for each ident i ty 9> « f f ro« H the ident i ty q+(p) * 

- <J+{*f) belongs to M*| 
(h^) the i d e n t i t i e s q+(x.,+x2) » x1 + q+(x 2) and q+(x1*x2) -

• x1*q+(x2) belong to H*j 
(h j ) the i d e n t i t i e s q+ ( (x 1 + x2)»x^) • (x1 + a n d 

q+(x1 + x2) - (x, + x2) belong to C(U*)j 
(hg) the set H* oontains exaotly the i d e n t i t i e s mentioned 

in ( h ^ - (h 5 ) . 
Lst (Aj +, • ) be an algebra belonging to V(H*). Ve 

define on VL two re l a t ions T̂  and T2 as fol lows. 
a T1 b<^>q+(a) - q + (b ) j 
a T2 b<s=*> a • b or q+(a) - a and q+(b) « b. 
Proofs of the following lemmas are s imilar to those 

of 7-9. 
L e m m a 10. The r e l a t i o n T̂  iB a oongruenoe on 

and W / T ^ V i H ) . 
P r o o f . I t follows by (h.,) - (h^) . 
L e m m a 11. The r e l a t i o n T2 i s a oongruenoe on It 

and « / T 2 e V(U+(r0)) . 
P r o o f . I t follows by (h^), (h^j and Theorem 5. 
L e m m a 12. I , n i , « u . 

- 106 -



Blregular and m i form i d e n t i t i e s 13 

T h e o r e m 6. V(U+(K)) - KVT(U+(r o)) -
- IC®y(U+(r0)) . M«re|over i f H i s an eqnat ional base of K 

than H* I s an «qnat ional base of V(U+(K)). 
P r o o f . Obviously K « T ( D + ( r 0 ) ) t K W ( D + ( r o ) ) = 

= V(U+(K)) t Fur ther V(U+(K) )&V(H*) since H*sO+(K). Using 
Lemmas 10 - 12 we oonolude tha t V(H*)s K«V(U + ( r o ) ) . Q.B.D. 

Let B^lr^) denote the s e t of a l l {+}-biregular i d e n t i t i e s 
of type r 0 and f o r a va r i e ty K of b i s e m i l a t t i o e s l e t B+(K) 
denote the se t of a l l {+}-biregular i d e n t i t i e s from E(K). 
The l a s t theorem implies the fo l lowing . 

C o r o l l a r y 7. The c o r o l l a r i e s 1-5 remain t rue 
i f we wr i te U+(U) instead of U<K). B+(K) ins tead of B(K), 
B+{r 0) ins tead of B ( T 0 ) . 

Problem. Let K be an a r b i t r a r y va r i e ty of a lgebras . 
Find a r e p r e s e n t a t i o n of a lgebras from V(U(K)) and from 
V(B(K)) by means of a lgebras from K. 
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