

Katarzyna Hałkowska

EXTERNALLY COMPATIBLE IDENTITIES
IN PSEUDOCOMPLEMENTED DISTRIBUTIVE LATTICES

We deal with generalizations of pseudocomplemented distributive lattices in connection with externally compatible identities introduced by W. Chromik in [1].

Let K be a variety of type $\tau: T \rightarrow N \cup \{0\}$, where T is a nonempty set and N denotes the set of all positive integers. By identities of type τ we mean expressions of the form $p = q$, where p, q are n -ary polynomial symbols of type τ for some $n \in N \cup \{0\}$ (see [2]).

An identity $p = q$ is called externally compatible if it is of the form $x = x$ or of the form $f_t(p_1, \dots, p_{\tau(t)}) = f_t(q_1, \dots, q_{\tau(t)})$ for some polynomial symbols $p_1, \dots, p_{\tau(t)}$, $q_1, \dots, q_{\tau(t)}$ and some fundamental operation symbol f_t (see [1]).

If K is a variety of algebras of type τ , then $E(K)$ ($Ex(K)$) denotes the set of all identities (all externally compatible identities) satisfied in K .

If S is a set of identities of type τ , then $V(S)$ denotes the variety defined by S .

In [1] representation theorems for algebras of $V(Ex(K))$ are given for some varieties K , namely, when K is an idempotent variety or K is a variety with unary operation symbol f such that $f(f(x)) = x$ belongs to $E(K)$ and any operation symbol g different from f is idempotent. Examples of such classes are the class of all distributive lattices and the class of all Boolean algebras. Moreover, the finite equational base for $V(Ex(K))$ in these both cases is given.

The aim of this note is to prove a representation theorem for algebras of $V(Ex(K))$ and construct a finite equational base for $V(Ex(K))$ in the case K is the class of all pseudo-complemented distributive lattices.

From now on we shall consider only algebras with two binary fundamental operations $+$ and \cdot and one unary fundamental operation $'$.

Let us denote by Σ the system of the following identities:

- (1) $(x+y)+z = x+(y+z)$,
- (2) $(x\cdot y)\cdot z = x\cdot(y\cdot z)$,
- (3) $x+y = y+x$,
- (4) $x\cdot y = y\cdot x$,
- (5) $x+y = (x+x)+y$,
- (6) $x\cdot y = (x\cdot x)\cdot y$,
- (7) $x\cdot y = (x\cdot x)\cdot x$,
- (8) $(x+x)' = x'$,
- (9) $x''' = x'$.

Theorem 1. Let K be a variety of algebras with two binary operations $+$ and \cdot and one unary $'$. Let $\Sigma \subset E(K)$. An algebra $\alpha = (A; +, \cdot, ')$ belongs to $V(Ex(K))$ iff there exists a congruence \sim on α satisfying the following:

- (i) $\alpha/\sim \in K$.
- (ii) For each $a \in A$ there exists exactly one element $0_+([a]) \in [a]$ such that

$$b+c = 0_+([b]+[c]) \text{ for all } b, c \in A.$$

- (iii) For each $a \in A$ there exists exactly one element $0_\cdot([a]) \in [a]$ such that

$$b\cdot c = 0_\cdot([b]\cdot[c]) \text{ for all } b, c \in A.$$

- (iv) For each $a \in A$ there exists exactly one element $0_\sim([a']) \in [a']$ such that for $b \in A$, $[b'] = [a']$ imply $b' = 0_\sim([a'])$.

Proof. (\implies) On the set A we define the relation \sim by setting (see [3]):

$$a \sim b \text{ iff } a+a = b+b \text{ for all } a, b \in A.$$

Obviously \sim is an equivalence relation on A . Let $a \sim b$ and $c \sim d$ for $a, b, c, d \in A$. Then $(a+c)+(a+c) = (a+a)+(c+c) = (b+b) + (d+d) = (b+d) + (b+d)$ by (1) and (3). Similarly, using (2) and (4) we get $a \cdot c \sim b \cdot d$. Further, by (8) we have $a' + a' = (a+a)' + (a+a)' = (b+b)' + (b+b)' = b' + b'$ what proves that \sim is a congruence on A .

Let $p = p(x_1, \dots, x_m)$, $q = q(y_1, \dots, y_n)$ and $(p=q) \in E(K)$. Then $(p+p = q+q) \in Ex(K)$. Hence for $a_1, \dots, a_m, b_1, \dots, b_n$ in A we have $[p(a_1, \dots, a_m)] = [q(b_1, \dots, b_n)]$. Thus $A/\sim \in K$.

Let $a \in A$ and $b, c, d, e \in [a]$. Then by (5), $b+c = (b+b)+(c+c) = (d+d)+(e+e) = d+e$. Hence $b+c$ is a constant in $[a]$ and we can define $0_+([a]) = b+c$ for any $b, c \in [a]$. Since $a+a \sim a$ it follows that $0_+([a]) \in [a]$. Analogously, using (7), we prove that $b \cdot c$ is a constant in $[a]$ and we can define $0_0([a]) = b \cdot c$ for any $b, c \in [a]$.

Now let $a \in A$ and $b, c \in [a]$. Then by (8), $b' = (b+b)' = (c+c)' = c'$. Hence for any $b \in [a]$, b' is constant in $[a']$ and we can define $0_0([a']) = a'$. If $b \in A$ and $[b] = [a']$, then by (9) and (8), $b' = b''' = (b'+b')''' = (a'+a')''' = a''' = a' = 0_0([a'])$.

Let $a, b \in A$. Then by (1), (3), (5) we have $(a+b)+(a+b) = a+b$, whence $a+b = 0_+([a+b]) = 0_+([a]+[b])$. Analogously by (2), (4), (7) $a \cdot b = 0_0([a] \cdot [b])$.

Let $(p=q) \in Ex(K)$, where $p=q$ is not of the form $x=x$. Then there exist some polynomial symbols p_1, p_2, q_1, q_2 such that $p = p_1+p_2$ and $q = q_1+q_2$ or $p = p_1p_2$ and $q = q_1q_2$ or $p = p'_1$ and $q = q'_1$.

Let $p = q$ be of the form $p_1+p_2 = q_1+q_2$. Since $Ex(K) \subset E(K)$, then the algebra A/\sim satisfies $p = q$. Therefore, for $a_1, \dots, a_m, b_1, \dots, b_n$ in A we have $[p(a_1, \dots, a_m)] = [q(b_1, \dots, b_n)]$ and, by (ii) $p(a_1, \dots, a_m) = p_1(a_1, \dots, a_m) +$

$$+ p_2(a_1, \dots, a_m) = 0_+([p_1(a_1, \dots, a_m)] + [p_2(a_1, \dots, a_m)]) = 0_+([p(a_1, \dots, a_m)]) = 0_+([q(b_1, \dots, b_n)]) = q(b_1, \dots, b_n).$$

Thus the identity $p = q$ is satisfied in α . The proof for $p = p_1 \cdot p_2$ and $q = q_1 \cdot q_2$ is analogous.

Let $p = p'_1$ and $q = q'_1$. Then by (iv) we have $p(a_1, \dots, a_m) = p_1(a_1, \dots, a_m)' = 0_+([p_1(a_1, \dots, a_m)]') = 0_+([q_1(b_1, \dots, b_n)]') = q_1(b_1, \dots, b_n)' = q(b_1, \dots, b_n)$ for all $a_1, \dots, a_m, b_1, \dots, b_n \in A$. Thus, the identity $p = q$ is satisfied in α .

Theorem 2. If K is a variety such that $\Sigma \subset E(K)$ and B is an equational base for K , then $\Sigma \cup B^*$, where $(p+q) \in B$ iff $(p+p = q+q) \in B^*$, form an equational base for $V(E(K))$.

Proof. We show that $V(B^* \cup \Sigma) = V(E(K))$. It is obvious that $B^* \cup \Sigma \subset E(K)$ and $V(E(K)) \subset V(B^* \cup \Sigma)$.

Let $\alpha \in V(B^* \cup \Sigma)$. On the set A we define the relation \sim by setting:

$$a \sim b \text{ iff } a+a = b+b \text{ for all } a, b \in A.$$

It is easy to check that \sim satisfies conditions of Theorem 1. It follows that $\alpha \in V(E(K))$.

Corollary 1. If B is finite, then $V(E(K))$ is finitely based.

It is known that the following identities form a base for the variety L of all pseudocomplemented distributive lattices (see [4]):

- (L1) $(x+y)+z = x+(y+z)$,
- (L2) $(x \cdot y) \cdot z = x \cdot (y \cdot z)$,
- (L3) $x+y = y+x$,
- (L4) $x \cdot y = y \cdot x$,
- (L5) $x+x = x$,
- (L6) $x \cdot x = x$,
- (L7) $x+x \cdot y = x$,
- (L8) $x \cdot (y+z) = x \cdot y + x \cdot z$,
- (L9) $x \cdot x' = y \cdot y'$,
- (L10) $x \cdot (x \cdot y)' = x \cdot y'$,

$$(L11) \quad x \cdot (x \cdot x')' = x,$$

$$(L12) \quad (x \cdot x')'' = x \cdot x'.$$

Note that pseudocomplemented distributive lattices satisfy identities (1) - (9) and $\sum \subset \text{Ex}(L)$.

Corollary 2. An algebra $\alpha = (A; +, \cdot, ')$ belongs to $V(\text{Ex}(L))$ iff the identities (1) - (9) and

$$(10) \quad x \cdot x' = y \cdot y',$$

$$(11) \quad x \cdot (x \cdot y)' = x \cdot y',$$

$$(12) \quad x \cdot (x \cdot x' + x \cdot (x \cdot x')') = x + x,$$

$$(13) \quad (x \cdot x')'' + (x \cdot x')'' = x \cdot x' + x \cdot x',$$

$$(14) \quad x \cdot x + y = x + y,$$

$$(15) \quad x + x \cdot y = x + x,$$

$$(16) \quad x \cdot (y + z) + x \cdot (y + z) = x \cdot y + x \cdot z$$

are satisfied in α .

REFERENCES

- [1] W. Chromik : Klasy równościowe algebr zdefiniowane przez równości pewnych postaci, Doctoral dissertation, Warsaw Technical University, Institute of Mathematics, 1985.
- [2] G. Grätzler : Universal Algebra, Springer Verlag, Berlin, 1979.
- [3] K. Hałkowska : On some operator defined on equational classes, Arch. Math., Brno, 12 (1976) 209-212.
- [4] P. Ribenboim : Characterization of the sup-complement in a distributive lattice with last element, Summa Brasil. Math. 2 (1949) 43-49.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
45-052 OPOLE, POLAND
Received January 28, 1986.

