

Marek Balcerzak

A CLASSIFICATION OF σ -IDEALS IN POLISH GROUPS

In this paper we consider σ -ideals of subsets of a Polish dense-in-itself abelian group X . The type of a σ -ideal is defined and investigated. Under the assumption that X is connected, locally connected and locally compact, we construct, in the main theorem, σ -ideals of all possible types.

Throughout the paper, we shall assume that X is a Polish dense-in-itself abelian group with the group operation $+$ and the neutral element e . Polish group means a topological group whose topology is generated by a metric which makes X a complete and separable space.

This paper is essentially an improvement of article [1] in which X is equal to the real line \mathbb{R} and condition (v) given below is not required in the definition of the σ -ideal.

The power set of X will be denoted by $\mathcal{P}(X)$. Let ω and ω_1 denote the first infinite and uncountable ordinal numbers, respectively.

A nonempty family $J \subseteq \mathcal{P}(X)$ is called a σ -ideal if and only if it fulfills the conditions:

- (i) if $A \in J$ and $B \subseteq A$, then $B \in J$;
- (ii) if $A_n \in J$, $n < \omega$, then $\bigcup_{n < \omega} A_n \in J$.

Moreover, we shall always assume that J is nontrivial, i.e.

- (iii) $\{\emptyset\} \neq J \neq \mathcal{P}(X)$,

and that the following conditions concerning the group operations are valid:

(iv) if $A \in J$ and $x \in X$, then $A + x \in J$;

(v) if $A \in J$, then $-A \in J$,

where $A + x = \{a + x : a \in A\}$, $-A = \{-a : a \in A\}$.

Observe that J obviously contains all singletons $\{x\}$ and does not contain any nonempty open set (indeed, if such a set U existed, then, in virtue of (iv), the sets $U + x$, $x \in X$, would cover X ; thus, by taking a countable subcovering $U + x_n$, $n < \omega$, we would obtain $X \in J$, which is impossible).

In the sequel, J will always denote a σ -ideal.

For any $\mathcal{F} \subseteq \mathcal{P}(X)$, we define

$$I(J, \mathcal{F}) = \{A : A \subseteq B \text{ for some } B \in J \cap \mathcal{F}\}.$$

We shall consider \mathcal{F} equal to the family \mathcal{B} of all Borel subsets of X or to any of its subfamilies F_α , G_α , $\alpha < \omega_1$, (see [5], pp. 251-252). We define (comp. [1]) the type of J as a pair $(\alpha; \beta)$ such that α (resp. β) is the first ordinal $\leq \omega_1$ for which $I(J, \mathcal{B}) = I(J, F_\alpha)$ (resp. $I(J, \mathcal{B}) = I(J, G_\beta)$). Here $F_{\omega_1} = G_{\omega_1} = \mathcal{B}$.

We shall say that J is a Borel (resp. non-Borel) σ -ideal if and only if $J = I(J, \mathcal{B})$ (resp. $J \neq I(J, \mathcal{B})$).

Proposition 1. If $(\alpha; \beta)$ is the type of a σ -ideal, then

$$(*) \quad 1 < \alpha = \beta \leq \omega_1 \text{ or } 1 < \alpha = \beta + 1 < \omega_1 \text{ or } 1 < \beta = \alpha + 1 < \omega_1.$$

The proof is analogous to that in [1].

Denote by \mathcal{K} the σ -ideal of all meager subsets of X . It is easily observed that \mathcal{K} is a Borel σ -ideal of type $(1; 2)$.

Write $I(J, F_1)$ briefly as J_1 and observe that J_1 is a Borel σ -ideal of type $(1; 2)$.

Now, we shall study some properties of σ -ideals of type $(2; 1)$. We shall next give a few examples of such σ -ideals.

Proposition 2. If J is of type $(2; 1)$, then there is a nowhere dense set of type G_δ belonging to $J \setminus J_1$.

Proof. At first, we shall choose a closed nowhere dense set $A \in J$. Consider a countable set A_1 dense in X and

a set A_2 of type G_6 such that $A_1 \subseteq A_2 \in J$. Then the set $X \setminus A_2$ is of type F_6 and belongs to $X \setminus J$; hence it contains a set A which has the desired properties. Let B denote the set of all points x such that each open set containing x intersects A in a set which does not belong to J . It is easy to verify that B is a perfect nowhere dense set and $A \setminus B \in J$. Thus $B \notin J$. Let D be a countable subset of B dense in B and let E be a superset of D , of type G_6 , belonging to J and contained in B . Clearly, E is residual in B . If E were included in a set $H \in J$, of type F_6 , then both sets $B \cap H$, $B \setminus H$ would be meager in B , which contradicts the Baire Category Theorem. Thus, we can easily see that the set E fulfills the assertion.

Corollary 1. If J is of type $(2;1)$, then $J_1 \subseteq J \cap X$.

Proof. The inclusion $J_1 \subseteq J \cap X$ is self-evident. It follows from Proposition 2 that equality does not hold here.

Corollary 2. If J is of type $(2;1)$, then $J \cap X$ is of type $(2;2)$.

The proof is analogous to that in [1], prop. 1.

Below, in Examples 1, 2, the Cantor set C will be considered as a countable product (equipped with the Tychonoff topology) of identical discrete topological groups $\{0,1\}$ with the operator of addition modulo 2. Note that C forms a dense-in-itself Polish abelian group.

Example 1. Let X be locally compact. Then there exists a Haar measure m on X ([4]). Observe that the family \mathcal{L} of all sets of measure m zero forms a σ -ideal. Since m is regular, \mathcal{L} is of type $(2;1)$. Notice that if $X = \mathbb{R}$, we may treat m as Lebesgue measure, and if $X = C$, we may treat it as the product measure generated by measure μ on $\{0,1\}$ for which $\mu(\{0\}) = \mu(\{1\}) = 1/2$.

Example 2. Let $X = C$. Mycielski, using notions of game theory, defined in [10] a σ -ideal $\mathcal{M} \subseteq \mathcal{P}(C)$ which is of type $(2;1)$ (condition (v) is not required in [10] for σ -ideals, but one can easily check that \mathcal{M} fulfills it).

A subset of X will be called totally imperfect (comp. [5]), p.421) if and only if it does not contain any nonempty perfect set.

We shall now give some examples of non-Borel σ -ideals.

The following lemma is a simple consequence of the Alexandroff-Hausdorff theorem ([5], p.355):

Lemma 0. Each σ -ideal which contains an uncountable set and consists of totally imperfect sets is non-Borel.

Example 3. We say (see [11]) that a set A has the property (s_0) if and only if each nonempty perfect set contains a nonempty perfect set disjoint from A . Observe that this property is preserved by homeomorphisms. Let \mathcal{I}_0 be the family of all subsets of X with property (s_0) . Then \mathcal{I}_0 forms a σ -ideal since condition (ii) was verified in [11] and the other conditions are self-evident. Of course, \mathcal{I}_0 consists of totally imperfect sets. Notice that \mathcal{I}_0 contains a set of power 2^{\aleph_0} . Indeed, consider the Cantor set C (as a metric space; here we do not require C to be a group). We can find a set of power 2^{\aleph_0} having the property (s_0) with respect to $C \times C$ (analogously as in [9], th.5.10). Thus, for the space C , this is also possible since $C \times C$ and C are homeomorphic (comp. [5], p.235). At last, choose a subset \tilde{C} of X homeomorphic to C (by the Alexandroff-Hausdorff theorem). Then \tilde{C} contains a set A of power 2^{\aleph_0} having the property (s_0) with respect to X , as well. Hence, by Lemma 0, \mathcal{I}_0 is a non-Borel σ -ideal.

Example 4. For any families $\mathcal{F}^{(1)}, \mathcal{F}^{(2)} \subseteq \mathcal{P}(X)$, let $\mathcal{F}^{(1)} \oplus \mathcal{F}^{(2)} = \{A_1 \cup A_2 : A_i \in \mathcal{F}^{(i)}, i = 1, 2\}$. Denote by \mathcal{K} the family of all subsets of X of power less than 2^{\aleph_0} . Analogously as in [2], where $X = \mathbb{R}$, we obtain a set $E \subseteq X$ such that $D \cap E \neq \emptyset, D \setminus E \neq \emptyset$ for each nonempty perfect set D , and that $E \Delta (-E) \in \mathcal{K}, E \Delta (E + x) \in \mathcal{K}$ for each $x \in X$ (here Δ denotes the operation of the symmetric difference of sets). Put $\mathcal{K}(E) = \mathcal{P}(E) \oplus \mathcal{K}$. It can be easily shown that $\mathcal{K}(E)$ is a σ -ideal, consists of totally imperfect sets and contains

the set E which is of power 2^{\aleph_0} . Thus, by Lemma 0, $\mathcal{X}(E)$ is a non-Borel \mathcal{G} -ideal.

Example 5. Assume that J is a Borel \mathcal{G} -ideal. Let $\hat{J} = \mathcal{X}(E) \oplus J$, where $\mathcal{X}(E)$ is the \mathcal{G} -ideal described in Example 4. Similarly as in [1] we prove that \hat{J} is a non-Borel \mathcal{G} -ideal and $I(\hat{J}, \mathcal{B}) = J$, so the types of J and \hat{J} are identical.

The question arises whether condition $(*)$ formulated in Proposition 1 is sufficient for a pair $(\alpha; \beta)$ to be the type of a \mathcal{G} -ideal. In Theorem 1 we shall give an affirmative answer under the assumption that X is connected, locally connected and locally compact. In the proof we use methods described in [8] and our technique from [1] in the modified version. Observe that our result can be applied, for example, to the Hilbert cube and to the space of all continuous functions $f: [0,1] \rightarrow \mathbb{R}$ with the uniform convergence topology, both considered with the standard addition operations. However, we do not know whether Theorem 1 would be valid without assuming the connectivity and the local connectivity of X (for instance if $X = C$).

Theorem 1. Assume that X is connected, locally connected and locally compact. If a pair $(\alpha; \beta)$ fulfills $(*)$, then there exist a Borel \mathcal{G} -ideal $J(\alpha, \beta)$ and a non-Borel \mathcal{G} -ideal $\hat{J}(\alpha, \beta)$ both of type $(\alpha; \beta)$.

The proof will be based on a few lemmas. Let X fulfil the assumptions of Theorem 1.

Recall ([6], p.296) that a subset Y of X is said to be independent, provided that if y_1, \dots, y_n are distinct elements of Y and k_1, \dots, k_n are integers such that $k_1 y_1 + \dots + k_n y_n = e$, then $k_1 = k_2 = \dots = k_n = 0$.

From [8] (th. 0 and remark following it) we obtain

Lemma 1. There exists an independent, compact, perfect, zero-dimensional subset P of X .

For any $A \subseteq X$, let $\langle A \rangle$ denote the subgroup of X generated by A (we assume $\langle \emptyset \rangle = \emptyset$).

Lemma 2. Let $A, D \subseteq P$. For arbitrary $x, y \in X$, we have:

- (a) if A is closed, then $\langle A \rangle$ is meager of type F_G ;
- (b) if $A \cap D = \emptyset$, then $(\langle A \rangle + x) \cap (\langle D \rangle + y)$ has at most one element;
- (c) if $D \subseteq A$, then $(\langle D \rangle + x) \cap A$ is equal to D for $x \in \langle D \rangle$ and has at most one element for $x \notin \langle D \rangle$.

Proof (comp. [8]). Observe that the set $\tilde{P} = P \cup \{-P\}$ is zero-dimensional ([3], p.438). It follows from [7] (comp. also [3], p.457) that there exists a linear ordering $<$ on \tilde{P} such that all sets

$$\{x \in \tilde{P} : a < x < b\}, \{x \in \tilde{P} : x < a\}, \{x \in \tilde{P} : a < x\}$$

for $a, b \in \tilde{P}$ form a basis of the topology of \tilde{P} generated from X . It is not difficult to check that the set $\{(x, y) \in \tilde{P}^2 : x \leq y\}$ is then closed. Consider arbitrary $n < \omega$ and $A \subseteq P$. Let

$$W_n = \{(x_1, \dots, x_n) \in \tilde{P}^n : x_1 \leq x_2 \leq \dots \leq x_n\},$$

$$T_n = \{(x_1, \dots, x_n) \in \tilde{P}^n : x_i \neq -x_j \text{ for } 1 \leq i \leq j \leq n\},$$

$$S_n(A) = W_n \cap T_n \cap (A \cup \{-A\})^n,$$

$$f_n : X^n \rightarrow X \text{ and } f_n(x_1, \dots, x_n) = x_1 + \dots + x_n,$$

$$Z_n(A) = f_n(S_n(A)).$$

Notice that:

- (1) if A is closed, then $S_n(A)$ is of type F_G (since W_n is closed and T_n is open with respect to \tilde{P}^n);
- (2) each element $x \in \langle A \rangle \setminus \{0\}$ has a unique representation $x = x_1 + \dots + x_n$ for some $n < \omega$ and $(x_1, \dots, x_n) \in S_n(A)$ (since $A \subseteq P$ and P is independent);
- (3) $f_n|_{S_n(A)}$ is a homeomorphism of $S_n(A)$ onto $Z_n(A)$ (since f_n is an open continuous mapping and $f_n|_{S_n(A)}$ is one-to-one).

Now, we shall prove (a). Since P is zero-dimensional, therefore the sets \tilde{P}^n , $S_n(A)$, $n < \omega$, are, such, too ([3], pp.445-446). Then, for any $n < \omega$, the set $Z_n(A)$ is zero-dimensional. Next, observe that it has no interior points. Indeed,

if there existed an interior point x of $Z_n(A)$, then, by the local connectivity of X , we would find a connected neighbourhood U of x included in $Z_n(A)$. Since $Z_n(A)$ is zero-dimensional, we have $U = \{x\}$ (comp. [3], p.443) which contradicts the fact that X is dense-in-itself. So, $Z_n(A)$ has no interior points and, thus, is meager since, by (1), (3), it is of type F_G . In virtue of (2), we have

$$\bigcup_{n<\omega} Z_n(A) = \langle A \rangle \setminus \{e\},$$

thus $\langle A \rangle$ is meager of type F_G .

To prove (b), observe that it is enough to show that, for each $x \in X$, the set $(\langle A \rangle + x) \cap \langle D \rangle$ has at most one element. At first, assume that $x \in \langle A \cup D \rangle$. If $x = e$, then, by (2), we easily obtain $(\langle A \rangle + x) \cap \langle D \rangle = \langle A \rangle \cap \langle D \rangle = \{e\}$. Let $x \neq e$. We have $x = a + d$ for some $a \in \langle A \rangle$, $d \in \langle D \rangle$. There is a unique representation of that form, which follows from (2) and the assumption $A \cap D = \emptyset$. Suppose that $z \in (\langle A \rangle + x) \cap \langle D \rangle$. Then $z \in \langle D \rangle$ and $z = a' + x$ for some $a' \in \langle A \rangle$. Hence $x = a + d = -a' + z$, which implies that $z = d$. So, $(\langle A \rangle + x) \cap \langle D \rangle$ has at most one element d . Finally, let $x \notin \langle A \cup D \rangle$. Then

$$(\langle A \rangle + x) \cap \langle D \rangle \subseteq (\langle A \cup D \rangle + x) \cap \langle A \cup D \rangle = \emptyset.$$

Now, we shall prove (c). Observe that $\langle D \rangle \cap A = D$ since we obviously have $D \subseteq \langle D \rangle \cap A$ and, by (2), it is impossible to find $d \in (\langle D \rangle \cap A) \setminus D$. Hence, if $x \in \langle D \rangle$, then $\langle D \rangle + x = \langle D \rangle$ and $(\langle D \rangle + x) \cap A = D$. Next, assume that $x \in \langle A \rangle \setminus \langle D \rangle$. Then $x = x' + d$ where $x' \in \langle A \setminus D \rangle$, $d \in \langle D \rangle$ and, by (2), x has a unique representation of this form. Suppose that $z \in (\langle D \rangle + x) \cap A$. Then $z \in A$ and $z = d' + x$ for some $d' \in \langle D \rangle$. Since $z \in A$ and $z \notin D$ (if $z \in D$, then we would have $x = z - d' \in \langle D \rangle$, a contradiction), therefore $z \in \langle A \setminus D \rangle$. Consequently, $x = x' + d = z - d'$ implies that $z = x'$. Hence $(\langle D \rangle + x) \cap A$ has at most one element x' . Finally, let $x \notin \langle A \rangle$. Then

$$(\langle D \rangle + x) \cap A \subseteq (\langle A \rangle + x) \cap \langle A \rangle = \emptyset.$$

The proof is completed.

Choose pairwise disjoint perfect sets $A_\alpha, B_\beta, \alpha, \beta < \omega_1$, contained in P . For $\alpha = 0, 1$, let $D_\alpha = E_\alpha = \emptyset$ and, for each $\alpha, 2 \leq \alpha < \omega_1$, let D_α, E_α be such that $D_\alpha \subseteq A_\alpha, E_\alpha \subseteq B_\alpha, D_\alpha \in F_\alpha \setminus G_\alpha, E_\alpha \in G_\alpha \setminus F_\alpha$ (comp. [5], p.275).

By repeating the argument from [8], we obtain

Lemma 3. For all $\alpha, 2 \leq \alpha < \omega_1$, we have $\langle D_\alpha \rangle \in F_\alpha \setminus G_\alpha, \langle E_\alpha \rangle \in G_\alpha \setminus F_\alpha$.

The next part of the proof is similar to that in [1]. However we shall provide it for the reader's convenience.

For each $\alpha, 0 < \alpha < \omega_1$, we denote by $T(\alpha)$ the family of all double sequences $\{t_{n\gamma}\}_{n < \omega, \gamma < \alpha}$ with terms from X . For any $t \in T(\alpha)$, $t = \{t_{n\gamma}\}_{n < \omega, \gamma < \alpha}$ let us denote

$$D(\alpha, t) = \bigcup_{\gamma < \alpha} \bigcup_{n < \omega} (\langle D_\gamma \rangle + t_{n\gamma}),$$

$$E(\alpha, t) = \bigcup_{\gamma < \alpha} \bigcup_{n < \omega} (\langle E_\gamma \rangle + t_{n\gamma}).$$

Remark. Note that in [1] we used simply D_γ, E_γ in the definition of $D(\alpha, t), E(\alpha, t)$. Here we use $\langle D_\gamma \rangle, \langle E_\gamma \rangle$ because we want to construct a suitable G -ideal fulfilling condition (v).

Lemma 4. Let $2 \leq \alpha < \omega_1$. Then $D(\alpha, t) \in F_{\alpha-1}$, $E(\alpha, t) \in G_{\alpha-1}$ when $\alpha-1$ exists, and $D(\alpha, t), E(\alpha, t) \in F_\alpha \cap G_\alpha$ when α is a limit number.

Proof. We shall demonstrate the assertion which deals with $D(\alpha, t)$; the proof concerning $E(\alpha, t)$ is analogous. Notice that $D(2, t) = \emptyset \in F_1$; therefore, in this case, the assertion holds. Now, let $\alpha > 2$. Let $t = \{t_{n\gamma}\}_{n < \omega, \gamma < \alpha}$. Denote

$$A_{n\gamma} = \langle A_\gamma \rangle + t_{n\gamma}, D_{n\gamma} = \langle D_\gamma \rangle + t_{n\gamma}, D'_{n\gamma} = A_{n\gamma} \setminus D_{n\gamma},$$

for $n < \omega, \gamma < \alpha$. Observe that, by Lemma 2(a), the sets $\langle A_\gamma \rangle$ and, consequently, $A_{n\gamma}$ are of type F_6 . By Lemma 3, we have

$D_{n\gamma} \in F_\gamma$, $D'_{n\gamma} \in G_\gamma$. If $\xi \neq \gamma$; $\xi, \gamma < \alpha$, then $A_\xi \cap D_\gamma = \emptyset$; so, by Lemma 2(b), for any $n, k < \omega$, the set $A_{k\xi} \cap D'_{n\gamma}$ has at most one element. This implies that there is a countable set $H_{k\xi}$ included in $A_{k\xi}$ such that

$$A_{k\xi} \setminus D(\alpha, t) = D'_{k\xi} \setminus H_{k\xi}.$$

We then have

$$D(\alpha, t) = \bigcap_{\xi < \alpha} \bigcap_k \left(\bigcup_{\gamma < \alpha} \bigcup_n (A_{n\gamma} \setminus D'_{k\xi}) \cup H_{k\xi} \right),$$

which easily implies that $D(\alpha, t) \in \left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta$. From the equality

$$D(\alpha, t) = \bigcup_{\gamma < \alpha} \bigcup_n D_{n\gamma},$$

it follows that $D(\alpha, t) \in \left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta$. Thus we have obtained

$$D(\alpha, t) \in \left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta \cap \left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta.$$

Assume that $\alpha - 1$ exists. We have

$$\left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta = (F_{\alpha-1})_\delta = F_{\alpha-1} \quad \text{when } \alpha \text{ is even,}$$

$$\left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta = (F_{\alpha-1})_\delta = F_{\alpha-1} \quad \text{when } \alpha \text{ is odd.}$$

Thus $D(\alpha, t) \in F_{\alpha-1}$. If α is a limit number, then

$$\left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta = F_\alpha, \quad \left(\bigcup_{\beta < \alpha} F_\beta \right)_\delta = \left(\bigcup_{\beta < \alpha} G_\beta \right)_\delta = G_\alpha.$$

Hence $D(\alpha, t) \in F_\alpha \cap G_\alpha$. The Lemma has been proved.

Lemma 5. If $3 \leq \alpha \leq \omega_1$, $3 \leq \beta < \omega_1$, $2 \leq \gamma < \alpha$, $2 \leq \xi < \beta$, $s \in T(\alpha)$, $t \in T(\beta)$, then

(a) there is no set $M \in G_\xi$ such that

$$D_\xi \subseteq M \subseteq E(\alpha, s) \cup D(\beta, t);$$

(b) there is no set $M \in F_\beta$ such that

$$E_\beta \subseteq M \subseteq E(\alpha, s) \cup D(\beta, t).$$

Proof. We shall show (a); the proof of (b) is analogous. Suppose that there is a set $M \in G_\xi$ such that

$$D_\xi \subseteq M \subseteq E(\alpha, s) \cup D(\beta, t).$$

Then, obviously

$$D_\xi \subseteq A_\xi \cap M.$$

Let $s = \{s_{n\gamma}\}_{n<\omega, \gamma<\alpha}$, $t = \{t_{n\zeta}\}_{n<\omega, \zeta<\beta}$. By virtue of Lemma 2(c) each of the sets

$$A_\xi \cap (\langle E_\beta \rangle + s_{n\gamma}), A_\xi \cap (\langle D_\xi \rangle + t_{n\zeta}), n<\omega, \gamma<\alpha,$$

has at most one element, except for the case when $\zeta = \xi$, $t_{n\zeta} \in \langle D_\xi \rangle$ (then $A_\xi \cap (\langle D_\xi \rangle + t_{n\zeta}) = D_\xi$). Hence

$$A_\xi \cap M \subseteq A_\xi \cap (E(\alpha, s) \cup D(\beta, t)) \subseteq D_\xi \cup H$$

where H is a countable set. We may assume that D_ξ and H are disjoint. Thus

$$D_\xi \subseteq A_\xi \cap M \subseteq D_\xi \cup H,$$

and so

$$D_\xi = (A_\xi \cap M) \setminus H.$$

Since D_ξ equals the difference of sets of types G_ξ and F_1 , therefore it is of type G_ξ . This contradiction ends the proof.

For any $\mathcal{F} \subseteq \mathcal{P}(X)$, denote

$$\Gamma(\mathcal{F}) = \left\{ A: A \subseteq \bigcup_{n<\omega} (A_n + x_n) \text{ for some } A_n \in \mathcal{F}, x_n \in X \right\}.$$

It is easy to verify the following

Lemma 6. If $\mathcal{F} \subseteq \mathcal{K}$ and \mathcal{F} consists of subgroups of X , then $\Gamma(\mathcal{F})$ is the minimal (in the sense of inclusion) \mathcal{G} -ideal including \mathcal{F} . Moreover, if $\mathcal{F} \subseteq \mathcal{B}$, then $\Gamma(\mathcal{F})$ is a Borel \mathcal{G} -ideal.

Proposition 3. For an arbitrary pair $(\alpha; \beta)$ of ordinal numbers such that

$$3 \leq \alpha = \beta \leq \omega_1 \text{ or } 3 \leq \alpha + 1 = \beta < \omega_1 \text{ or } 3 \leq \beta + 1 = \alpha < \omega_1,$$

there is a Borel \mathcal{G} -ideal $J(\alpha, \beta)$ of type $(\alpha; \beta)$ included in \mathcal{K} . Moreover, the \mathcal{G} -ideals $J(\alpha, \beta)$ can be defined in such a way that if $\alpha \leq \alpha'$ and $\beta \leq \beta'$, then $J(\alpha, \beta) \subseteq J(\alpha', \beta')$.

Proof. We put

$$J(\alpha, \beta) = \Gamma(\{\langle E_\gamma \rangle : \gamma < \alpha\} \cup \{\langle D_\gamma \rangle : \gamma < \beta\}).$$

Then $J(\alpha, \beta) \subseteq \mathcal{K}$ by Lemma 2(a), $J(\alpha, \beta)$ is a Borel \mathcal{G} -ideal by Lemma 6 and it is of type $(\alpha; \beta)$ by Lemmas 4, 5. The rest is obvious.

The proof of Theorem 1. Put $J(1, 2) = \mathcal{K}$, $J(2, 1) = \mathcal{A}$, $J(2, 2) = \mathcal{K} \cap \mathcal{A}$ (comp. Example 1 and Corollary 2). Let the remaining \mathcal{G} -ideals be identical with those from Proposition 3. Define

$$\hat{J}(\alpha, \beta) = \mathcal{K}(\mathbb{I}) \oplus J(\alpha, \beta)$$

in the way described in Example 5. By this example, $\hat{J}(\alpha, \beta)$ is a non-Borel \mathcal{G} -ideal type $(\alpha; \beta)$.

Remark. As was observed in [8] each connected locally compact abelian group has an element of infinite order. Note that Lemma 1 will be valid (see [8], th. 0) if we assume, instead of the local compactness of X , that X has an element of infinite order. Similarly, Lemmas 2-6 and Proposition 3 will then hold, as well. In the proof of Theorem 1, the assumption that X is locally compact is needed to construct \mathcal{G} -ideals of types $(2; 1)$, $(2; 2)$.

REFERENCES

- [1] M. Balcerzak : A classification of -ideals on the real line, Problemy Matematyczne, (WSP Bydgoszcz) 7 (1985) 117-119.
- [2] M. Balcerzak : Some Bernstein-type construction and its applications, Acta Universitatis Lodziensis, Folia Mathematica, 2 (1987) 3-8.
- [3] R. Engelking : General Topology. PWN, Warszawa 1977.
- [4] P.R. Halmos : Measure Theory. Van Nostrand, Princeton, New York 1950.
- [5] C. Kuratowski : Topologie, vol. I, PWN, Warszawa 1958.
- [6] C. Kuratowski : Topologie, vol. II, PWN, Warszawa 1961.
- [7] I.L. Lynn : Linearly orderable spaces, Proc. Amer. Math. Soc. 13 (1962) 454-456.
- [8] R.D. Mauldin : On the Borel subspaces of algebraic structures, Indiana Univ. Math. J. 29 (1980) 261-265.
- [9] A.W. Miller : Special subsets of the real line, in Handbook of Set Theoretic Topology (K.Kunen, J.E.Vaughan - eds.), North-Holland, Amsterdam 1984.
- [10] J. Mycielski : Some new ideals of the sets on the real line, Colloq. Math. 20 (1969) 71-76.
- [11] B. Szpirajn (Marczewski) : Sur une classe de fonctions de M.Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935) 17-34.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ŁÓDŹ,
90-238 ŁÓDŹ, POLAND
Received December 16, 1985.