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A CLASSIFICATION OF o-IDEALS IN POLISH GROUPS

In this paper we consider 6-ideals of subsets of a Polish
dense~-in-itself abelian group X, The type of a 6 -ideal is
defined and investigated., Under the assumption that X is oon-
nected, locally connected and locally compsasot, we construct,
in the main theorem, ¢ -idesls of all possible types.

Throughout the paper, we shall assume that X is a Polish
dense~in-itself asbellian group with the group operation + and
the neutral slement e. Polish group means a topologiocal group
whose topology is generated by a metric which makes X a oom-
plete and separable space.

This paper is essentially an improvement of article [1]
in whioh X is equal to the real line /X and eondition (v)
given below is not required in the definition of the G -ideal.

The power set of X will be denoted by P(X). Let «w and Wy
denote the first infinite and uncountable ordinal numbers,
respectively.

A nonempty family J< P(X) is ealled a G~ideal if and
only if it fulfils the conditionss
(1) if Aed and Bgc A, then BeJ
(11) 1ir Ane.'J , n<w , then U AneJ .

n<w
Moreover, we shall always assume that J is nontrivial, i.e.

(111) {4} 43 #2(D),

and that the followling conditions concerning the group ope-
rations are valid:
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2 M. Balosrzak

(iv) 4if AeJd and xeX, then A + xeJ 3
(v) 4if Ae€Jd , then =-Aeld ,
where A + x ={a + x : ac4}, -4 = {-a 1 aca},

Obsarve that J -obviously contains all singletons {x} and
does not contain any nonempty open set {indeed, if such a set
U existed, then, in virtus of (iv), the sets U + x, x¢ X,
would cover X; thus, by taking a countable subcovering U + x
n<w, we would obtain XeJ , whioa is impossibls).

In the sequel, J will always denote a G ~ideal,

For any ¥< ?{(X), we define

nt

I(3, ) = {A t ASCB for some BeJnf} .

We shall consider ¥ equal to the family B of all Borel
subsets of X or to any of its subfamilies F,, G, <Wgy
(see [5], pp.251~252), We define (comp. [1]) the type of J
as a pair (x; 8) such that o (resp. B) is the first ordinal <
<w, for which 1(J, B) = 1(3, Fy) (resp. I(J, B) = I(J, Ga).
Here F, = G =3,

We shall esay that J is a Borel (resp. non-Borel) 6 -ideal
1f and only if J = I(J,B) (resp. J # I(J, B)).

Proposition 1, If {x3A8) is the type of a
G ~ideal, then

(=) 1< =<y OF 1< = S+ 1<w, Or 1< fB= X+ 1<wys

The proof is amalogous to that in [1].

Denote by X the 6-ideal of all meager subseis of X, It
is easily observed that X is a Borel & -ideal of typs (1; 2).

write I(J, F,) briefly as J, and observe that J, 1s
@ Borel 6 -ideal of type (132).

Now, we shall study some properties of G ~ideals of type
(231). We shall next give a few examples of such G-ideals.

Proposition 2, If J is of type (2;1), then
there is & nowhere dense set of type Gs belonging to J \31.

Proof, At first, we shall ohoose a closed nowhsre
dense met AeJ . Consider a countable set A, dense in X and
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a set A, of type Gs sucn that AySbye. Then the set X \A2
is of type F; and belongs to X\J; hence it contains a set A
which has the desired properties, Let B denote the set of all
polnts x 8uch that each open saet containing x 1intersects
4 in a set whioch does not belong to J, It is easy to verify
that B is a perfect nowhere dense set and A\ Be J . Thus B¢J,
Let D be a countable subset of B dense in B and let E be

a superset of D, of type Gs, belonging to J and contained
in B, Clearly, B is residual in B, If B were included in -

a 88t He J , of type F5, then both sets BN H, B\ H would be
meager in B, which contradicts the Balre Category Theorem.
Thus, we can easlly see that the set E fulfils the assertion.

Corollary 1. If J is of type (2;1), then
J,§INX,

Proof . The inclusion 31Q-Jn3( is self-evident.
It follows from Proposition 2 that equality does not hold here.

Corollary 2., I1IfJ is of type {(231), then
InX 1is of type (2;2).

The proof is analogous to that im [1], prop. 1.

Below, in Examples 1, 2, the Cantor set C will be con~-
sidered as a countabls produot (equipped with the Tychonoff
topology) of idwntiocsl discrete topologiecal groups {0,1} with
the operator of addition modulo 2. Note that C forms a den-
se-in-itself Polish abelian groupe.

Example 1. Let X be locally compact. Then there
exists a Haar measure m on X ([4]). Observe that the fae
aily £ of all sets of measure @ zero forms a G-ideal. Sinae
m 1s regular, o is of type (2;1). Notiece that if X =R, we
may treat m as Lebesgue measure, and if X = C, we may treat
it as the product measure generated by measurs u« on {0,1}
for which,u({o}) -(u({‘l}) = 1/2.

Example 2. Iet X = C, Myoielskl, using notions
of game theory, defined in [10] a 6-ideal M<S P(C) which is
of type (2;1) (condition (v) is not required in [10] for
G-1deals, but one can easily check that M fulfils it),
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A subset of X will be called totally imperfect (comp.[5]),
p.421) if and only if it does not contain any nonempty perfect
sot,

We shall now give some examples of non-~-Borel 6-ideals.

The following lemma is a simple consequence of the Alexan-
droff~Hausdorff theorem ([5], p.355):

Lemma 0, Fach 6~1deal which contains an unocountable
set and consists of totally imperfect sets is non-Borel,

Example 3., We say (see [11]) that a set A has
the property (so) if and only if each noneampty perfect set
contains a nonempty perfect set disjoint from A. Observe that
this property 18 preserved by homeomorphisms., Let I be the
family of all subsets of X with property (s )e Then 3 forms
a G-ideal sinoce condition (1i) was verified in []ﬂ and the
other oconditions are self-evident. Of course, J, oconsists
of totally imperfect sets. Notice that I contains a set

&
of power 2 °, Indeed, consider the Cantor set C (as a metric
space; here we do not require C to be a group). We can find

a set of power 260 having the property (s ) with respect to
Cx C (analogously as in [9], the5.10). Thns, for the space C,
this is also possible since Cx C and C are homoeomorphic
(compe [5]. pe235). At last, choose a subset € of X homeo-
morphic to C (by the Alexandroff-Hausdorff theorem}. Then ¢

contains a set A of power Z&b having the property (so) with
respect to X, as well, Hence, by Lemma O, J, is a non-Borel
6-1deal.

ample 4. For any families # 1, #(2)c p(x),
let 3'(” ® (2, - {audy s Ay e 51} 1 = 1,2). Denote

(3

by % the family of all subsets of X of power less than 2 °
Analogously as in [2], where X =R, we obtain a set ESX suoh
that DNE # ¢, D\E # ¢ for each nonempty perfect set D, and
that EA (~B)e ¥, EA(E + x)e % for each xeX (here A de-
notes the operation of the symmetric difference of sets).

Put 2(E) « P(B) @® ¥. It oan be easily shown that *(E) is
a 6-ideal, consists of totally imperfect sets and contains
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the set E which is of power 2&0. Thus, by Lemma 0, %(E) is
a non-Borel O-ideal.

Example 5. Assume that J 1is a Borel G-ideal.
Let J = ¥(E) @ J, where ¥ (E) is the 6-~idesl described in
Example 4, Similarly as in [1] we prove that J is a non-Borel
G-ideal and 1(3,.3) =J, 8o the types of J and 5 are iden-
tical,

The question arises whether condition (x) formulsted in
Proposition 1 is sufficient for a pair (x; B) to be the type
of a 6-ideal, In Theorex 1 we shall give an affirmative answer
under the sssumption that X is connected, locally connected
and locally compact. In the proof we use methods described
in [8] and our technique from [1] in the modified version.
Observe that our result can be applied, for examples, to the
Hilbert cube and to the space of ell continuous functions
f: [0,1] — R with the uniform oonvergence topology, both
considered with the standard eddition operations. However,
we do not know whether Theorem 1 would be valid without assum=-
ing tho connectivity and the local connectivity of X (for
instence if X = C),.

Theorem 1. Assume that X is connected, looally
connected and loocally compact, If a pair (o3 8) fulfils (),
then there exist a Borel G-~ideal J|{x,B) and a non-Borel
G-ideal 7 {x,4) both of type (x; A).

The proof will be based on a few lemmas. Let X fulfil the
assumptions of Theorem 1.

Recall ([6], p.296) that a subset Y of X is sald to be
independent, provided that if JqseeesT, 8T distinct slements
of Y and k1,...,kn are integers such that k1y1 + vee + k =@,
thenk1 = K, = oo =kn=0.

From [Bﬁ (th, 0 and remark following it) we obtain

Lemma 1. There exists an independent, compact,
perfect, zero~dimensional subset P of X.

For any AC X, let {A) denote the subgroup of X genserated’
by A (we assume <{¢>= ),

nyn
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Leaoama 2. Let A, DSP, For arbitrary x,ye X, we
have:
(a) 4if A is olosed, then {4) is meager of type Fg}
(b) 1f AnD = ¢, then ((AD + x) N (DD + y) has at most one
element;
{¢) if D<A, then {CDD + x) N4 is equal to D for xe<{D)
and has at most one element for x¢ {D)
Proof (oomp. [8:]). Observe that the set P =
= PU (~P) is zero-dimensional ([3], p.438)., It follows from
[7] (comp. also [3], p.457) that there exists a linesr order-
ing < on P such that all sets
P

{xe? : a<x<b}, {xeP 1 x<a}, {xeF : a<x}

for a,be P form a basis of the topology of P generated from X.
It is not difficult to check that the set {(x,y)e B% 1 x<y)
is then closed. Consider arbitrary n <w and AS P, Let

Nn .
W, = {(x1,....xn)e P x1sx2é...sxn},

Ty = {(xqseeex )e B8 ¢ x; 4 xy for 1<i<€j< n},

S,(4) = W NI, 0 (AU (-a))",

fn : X' = X and fn(x1,...,xn) =X+ 0o + X

Z,(a) = £,(5,(4)).

Notice that:

(1) if A is closed, then Sn(A‘} is of type Fs (since L is
closed and T, is open with respect te )4

(2) eaoch elemént x.€ {A>\ {e} has a unique representation
X = Xy + eoe + X, for some n<w and (xqp0009xy) €S (4)
(since ASP and P is independent);

(3) f,ls,(4) is a homeomorphism of S, (A) onto Z,(4) (since
fn is an open continuous mapping and fnlsn(A) is one=-
~t¢-one).

Now, we shall prove (a). Since P is zero-dimensional,
therefore the sets P°, S,(4)y n<w, are, such, too ([31,
pp.445~446), Then, for any n<cw, the set 2, (4) 18 zero-gimen-
sional. Next, observe that it has no interior points, Indeed,

n’

- 82 =



Ideals in Polish groups 7

if there existed an interior point x of Zn(A), then, by the
loocal connectivity of X, we would find a connected neighbour-
hood U of x 4included in zn(A). Sinoce zn(A) is zero~dimen-

sional, we have U = {x} (comp. [3], p.443) which contradicts
the fact that X is dense-in-iteelf, So, Zn(A) has no interior
pointe and, thus, is meager since, by (1), (3), it is of type

Fgze In virtus of (2), we have

nL(szn(A) = <A>\{e},
thus {(A) is meager of type Fs.

To prove (b), observe that it is enough to show that, for
eaok xe¢ X, the set ((AD + x)n (D) has at most one element.
At first, assume that x ¢ (AUD), If x = ¢, then, by (2},
we easily obtain ((A) + x)n< D) = {adN{D> = {e}. Let x ¥ e.
We have x = a8 + d for some ac {A), de {D). There is a unique
representetion of that form, which follows from (2) and the
assumption AnD = @, Suppose that ze€ ({AD> + x)N {(D>. Then
gc{D)and & = a’ + x for some a’c {AD. Hence x = 8 + d =
= -a’ +2, which implies that z = d. So, ({AD + x)N {D> has
at most one element d. Finally, let x¢ AU D). Then

(KA> + x)n{D>=(KAuD> + x)n{au D = ¢,

Now, we shall prove (o). Observe that {D)N A = D since we
obviously have DS<{D) NA and, by (2), it is impossible to
£ind de (D) NA)\ D, Hence, if xec <DD, then (D> + x = (DD
and {{DD> + x)N A = D, Next, assume that xe {AD\{D), Then
x = x' +d where x'e {( A\ DD, de{D)> and, by (2), x has
a unique representation of this form. Suppose that ze ({DD +
+ x)NA, Then g€ A and z = @ + x for soms d'e¢ (DD, Since ze A "
and z¢ D (if z ¢D, then we would have x = z - d'e (DD, a con-
tradiotion), therefore ze{A\ D), Consequently, x = x’'+d =
= 2 - d implies that 3z = x’. Hence ({(DD+ x)N A has at most
one element x’. Minally, let x¢ {A). Then
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(K<D> + x)nac(Kad> + xInda> = ¢

The proof is completed.

Choose pairwise disjoint perfect sets Ay, Bg, «, B<wy,
oontsined in P, For « = 0,1, let Dy = By, = ¥ and, for each o,
2<x <w,, let Dy, B be such that DS Aoy Ep S By Dy€ Fy \ Goo
E,€ Gy\ Fy (comp. [S], p.275),

By repeating the argument from [8], we obtain

Lemma 3. For alla, 2<x<w,, we have {Dg V€ Fy \ Gary
(By) € G\ Fyo

The next part of the proof is similar to that in [1].
However we shall provide it for the readeir’s convenience.

For esch o, 0<x<w4, we denote by T(x) the family of
all double sequences {tna-}n<m, peo With terams from X, Por any
te T(x), ¢t = {tna'}n<m,3-<o(’ let us denote

Dloyt) = U U (<opd> + 10,

T<x B<®@

Bloot) = U U WEpde .0,
< b<w

Remark., Note that in [1] we used simply Dy, By
in the definition of D(x,%), B{x,t). Hére we use {Dyz), (Ez>
becasuss we want to construct a sultable G-ideal fulfilling
condition (v),

Lemma 4. Tet 2<x<w,. Then Dlx,t) e Biqr
E(lx, t)e€ G,.4 wheno -1 exists, and D(x, t), Blx, t)€ F, NG,
when « is a limit number,

Proof. We shall demonstrats the assertion which
deals with D{(x,t); the proof ooncerning E{x,t) is analogous.
Notice that D(2,t) = fe F,3 therefors, in this case, the
assertion holds, Now, letx >2, Let t = {tna‘}n<w.3-<o:' Denote

Apy =KAgD>+ tpge Do =KDy + by Dpp = App\ Dy

for n<w, y<, Observe that, by Lemma 2{a), the sets (4>
and, consequently, Any are of type Fy. By Lemma 3, we have
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Dpy€ Fro D;me Gpe I£E #73 &,7<x, then AN Dy = ¢} 80, by
Lemma 2(b), for any n,k<w, the set Akgn Dna* has at most one
element, This implles that there is a countable set Hkg in-
eluded in AkE such that )

We then have

Dlo,t) =[ ) ﬂ(U U (Ap,\ Di:g’“ Hk€> ,

t<a k \g<a 1
which easily implies that D(a,t)e( U F/3>6. From ths equa-
lity P
e, t) = U U pyg
J<«x h
it follows that D(a,t)e<U F/3>6' Thus we have obtained
P
Do, t) e(U F/5>6~”<U F,j>6 .
P<ax f<x

Assume that« ~1 exists, We have

(U%)G = (F,_4)¢ = Py, when o is even,
P

ﬁL()arp>6 = (B,_q)5 = Fy_, whena is odd.

Thus D{x,t) ¢ Fa_1. If « ip a limit humber, then
(e (b (e
L B P

Hende D(x,t) e F, N Gy The Lemma has been provad.
Lemmna 5 It 3$G$w1, 3S/5<(4)1' 2$?<up 2$§</3’
se Tx), teT(B), then
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{a) there is no set Me G sucn that
Dg_C_MC;E‘(Ot,s)U D(B,t);

{b) there is no set Me F? sucih that

EQQMQE(G,S)U D(A,t).

Proof. We shall show {a); the proof of (b) is ana-
logous, Suppose that thers is a set Me GE such that

DE_MEE(O(,B)U D(B,t).
Then, obviously
D&.C_ Aén M,

Let s = {snz}n“,’a_«x, t = {tnS}n«» § <p® By virtue of Lemma 2(c)
each of the sets

Agn KBy >+ Bna‘" A 0 (KD5> + t,¢), B<w, F<a,

has at most one element, except for the case when §=1£&,
tnse<D5> (then Agn (KDg) + tns) = DE,)° Hence
Ag N Mc Ap N (B(x,8) U D(Bst))S DgUH

where H is a countable set., We may assume that Dg and H are
disjoint. Thus

Dec Ap N MSD U H,

and so

~ Singe Dg equals the difference of sets of types Gg and 1'1,
therefore it is of type Gg. Thia contradiotion ends the proof,.
Por any F< P(X), denote

F(F) = {A: Ac U (A, + x,) for some ApeF , X,¢ x}.
n<w
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It is easy to verify the following

Lemma 6, If ¥ X and ¥ consists of subgroups
of X, then M (%) is the ainimal (in the sense of inclusion)
6-ideal including ¥. Moreover, if FS B, then N (¥) is
a Borel G-ideal,

Proposition 3. PFor an arbitrary pair (o;A)
of ordinal numbers such that

3go(-/5scu1 or 3<u+ 1 =/3<w1 or 3<A8+1 = Q(<0y 4

there is a Borel 6-ideal U (x,B) of type (x3B) included in X,
Moreover, the 6-ideals J («,B) can be defined in such a way
that if aga' and A< A, then J (a,B)s (o, A).

Proof. We put

(o, ) = M({<Bp> + p<atu{Kpp>: 7<p) ).

Then J(x,B8)c X by Lemma 2{a), J (x,8) is a Borel O -ideal by
Lemma 6 and it is of type (x33) by Lemmas 4, 5. The rest is
obvious,

The proof of Theorem 1. Put J (1,2) =X, J(2,1) =,
J(2,2) = XN (ocomp. Example 1 and Corollary 2). Let the re=-
naining G-ideals be identioal with those from Proposition 3,
Define

F(a,8) =%(E) @ T (a,8)

in the way desoribed in Bxample 5., By this example, 3 (o, )
i8 a nen-Borel G-ideal $ype (x;A).

Remark, As was observed in [8] each connected
loeally oompaet abelian group has an slement of infinite or-
der. Note that Lemma 1 will be valid (see [8], th. 0) if we
assume, instead of the looal compactnsss of X, that X has an
element of infinite order. Similarly, Lemmas 2-6 and Proposi-
tion 3 will then hold, as well, In the proof of Theorea 1,
the assumption that X is loeally compact is needed to com~-
struot G-ideals of sypes (231), (2;2),
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