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A C L A S S I F I C A T I O N O F O - I D E A L S I N P O L I S H G R O U P S 

I n t h i s paper we c o n s i d e r s - i d e a l s o f s u b s e t s o f a P o l i s h 
d e n s e - i n - i t s e l f a b e l i a n group X* The type of a « - i d e a l i s 
def ined and i n v e s t i g a t e d . Under the assumption t h a t X i s con-
n e c t e d , l o c a l l y connected and l o c a l l y oompaot, we c o n s t r u c t , 
i n the main theorem, 0 - i d e a l s o f a l l p o s s i b l e t y p e s . 

Throughout the paper, we s h a l l assume t h a t X i s a Pol iBh 
d e n s e - i n - i t s e l f a b e l i a n group with the group opera t ion + and 
the n e u t r a l element e . P o l i s h group means a t o p o l o g i c a l group 
whose topology i s generated by a metr ic which makes X a com-
p l e t e and separable space* 

Th is paper i s e s s e n t i a l l y an improvement o f a r t i c l e [1] 
i n whioh X i s equal to the r e a l l i n e JR and e o n d i t i o n (v) 
given below i s not required i n the d e f i n i t i o n o f the <5 - i d e a l . 

The power s e t of X w i l l be denoted by I>(X). Let andCJ., 
denote the f i r s t i n f i n i t e and uncountable o r d i n a l numbers, 
r e s p e c t i v e l y . 

A nonempty family 3 c i J ( i ) i s c a l l e d a © - i d e a l i f and 
only i f i t f u l f i l s the c o n d i t i o n s t 
( i ) i f A e a and BCA, then B e 0 { 

( i i ) i f A e3 , acco , then U A e 3 . 
n <CJ 

Moreover, we s h a l l always assume t h a t 0 i s n o n t r i v i a l , i . e . 

( i i i ) { 0 } i l *5>U), 

and t h a t the fo l lowing c o n d i t i o n s concerning the group ope-
r a t i o n s are v a l i d : 
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2 M. Baloerzak 

( i v ) i f A e 3 and x e X, then A + x e 3 ; 
(v) i f A € J , then -A e 3 , 
where A + x * { a + x : a e a } , -A - { - a t a e A } . 

Observe t h a t 3 -obviously c o n t a i n s a l l s i n g l e t o n s { x } and 
does not conta in any nonempty open s e t ( indeed, i f suoh a s e t 
U e x i s t e d » then , i n v i r t u e of ( i v ) , the s e t s U + x , x e X, 
would cover X; t h u s , by taking a countable subcovering U + x Q t 

n < c o , we would obtain X e J , whioh i s imposs ib le }» 
I n the s e q u e l , 3 w i l l always denote a <5- idea l . 
For any we def ine 

1 ( 3 , 7) = { A : A Q B f o r some B e O n ^ } , 

Ve s h a l l oonsider ? equal to the family >3 of a l l B o r e l 
subse ts of X or to any of i t s s u b f a m i l i e s F a , G a , a 
( see [ 5 ] , p p . 2 5 1 - 2 5 2 ) . We def ine (oomp. [ 1 ] ) the type o f 3 
as a pa i r (ex; fi) such that o ( r e a p , fi) i s the f i r s t ordina l ^ 

f o r which 1 ( 3 , .3) = 1 ( 0 , F a ) ( r e s p . 1 ( 0 , .3) «= I ( D , Gg). 
Here F,, « G,, - 3 . 

u)̂  
We s h a l l say tha t 0 i s a Bore l ( r e s p . non-Borel ) <5-ideal 

i f and only i f J - 1(0 , 3 ) ( r e a p . 0 / 1 ( 3 , 3 ) ) . 
p r o p o s i t i o n 1 . I f (cx; / } ) i s the type of a 

G - i d e a l , then 
( * ) 1 < a « y 3 ^ c o 1 or 1 < a = / i 3 + 1 < c o 1 o r 1 < y 3 « = 0 ( + 1 < c o . | . 

The proof i s analogous to tha t in [ l ] . 
Denote by X the 6 - i d e a l of a l l meager subse ts of X. I t 

i s e a s i l y observed that 3C i s a Bore l @ - i d e a l of type ( 1 ; 2 ) . 
Write 1 ( 3 , F 1 ) b r i e f l y as D1 and observe tha t 3., i s 

a B o r e l e - i d e a l of type ( 1S2 ) . 
Mow, we s h a l l study some p r o p e r t i e s of 3 - i d e a l s of type 

( 2 ; 1 ) . We s h a l l next give a few examples of suoh 0 - i d e a l s . 
P r o p o s i t i o n 2 . I f 3 i s of type ( 2 { 1 ) , then 

there i s a nowhere dense s e t of type G^ belonging to 3 \3.j. 
P r o o f . At f i r s t , we s h a l l ohoose a c losed nowhere 

dense s e t AeD . Consider a countable s e t Â  dense i n X and 
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I d a a l s In Po l i sh groups 3 

a se t A2 of type Qg anon that A ^ A J G ^ . Then the s e t X 
i s of type PG and belongs to 0C\D ; henoe i t oontains a se t A 
which has the desired p r o p e r t i e s . Let B denote the s e t of a l l 
points x such that each open se t containing x i n t e r s e c t s 
A i n a se t whioh does not belong to 0 . I t i s easy to v e r i f y 
that B i s a perfeot nowhere dense se t and A\ B e 3 . Thus B^CJ. 
Let D be a countable subset of B dense in B and l e t E be* 
a superset o f Dt of type Q 6 , belonging to 0 and contained 
i n B. C l e a r l y , B i s r e s i d u a l i n B . I f E were inoluded i n 
a s e t H 6 0 , of type Fg, then both s e t s Bn H, B\ H would be 
meager i n B, whioh c o n t r a d i c t s the Baire Category Theorem. 
Thus, we can e a s i l y see that the se t E f u l f i l s the a s s e r t i o n . 

C o r o l l a r y 1. I f 3 i s of type ( 2 $ 1 ) , then 
3 1 £ an DC. 

P r o o f . The i n c l u s i o n On 3C i s s e l f - e v i d e n t . 
I t fol lows from Proposi t ion 2 that equal i ty does not hold here . 

C o r o l l a r y 2 . I f 3 i s of type ( 2 | 1 ) , then 
On DC i s of type ( 2 j 2 ) . 

The proof i s analogous to that i n [ l ] , prop. 1 . 
Below, i n Examples 1, 2 , the Cantor s e t C w i l l be con-

sidered as a countable produot (equipped with the Tychonoff 
topology) of i d e n t i c a l d i s c r e t e t o p o l o g i c a l groups { 0 , 1 } with 
the operator of addit ion modulo 2 . Note that C forms • den-
s e - i n - i t s e l f P o l i s h abel ian group. 

E x a m p l e 1 . Let X be l o c a l l y aompact. Then there 
e x i s t s a Haar measure m on X ( [ 4 ] ) . Observe that the f a * 
mlly oC o f a l l s e t s qf measure m zero forms a - i d e a l . Sinoe 
m i s r e g u l a r , oC i s o f type ( 2 ( 1 ) . Notice that i f X =]R, we 
may t r e a t m as Lebesgus measure, and i f X • C, we may t r e a t 
i t as the product measure generated by measure (X on { o , l j 
f o r which ,u( {o } ) - / < ( { l } ) 1/2. 

E x a m p l e 2 . Let X • C. Hyoie lsk i , using notions 
of game theory, defined in [10] a e - i d e a l M s ^ ( C ) which i s 
of type ( 2 ; 1 ) (condit ion (v) i s not required i n [10] f o r 
6 - i d e a l s , but one can e a s i l y check that JU f u l f i l s i t ) . 
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4 M.Baloerzak 

A subset of X will be called totally imperfect (comp.[B]), 
p.421) if and only if it does not contain any nonempty perfect 
set* 

We shall now give some examples of non-Borel s-ideals. 
The following lemma is a simple consequence of the Alexan-

droff-Hausdorff theorem ([5], p.355): 
L e m m a 0. Bach G-ideal which contains an uncountable 

set and consists of totally imperfect sets is non-Borel. 
E x a m p l e 3. We say (see [ll] ) that a set A has 

the property (sQ) if and only if each nonempty perfect set 
contains a nonempty perfect set disjoint from A. Observe that 
this property ia preserved by homeomorphisms. Let be the 
family of all subsets of X with property (sQ). Then 0 o forms 
aG-ideal sinoe condition (ii) was verified in [ll] and the 
other conditions are self-evident. Of course, 3Q oonsists 
of totally imperfect sets. Notice that o Q contains a set 
of power 2 p. Indeed, consider'the Cantor set C (as a metric 
space; here we do not require C to. be a group). We can find 
a set of power 2 0 having the property (s0) with respect to 
C* C (analogously as in [9], th.5.10). Thus, for the space C, 
this is also possible sinoe CxC and C are homoeomorphic 
(oomp. [5], p.235). At last, choose a subset C of X homeo-
morphic to C (by the Alexandroff-Hausdorff theorem). Then C 

a. 
contains a set A of power. 2 having the property (sQ) with 
respect to X, as well. Henoe, by Lemma 0, 0Q is a non-Borel 
<3 -ideal. 

by 'X the family of all subsets of X of power less than 2 J. 
Analogously as in [2], where X *e obtain a set B e x suoh 
that D f)E 4 0t D \ B 0 for eaoh nonempty perfect set D, and 
that t A (-B) 6 K , E A (B + x) e It for each x e X (here A de-
notes the operation of the symmetrio difference of sets). 
Put 2(B) mP(lS) © It oan be easily shown that X(B) is 
a 6-ide.al, oonsists of totally imperfeot sets and contains 

» 
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Ideala in Polish groups 5 

the set E which is of power 2 Thus, by Lemma 0, 3C(B) ia 
a non-Borel ©-ideal. 

E x a m p l e 5. Assume that 0 is a Borel <?-ideal. 
Let 5 = 3f(E) @ 3 , where 3f(B) is the ©-ideal described in 
Example 4. Similarly as in [l] we prove that 0 is a non-Borel 
©-ideal and 1(3, ¿8) = 3 , SO the types of 3 and 3 are iden-
tical. 

The question arises whether condition (*) formulated in 
Proposition 1 is sufficient for a pair (ot; /3) to be the type 
of a ©-ideal. In Theorem 1 we shall give an affirmative answer 
under the assumption that X is connected, locally connected 
and locally compact. In the proof we use methods described 
in [8] and our technique from [l] in the modified version. 
Observe that our result can be applied, for example, to the 
Hilbert cube and to the space of all continuous functions 
f: [0,1] — - JR with the uniform oonvergenoe topology, both 
considered with the standard addition operations. However, 
we do not know whether Theorem 1 would be valid without assum-
ing tho connectivity and the local connectivity of X (for 
instance if X = C). 

T h e o r e m 1. Assume that X is connected, locally 
connected and locally compact. If a pair (a; ¿5) fulfile (*), 
then there exist a Borel ©-ideal 3 K«,/}) and a non-Borel 
©-ideal 5 (a,/3) both of type (aj/3). 

The proof will be based on a few lemmas. Let X fulfil the 
assumptions of Theorem 1. 

Recall ([6], p.296) that a subset Y of X ia said to be 
independent, provided that if y,j,...,Jn are distinct elements 
of Y and k1f...,kQ are integers such that k^y^ + ... + knyn=8» 
then k1 = k„ = ... = kn = 0. 

Prom [8j (th. 0 and remark following it) we obtain 
L e m m a 1. There exists an independent, compact, 

perfect, zero-dimensional subset P of X. 
For any A£X, let <A> denote the subgroup of X generated' 

by A (we assume < 0>= 0). 
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6 M.Balotrzak 

L e m m a 2 . Let A, D S P . For a r b i t r a r y x , j e l , we 
have: 
( a ) i f A i s c losed , then <A> i s meager of type 
(b) i f A n c = 0 . then (<A> + x ) n (<D> + y ) has a t most one 

element; 
( c ) i f Dc A, then (<D> + x ) n A i s equal to D f o r x e < D > 

and has a t most one element f o r x £ <D)>. 
P r o o f (oomp. [ 8 3 ) . Observe that the s e t P « 

» PU ( - P ) i s zero-dimensional ( [ 3 3 , p . 4 3 8 ) . I t follows from 
[73 (oomp. a l s o [33» p.457) that there e x i s t s a l i n e a r o r d e r -
ing < on P such that a l l s e t s 

{ x e P : a < x < b } , { x e P j x < a } , { x e P : a < x } 

f o r a , b e P form a bas is of the topology of P generated from X. 
I t i s not d i f f i c u l t to check that the s e t { ( j x , y ) e P 2 : x.j? y} 
i s then c l o s e d . Consider a r b i t r a r y n <co and A S P . Let 

Wn - { ( x 1 , . . . , x n ) f e P n s x 1 ^ x 2 ^ . . . < x n } , 

Tn = { ( x 1 f . . . , x n ) e P® : x t - x j f o r K i ^ ^ n ) , 

Sn(A) = wnn TQn ( A U ( - A ) ) n , 

f t Xn—«- X and f B ( x 1 , . . . , x Q ) - x^ + . . . + x Q , 

Zn(A) * f n ( S n { A ) ) . 

Notice t h a t : 
(1 ) i f A i s c l o s e d , then Sn(A4 i s of type F<j ( s i n c e i s 

closed and TQ i s open with r e s p e c t to P n ) ; 
(2 ) eaoh element x £ < A > \ { e } has a unique r e p r e s e n t a t i o n 

x = x 1 + . . . + x Q fop some n < c j and ( x ^ , . . . , x n ) e Sf l(A) 
( s ince A£ P and P i s independent) ; 

(3 ) f n I S n ( A ) i s a homeoBorphism of SQ(A) onto Zq(A) ( s ince 
t l a an o()en continuous mapping and f n | S n ( A ) i s one-
- t u - o n e ) . 

Now, we s h a l l prove ( a ) . Sinoe P i s zero-dimensional , 
therefore the s e t s P n , S Q (A) r n < c j , a r e , such, too ( [33» 
p p . 4 4 5 - 4 4 6 ) . Then, f o r any n<co, the se t ZQ,(A) i s zero-fJimen-
s i o n a l . Next, observe that i t has no i n t e r i o r points . Indeed, 
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Idea ls in Pol ish gronps 7 

i f there ex is ted an i n t e r i o r point x of Z Q ( A ) , then, by the 
looa l connect iv i ty of X, we would f i n d a conneoted neighbour-
hood U of x included i n Zn(A). Since Zq(A) i s zero-dimen-
e i o n a l , we have U - {x} (oomp. [3 ] , p.443) whioh con t r ad i c t s 
the fact that X i s dense - in - i tBe l f . So, ZQ (A) has no i n t e r i o r 
points and, thus , i s neager s inoe, by (1 ) , (3 ) , i t i s of type 

In v i r t u e of ( 2 ) , we have 

U Zn(A) » <A>\{«>, 
a<u 

thus <A> I s meager of type Fg» 
To prove ( b ) , observe tha t i t i s enough to show t h a t , f o r 

eaoh x e X, the se t (<A> + x )n<D>has a t most one element. 
At f i r s t , assume tha t x e <AU D>. I f x • e , then , by (2 ) , 
we e a s i l y obta in (<A> + x) n < D> = < A>n<D> * {e} . Let x 4 e . 
We have x - a + d f o r some ae<A>, de<D>. There i s a unique 
r e p r e s e n t a t i o n of tha t form, whioh fol lows from (2) and the 
assumption A n D « 0 . Suppose tha t z e (<A> + x)n<D>. Then 
s € <D> and z « a' + x f o r some a 'e <A>. Henoe x a + d » 
« -a ' + z , which implies tha t i * d. So, (<A> + x)n <D> has 
a t most one element d. F i n a l l y , l e t x£<AU Then 

(<A> + x) n < D>£ « A U D> + x) n <A U D> - 0 . 

low» we s h a l l prove ( o ) . Observe tha t <D>n A * D since we 
obviously have D£<D>r>A and, by (2 ) , i t i s impossible to 
f ind d 6 (<D> nA) \ D. Hence, i f xe <D>, then <D> + x * <D> 
and (<D> + x) n A = D. Next, assume tha t xe<A>\<D>. Then 
x - x ' + d where x ' e < A \ D>, de<D> and, by ( 2 ) , x has 
a unique r ep re sen t a t i on of t h i s form. Suppose t h a t z e (<D> + 
+ x) n A. Then z e A and z • cT' + x f o r some d'e <D>. Since z e A 
and z ^ D ( i f z then we would have x = z - d e <D>, a con-
t r a d i c t i o n ) , t he re fo re z e < A \ D > . Consequently, x » x' + d • 
• z - d' implies tha t z » x ' * Henoe (<(D> + x)n A has at most 
one element x ' . F i n a l l y , l e t x£<A>. Then 
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8 M.Balcerzak 

(<D> + x ) n Ac (<A> + x) n <A> = 0 . 

The proof i s completed* 
Choose palrwise d i s j o i n t p e r f e c t s e t s B / j , « , fi<co^, 

contained in P. For o< = 0 , 1 , l e t Do, = B ,̂ = 0 and, f o r each a , 
2 < c o 1 , l e t D^, Bo, be such tha t D^Q AQ,, B^cBQ,, L^e P0 (\G0 ( , 

Gw\ F a (comp. [ 5 ] , p . 2 7 5 ) . 
By r e p e a t i n g the argument from [8^ , we obta in 
L e m m a 3 . For a l i a , 2 < a < c o 1 , we have <Do<>e F^ \ G a , 

<>oc>6<»o(\*oe 
The next part of the proof i s s i m i l a r to t h a t in [ l ] . 

However we s h a l l provide i t f o r the r e a d e r ' s convenience. 
For each 0<cx<co^ t we denote by T(c*) the family of 

a l l double sequences { t n y | n < 0 r < c x with terms from X. For any 
t e T ( « ) , t = { t n r } n < Q f y < 0 ( , l e t r M denote 

D ( a f t ) - U U ( < D r > + 
y<o( n « o " 

B ( a , t ) « I J U t < B T > + t J . 
y-<o< n<o a ° 

R e m a r k « Note tha t i n [ l ] we used simply D^, Bp 
i n the d e f i n i t i o n of D(cx,t) , B ( o c , t ) . Hire we use <Dy>, <B^> 
because we want to oonstruot a s u i t a b l e ( J - i d e a l f u l f i l l i n g 
condi t ion ( v ) . 

L e m m a 4 . Let 2<o<<co1 . Then D(<*,t) e 
E ( a , t ) e G 0 ( _ 1 whena-1 e x i s t s , and D(oc, t ) , B ( a , t ) e P 0 ( n G 0 l 

when a i s a l i m i t number. 
P r o o f . We s h a l l demonstrate the a s s e r t i o n whioh 

dea l s with D(oc,t) ; the proof concerning B(o»,t) i s analogous. 
Notioe t h a t D ( 2 , t ) » t h e r e f o r e , i n t h i s c a s e , the 
a s s e r t i o n h o l d s . Now, l e t « > 2 . Let t = | t „ _ L . Denote \ narjn<co, j-<o< 

Anz = <Ar>+ w V * <Dr>+ V % = V x V 
f o r n<co, j - < 0 ( . Observe t h a t , by Lemma 2 ( a ) , the s e t s <Aj-> 
and, consequent ly , are of type F e . By Lemma 3 , we have 

- 84 -



Ideala in Polish groupa 9 

D n i e P j , D n y 6 G a " I f $ ? »ar<« . t h e n 8 0 • b y 

Lemma 2(b) , for any n,k<cj, the set A^ n has at most one 
element. This implies that there i s a countable set H^^ in-
elftded in A^ such that 

A k | \ D ( « , t ) = 

Ve then have 

%q i (y. y ( v • 
which easi ly implies that D(a, t )ef U p/3jx • R c > 0 0 t h a eq<*a-
l i t y ^ < 0 < ' 

» ( « . * ) - U U Dn , . 3-<a n n<r 

i t follows that D ( a , t ) e ( U F ^ L . Thus we have obtained 
\^<cx / 

Assume thatoc-1 ex i s t s * We have 

( U i y a L - ( V l ' i « when cx i s odd* \ y3«x /w 

Thus D(oc,t)€ F a _ i » I f a i s a limit number, then 

( = (u *A - ( u qA • Gc 
\ / 3 « x / \ fl«x ' \ / 3 < a / 

Henae D(a , t )e F an 6 a , The Lemma has been proved. 
L e m m a 5. I f 3 ^ « , 3 , 2^(r,<oc, . 

s f l ( a ) , teT(y3), then 
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10 M.Balcerzak 

(a} there is no set Me Ĝ  sucn that 

D^HCS(O,,B) U D(/3,t)} 

(b) there is no set MePp sucn. that 

Hc!(a ) 8 ) U D(y3,t). 

P r o o f . We shall show (a)} the proof of (b) is ana-
logous. Suppose that there is a set MeG^ such that 

D ĉ Mc B(oc,s) U D(/3,t). 

Then, obviously 
D̂  £ Â  n M. 

L e t 8 = I v l n o , ^ « ' * " N s l n ^ ^ / J -
 By V i r t U 8 ° f L8BUaa 2 ( 0 1 

eaoh of the sets 

Â n «53.)+ 8n y), A^n (<D5> + t n 5 ) f n<co, 

has at most one element, exoept for the case when 5 = 5» 
tn 5 &<D5> (then A^n«D5>+ tfl5) » D^). Hence 

Â n MC A^n (B(of,B)U D(/3,t) )£D^UH 

where H is a countable set. Ve may assume that D̂  and H are 
disjoint. Thus 

D ĉ Â  n M£ D̂  U H, 

and so 
D̂  = (A^n M) \H. 

Since D̂  equals the differenoe of sets of types Ĝ  and F.,, 
therefore i t is of type G .̂ This contradiction ends the proof. 

For any ^ ^ ( x ) , denote 

r(-F) « (a: As U. U n + *n) f ° r some kneJ , xQe x | . 
^ n<co 
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I t i s easy to v e r i f y the fol lowing 
L e m m a 6. I f and T c o n s i s t s of subgroups 

of X, then P ( F ) i s the minimal ( i n the sense of i n c l u s i o n ) 
6 - i d e a l including T* Moreover, i f , then r ( f ) i s 
a Borel ff-ideal. 

P r o p o s i t i o n 3 . For an a r b i t r a r y pair (aj/9) 
of ordinal numbers such that 

3 < a or 3 1 =/3 < or 3-^/3 + 1 = , ' 

there i s a Borel ff-ideal 3 (<x,/3) of type (<x;fl) included in X. 
Moreover, the ff-ideals J (a,/3) can be defined in such a way 
that i f a ^ a ' and /3 ^ y3', then J (a ,y3)S. D ( a ' , /3'). 

P r o o f . We put 

a (a . / j ) - n { < B r > s r < « } u { < D r > : ) . 

Then 3 (a , /3 )s3C by Lemma 2 ( a ) , 3 (a,/3) i s a Bore l <?-ideal by 
Lemma 6 and i t i s of type (<*}$) by Lemmas 4 , 5 . The r e s t i s 
obvious. 

The proof of Theorem 1 . Put J ( 1 , 2 ) » X , 3 ( 2 , 1 ) =oC% 

3 ( 2 , 2 ) » X n cC (oomp. Example 1 and Corollary 2 ) . Let the r e -
maining 6 - i d e a l s be i d e n t i c a l with those from Proposi t ion 3 . 
Define 

3 ( © J (<x,/3) 

i n the way desoribed in Ixample 5« By t h i s example, 3 [a,/i) 
i s a nen-Borel <J - ideal type (ot j^ ) . 

R e m a r k . As was observed i n [8^ each connected 
l o c a l l y compact abe l ian group has an element of i n f i n i t e o r -
der . Vote that Lemma 1 w i l l be v a l i d (see [ 8 ] , t h . 0) i f we 
assume, instead of the l o o a l compaotness of 1 , that X has an 
element o f i n f i n i t e order. S i m i l a r l y , Lemmas 2 - 6 and Proposi -
t i o n 3 w i l l then hold, as w e l l . In the proof of Theorem 1 , 
the assumption that X i s l o c a l l y oompact i s needed to OOJB-

s t ruot 9 - i d e a l s of types ( 2 ) 1 ) , ( 2 ) 2 ) . 
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