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THEORIES OF DEDUCTIVE SYSTEMS EQUIVALENT TO T w

This note is to present some recent improvements in a
sentential calculus named W, and, mainly, in a theory of de~
ductive systems, strongly adequate to it named gw. Therefore,
only indispensable definitions and theorems of earlier papers
are quoted here; a full survey of previous results may be
found in [2]. There i8 a comprehensive bibliography also there.
Finglly, present notation and terminology are those of [2]
as well,

By the system W we mean the following sentential caloculus
given axiomatically:

ite primitive terms are functors => , A, and ~, standing
for impligation, conjunction, and negation, respectively;

ite axioms - the expressions denoted with the functors
and sentential variables p, g, r:

A1, (p=q)=((g=r) =(p=>r)),

A2, p =(q=p),

A3. ({p=>9) =p) =,

A4 pAQg=>Dp,

AS. pArg=>q,

A6. p=>(q=>pag),

AT p=>(~p=>q),

The theory Ty has been presented in [1]. The results dealt

here with were announced first at the Conference on Universal
Algebra held at the Pedagogioal University in Opole (Jarmoz-
ta'ek), uw 23'27. 1984,
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2 A.Morawiea, K.Pirdég-Rzepecka

48, ~ (~p)=>p,

A9 p=>~(~p),

410, p=>({g=>~q)=~ (p=>9]),

A11. ~(pAg)=>~(qapl,

412, ~(prq)=({p=>~pl=>~p),

A13. pA~g=> ~(pAg),

A4, ~pA~g=~{pAgl;
and ite rules of inference - the modus ponens for =» and
the substitution rule.

Subsequently, the notions of formula of W (or W - formula),
theorem of W, provability, and derivsbility in W, are defined
in the usual way.

ae« The system W is equivalent to the sentential oalculus
determined by the three-valued matrix:

!3 =<{1’0’1/2}'{1}’$ 2 A D,

with functions ==, A, and ~ defined by the truth-tables:

=11 0 1/2 Al 0 1/2 ~
1 {1 0 0 1 1 0 1/2 1 0
0 i1 1 1 0 0 0 1/2 0 1
/211 1 1 1/2 |1/2 1/2 1/2 1/2 1/2

In previous considerations on W the following notion of
esrentianl variable of a formula of W has beer an important
one:

if the formula is a sentential variable, this variable is
its only essential one;

if the formula is of the form ~¢, then its all and only
essential variables are these of ¢;

if the formula is of the form @Ay, then its all and
only essential variables are both these of ¢ and of y;

no veriable is ar escentizl one of @Y= y.

This notion has been used in comstructing a suppositional
system of W, a thecry of deductive systems, strongly adegquate
to it, and in describing classes of these two-valued tautolo-
g8les, whigeh are alsc gg-tautologiea.
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Theories of deductive systems 3

1t appears that the property "to be an essential variable
of a formula", though obviously external of W, may be, in some
sense, expressed in it, Before the approprlate statement.is
given, let us quote theorems from [2] used later in its proof:

b. For every formula ¢ of W and every valuation h in
MB, if h(gp) = 1/2, then there exists an essential variable p
of ¢ such that h{p) = 1/2.

Ce A variable p is an essential one of ¢ iff for every
valuation h in !3 h{p) = 1/2 implies h(p) = 1/2.

The following remark is also helpful for the proof:

If p 1is a sententiasl variagble and h - a valuation in 53.
then

1 iff h(p) # 0

10 h(~p$p) ={
0o iff h(p) = 0,

and

1 iff h(p) # 1/2

- h(("‘ ) =
p=>p)==pl {o iff h(p) = 1/2.

Given PqreessPy formulas of an axiom systems L
"<P1,...,§pklf " denotes the predicate of derivability from
the set {§p1,...,¢k} in L and " lf” denotes tha predicate of
provability in i%t, in what follows,

Theorem 1. If @ and Yy are arbitrary formulas
of W, then every essential variable of y is an egsential
one of ¢ iff

l;((~90=> ) =)=~ y=y)=>y).

Proof. Given ¢ and y formulas of W, it is enough,
by 8., to prove the following:

every sssential variable of ¢ is this of ¢ iff

(~p==@)=>@)=(-yY =>y)=>y) is !B-tafutolou.

By way of contradiction, assume first that every essential
variable of y 1is an essential ome of ¢, and that there is
a valuation h 1in !3 such that
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h{l{~p=>p)==0)l=> ({(~y=>yl=2yl) # 1.
Then by the truth-table of =
Q{(~p=>pl=> @) = hi~p=>y) = 1

and h(y) # 1, hence, by 1. and 2.,

3. hi(p) # 1/2  and  hiy) = 1/2.

Now, use b, to get such an essential variabla p of y
that h{p) = 1/2; by assumption, p 1is also an essential va-
riabls of ¢, so by c. h(p) = 1/2, which contradicts 3.

Suppose now that there exists p, an essential variable
of y not being an essential one of ¢ « Then by b. and g.
for h, a valuation in M, that takes the value 1/2 for »p
only

hly) = 1/2 and hig) # 1/2.
Thus 2., and tae table of => yield
hWi{(~p=9) = @) =((~y>y)==>y)) = 0,

which ends the proof,

We conclude this section with some consequenoces of the
above theorem,

Corollary 1. For every formula ¢ of W and
avery ssntential variable p

i, p 1is an essential variable of ¢ iff

g ((vp=pl=>pl=>(vp=> p)=>p);
ii. no variable is an essential ons of ¢ iff
g (~p=>p)=>0.
Corollary 2. For Pr9PoresesPpr ¥ arbitrary

formulas of W, every essential variable of y is an essential
one of at least one of @y @oyecerppy iff
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N ((~py =y )=, )=

= (cee= (o= )= @ )= ((ry=yl=y) .0 ),

A suppositional system of W, as described in [2], may bs
now modified and, in fact, simplified wi%h Corollary 2, but
we are not going into this here.

The rest of the paper concerns the theory of deductive
systems Ty presented in [1]. This theory is an sxtension of
Zermaelo~Fraenkel set theory therefore only the new terms and
axioms are discussed below,

Primitive terms of gw are

S, Cn, = A ,~,

with S - a set, Cn -~ a function taking the power set P(S)
into itself, and = ,A ,~ =~ names for ths corresponding pri=-
mitive terms of W. (The use of ths sams notation for those
and their names does not, however, lead to any clashes).

To formulate axioms of Ew, and of theories related to it,
some more notation and notions are needed:

the lower-case X,¥,z,... denote, from now on, elements
of S while the upper-case X,Y,Z,... = its subsets;

as a Tp-name of a §-formula ¢ 1its S-substitution is
taken; where by an S=substitution of a W-formula we mean
any expression resulting from ¢ after all its sentential
variables are replaced with some of the variables X,¥,Z,s.s,
provided that the same-shaped sentential variables are re-
placed with the same-shaped from among X,J,Z,.e¢.

essential variable .of an S-substitution of ¢ 1is defined
analogously to that of ¢ itself, i,a.

a variable x 1is an essentlial one of an S~substitution
of a W-formula ¢ 1ff a sentential variable p replaced
in ¢ by x 1s an essential one of ¢.
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The fo}lowing expregsions are the axioms of _'I;W:

™. §=3%, -

T2, XgCnXcS,

T3, €nCnX = CnX,

T4. if Xc Y, then CnXcCnY,

TS5, 1if xe CnX, then there exists Y, a finite subset

of X such that xe Cny,

T6e X=>J, XAY, ~X€S,

T7. x=>7yeCnX iff yecCn(xu{x}),

™. Cn{x,3} = Cn{x/\y},

T9. Cn{x,~x} = S,

710, x=>ye¢ CnX 1iff Cn{XU {x/\(ygwy)}) = S,

T11. if Con{pAa~y}= S, thengp=> ye CnA,

T12, if Cn{X,pa~g¢} = 5, then X=>(p=>y)eCnA,
where ¢, y, and X are S-substitutions of W-formulas suca
that in thd scheme T11 every essential variable of y is
this of ¢, and in T12 every essential variable of y is
this of X .

It is known (see [1]) that Ty is strongly adequate (see [3))
to W, 1.0, in g‘w ohe may prove that all S~substitutions of the
axioms of W are in Cn A and one may also prove every expression
obtained from any of the axioms T1-T12 by exchanging every
odcurence of Cn with an. where an is the oconsequence func-
tion determined by W.

Now, let g“;v be the theory resulting from gw by replacing
the axioms T9 and T10, with the followlng single ones

79, xeCnX 1iff Cn(xu{x-_—>~x}) = S,
and by omitting the scheme T12,

Theoren 2, The theories Iy and 2& are equivalent
to each other.

The proof consists of three lemmas on T, the theoxy ob-
tained from Ty by omitting the axioms T9, T10,and the sche~-
mas T11, T12.
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Theories of deductive systems 7

Lemma 1.

i. by X€ CnX 1ff Cn(XU {x}) = ocnXx,
i1, ,% if xeCnX and x=ye CnX, then ye CnX,
1ii, T Cn{x,~x} = Cn{x, x=> ~x}e

This is an easy consequencs of T2, T3, T4, and T7.
Lemma 2.
i—T-(Cn{x,~x} = S and (x=>yeCnX 1ff Cn(Xu{xA(y=> ~y)}) =S))

iff (xeCnX iff cn(XU{x= ~x}) = S).

In other words, Iy ({(T9 and T10) iff T9’').

Proof. Pirst, suppose
cn{x,~x} = 8§
and
x=>yeCnX iff Ca(XU{xA(y=>~7)} =5,
and let xe CnX. Then obviously

xeCn(IU{xa ~x}),

hence by Lemma 1 1i.
~xeCn(XU {x-» ~x})e
Thus
S = On{x, ~x}c Cn(XU {x=> ~1x}),
and
on(Xu {x==~x}) = 8

follows., This gives the “"only if" part of 79°,
To prove the "if" part of it let
cn(Xu {x== ~ x}) = S.

Then
xeCn(XU {x= ~x}),

80 T7 yields that
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4 (x== ~Xx)=>xeCnX,
Since by T8 and Lemma 1 1ii.
X, ~X € Cn{((x=> ~X)= X) A (x=>~x)}
holds, thus

Cn{((x:-vx):x)/\(X$~x)} = S,

Whenoe by T10
({x= ~x)=> x)=xeCn A,

and all the more

({x=>~x)=>x)=> xe CnX.

Now, use 4., and Lemma 1 ii. to get xe¢ CnX,
To end ths proof, suppose

xeCnX iff Cn(XU{x=>~x}) = S,

Since x¢ Cn{x}, so by assumption
Cn{x,x=>~x} = S,

This, together with Lemma 1 iii., gives
Cn{x, ~x} = S.
Finally, since by assumption again,
yeCn(xu{x}) 4iff cCn(Xu {x,y=.~y}) = S
thus 77 and T8 yield
*=>ye CnX iff Ca(XU {xAly=~ y)}) = 8,

and we are done.
Lemma 3e
i. T11

ii. T12

112,
1.

W3] 3
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Proof. i. Let ¢, y, and X be such S-substitu-
tions of formulas of W that the antecedent of T12 holds, i.e.
that every essential variable of y is also this of X , and
that

cafx, ¢ A ~y}= S.
Then by T8
Qn{(XA¢)A~\y}= Se

Morsover, the definition of essential variable of an S-substi-
tuticn of a W-formula, and assumption on these of Yy imply
that every essential variable of y 1is an essential -one of
XA(/). Thus T11 may be applied with XA()o instead of ¢ to
receive

XAp=>yecCnA,
which is, equivalent in T to
X=(p=>yleCnA,

So, the proof of i. is completed.
ii, Now, let ¢ and y be suck that the antecedent of T11
holds., Since

p=(p=yleCn A 1iff (p=>yleCnA
and
Cn{(,o, g)x\w\y}: Cn{(p/\~w}
are provable in T, thus to get

p=>yeCnA

it suffices to take ¢ for X in T12. Details are left to
the reader.

Now, it is easy to ses that Theorem 2 is an immediate
consequence of the above lemmas, So, the theory g‘;v, being
gimpler than EW’ is still strongly adequate to W. Lemma 3
makes it sure that the same holds for the theory resulting
from T, after the scheme T11 is replaced by T12 in it.
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Since in both theories, El and 2&, the notion of essen-
tial variable, external of these, is equally important, the
guestion arises if it is possible to define a theory of de~-
duotive systems, strongly adequate to W not using that notion,.
In what follows, the positive answer to this question is given.

Let Ty be the theory obtained from EV'J by replacing the
scheme T11 with the followling three axioms:

T10'. Cn{(~x=ax)%x, (~y=y)=>y} =

caf{(~ (xA3)=>(xAy))=>xA73},

11 . Cn{'v(x==-y)=>(x=>y)} = Cn{x:y},

™M2'. Cn{~~x)} = cnfx}.

In this theory one may prove that all S~substitutions
of the axioms of W are elements of CnA. If, moreover, 2& is
extended by adding a definition of an, the consequence func-
tion determined by the derivability in W, then in such a theo-
Ty one may prove &ll the expressions obtained from the axioms
T1 - 78 and T9' - 712" by replacing COn with Cny, Easy proofs
of these remarks are omitted,

The above proves the following

Theorem 3. The theory Iy is strongly adequate
to W.
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