

Adam Morawiec, Krystyna Piróg-Rzepecka

THEORIES OF DEDUCTIVE SYSTEMS EQUIVALENT TO T_W

This note is to present some recent improvements in a sentential calculus named W, and, mainly, in a theory of deductive systems, strongly adequate to it named T_W. Therefore, only indispensable definitions and theorems of earlier papers are quoted here; a full survey of previous results may be found in [2]. There is a comprehensive bibliography also there. Finally, present notation and terminology are those of [2] as well.

By the system W we mean the following sentential calculus given axiomatically:

its primitive terms are functors \Rightarrow , \wedge , and \sim , standing for implication, conjunction, and negation, respectively;

its axioms - the expressions denoted with the functors and sentential variables p , q , r :

- A1. $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$,
- A2. $p \Rightarrow (q \Rightarrow p)$,
- A3. $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$,
- A4. $p \wedge q \Rightarrow p$,
- A5. $p \wedge q \Rightarrow q$,
- A6. $p \Rightarrow (q \Rightarrow p \wedge q)$,
- A7. $p \Rightarrow (\sim p \Rightarrow q)$,

The theory T_W has been presented in [1]. The results dealt here with were announced first at the Conference on Universal Algebra held at the Pedagogical University in Opole (Jarmołtowek), May 23-27, 1984.

A8. $\sim(\sim p) \Rightarrow p$,
 A9. $p \Rightarrow \sim(\sim p)$,
 A10. $p \Rightarrow ((q \Rightarrow \sim q) \Rightarrow \sim(p \Rightarrow q))$,
 A11. $\sim(p \wedge q) \Rightarrow \sim(q \wedge p)$,
 A12. $\sim(p \wedge q) \Rightarrow ((p \Rightarrow \sim p) \Rightarrow \sim p)$,
 A13. $p \wedge \sim q \Rightarrow \sim(p \wedge q)$,
 A14. $\sim p \wedge \sim q \Rightarrow \sim(p \wedge q)$;

and its rules of inference - the modus ponens for \Rightarrow and the substitution rule.

Subsequently, the notions of formula of W (or W-formula), theorem of W, provability, and derivability in W, are defined in the usual way.

a. The system W is equivalent to the sentential calculus determined by the three-valued matrix:

$$\underline{M}_3 = \langle \{1, 0, 1/2\}, \{1\}, \Rightarrow, \wedge, \sim \rangle,$$

with functions \Rightarrow, \wedge , and \sim defined by the truth-tables:

\Rightarrow	1	0	1/2	\wedge	1	0	1/2	\sim	
1	1	0	0	1	1	0	1/2	1	0
0	1	1	1	0	0	0	1/2	0	1
1/2	1	1	1	1/2	1/2	1/2	1/2	1/2	1/2

In previous considerations on W the following notion of essential variable of a formula of W has been an important one:

if the formula is a sentential variable, this variable is its only essential one;

if the formula is of the form $\sim\varphi$, then its all and only essential variables are these of φ ;

if the formula is of the form $\varphi \wedge \psi$, then its all and only essential variables are both these of φ and of ψ ;

no variable is an essential one of $\varphi \Rightarrow \psi$.

This notion has been used in constructing a suppositional system of W, a theory of deductive systems, strongly adequate to it, and in describing classes of these two-valued tautologies, which are also \underline{M}_3 -tautologies.

It appears that the property "to be an essential variable of a formula", though obviously external of \mathbb{W} , may be, in some sense, expressed in it. Before the appropriate statement is given, let us quote theorems from [2] used later in its proof:

b. For every formula φ of \mathbb{W} and every valuation h in \mathbb{M}_3 , if $h(\varphi) = 1/2$, then there exists an essential variable p of φ such that $h(p) = 1/2$.

c. A variable p is an essential one of φ iff for every valuation h in \mathbb{M}_3 , $h(p) = 1/2$ implies $h(\varphi) = 1/2$.

The following remark is also helpful for the proof:

If p is a sentential variable and h - a valuation in \mathbb{M}_3 , then

$$1. \quad h(\neg p \Rightarrow p) = \begin{cases} 1 & \text{iff } h(p) \neq 0 \\ 0 & \text{iff } h(p) = 0, \end{cases}$$

and

$$2. \quad h((\neg p \Rightarrow p) \Rightarrow p) = \begin{cases} 1 & \text{iff } h(p) \neq 1/2 \\ 0 & \text{iff } h(p) = 1/2. \end{cases}$$

Given $\varphi_1, \dots, \varphi_k$ formulas of an axiom system L . " $\varphi_1, \dots, \varphi_k \vdash_L$ " denotes the predicate of derivability from the set $\{\varphi_1, \dots, \varphi_k\}$ in L and " \vdash_L " denotes the predicate of provability in it, in what follows.

Theorem 1. If φ and ψ are arbitrary formulas of \mathbb{W} , then every essential variable of ψ is an essential one of φ iff

$$\frac{\vdash}{\mathbb{W}}((\neg \varphi \Rightarrow \varphi) \Rightarrow \varphi) \Rightarrow ((\neg \psi \Rightarrow \psi) \Rightarrow \psi).$$

Proof. Given φ and ψ formulas of \mathbb{W} , it is enough, by a., to prove the following:

every essential variable of ψ is this of φ iff

$$((\neg \varphi \Rightarrow \varphi) \Rightarrow \varphi) \Rightarrow ((\neg \psi \Rightarrow \psi) \Rightarrow \psi) \quad \text{is } \mathbb{M}_3\text{-tautology.}$$

By way of contradiction, assume first that every essential variable of ψ is an essential one of φ , and that there is a valuation h in \mathbb{M}_3 such that

$$h((\neg\varphi \Rightarrow \varphi) \Rightarrow \varphi) \Rightarrow ((\neg\psi \Rightarrow \psi) \Rightarrow \psi) \neq 1.$$

Then by the truth-table of \Rightarrow

$$h((\neg\varphi \Rightarrow \varphi) \Rightarrow \varphi) = h(\neg\psi \Rightarrow \psi) = 1$$

and $h(\psi) \neq 1$, hence, by 1. and 2.,

$$3. \quad h(\varphi) \neq 1/2 \quad \text{and} \quad h(\psi) = 1/2.$$

Now, use b. to get such an essential variable p of ψ that $h(p) = 1/2$; by assumption, p is also an essential variable of φ , so by c. $h(\varphi) = 1/2$, which contradicts 3.

Suppose now that there exists p , an essential variable of ψ not being an essential one of φ . Then by b. and c. for h , a valuation in M₃ that takes the value 1/2 for p only

$$h(\psi) = 1/2 \quad \text{and} \quad h(\varphi) \neq 1/2.$$

Thus 2. and the table of \Rightarrow yield

$$h((\neg\varphi \Rightarrow \varphi) \Rightarrow ((\neg\psi \Rightarrow \psi) \Rightarrow \psi)) = 0,$$

which ends the proof.

We conclude this section with some consequences of the above theorem.

Corollary 1. For every formula φ of W and every sentential variable p

i. p is an essential variable of φ iff

$$\vdash_{\overline{W}} ((\neg\varphi \Rightarrow \varphi) \Rightarrow (\neg p \Rightarrow p) \Rightarrow p);$$

ii. no variable is an essential one of φ iff

$$\vdash_{\overline{W}} (\neg\varphi \Rightarrow \varphi) \Rightarrow \varphi.$$

Corollary 2. For $\varphi_1, \varphi_2, \dots, \varphi_n, \psi$, arbitrary formulas of W, every essential variable of ψ is an essential one of at least one of $\varphi_1, \varphi_2, \dots, \varphi_n$ iff

$$\begin{aligned}
 & \vdash_{\underline{W}} ((\neg\varphi_1 \Rightarrow \varphi_1) \Rightarrow \varphi_1) \Rightarrow \\
 & \Rightarrow (\dots \Rightarrow ((\neg\varphi_n \Rightarrow \varphi_n) \Rightarrow \varphi_n) \Rightarrow ((\neg\psi \Rightarrow \psi) \Rightarrow \psi)) \dots).
 \end{aligned}$$

A suppositional system of \underline{W} , as described in [2], may be now modified and, in fact, simplified with Corollary 2, but we are not going into this here.

The rest of the paper concerns the theory of deductive systems $\underline{T}_{\underline{W}}$ presented in [1]. This theory is an extension of Zermelo-Fraenkel set theory therefore only the new terms and axioms are discussed below.

Primitive terms of $\underline{T}_{\underline{W}}$ are

$$S, Cn, \Rightarrow, \wedge, \sim,$$

with S - a set, Cn - a function taking the power set $P(S)$ into itself, and $\Rightarrow, \wedge, \sim$ - names for the corresponding primitive terms of \underline{W} . (The use of the same notation for those and their names does not, however, lead to any clashes).

To formulate axioms of $\underline{T}_{\underline{W}}$, and of theories related to it, some more notation and notions are needed:

the lower-case x, y, z, \dots denote, from now on, elements of S while the upper-case X, Y, Z, \dots - its subsets;

as a $\underline{T}_{\underline{W}}$ -name of a \underline{W} -formula φ its S -substitution is taken; where by an S -substitution of a \underline{W} -formula we mean any expression resulting from φ after all its sentential variables are replaced with some of the variables x, y, z, \dots , provided that the same-shaped sentential variables are replaced with the same-shaped from among x, y, z, \dots

essential variable of an S -substitution of φ is defined analogously to that of φ itself, i.e.

a variable x is an essential one of an S -substitution of a \underline{W} -formula φ iff a sentential variable p replaced in φ by x is an essential one of φ .

The following expressions are the axioms of $T_{\underline{W}}$:

T1. $\bar{\bar{S}} = X_0$,

T2. $X \subseteq CnX \subseteq S$,

T3. $CnCnX = CnX$,

T4. if $X \subseteq Y$, then $CnX \subseteq CnY$,

T5. if $x \in CnX$, then there exists Y , a finite subset of X such that $x \in CnY$,

T6. $x \Rightarrow y, x \wedge y, \sim x \in S$,

T7. $x \Rightarrow y \in CnX$ iff $y \in Cn(X \cup \{x\})$,

T8. $Cn\{x, y\} = Cn\{x \wedge y\}$,

T9. $Cn\{x, \sim x\} = S$,

T10. $x \Rightarrow y \in CnX$ iff $Cn(X \cup \{x \wedge (y \Rightarrow \sim y)\}) = S$,

T11. if $Cn\{\varphi \wedge \sim \psi\} = S$, then $\varphi \Rightarrow \psi \in Cn\Lambda$,

T12. if $Cn\{\chi, \varphi \wedge \sim \psi\} = S$, then $\chi \Rightarrow (\varphi \Rightarrow \psi) \in Cn\Lambda$,

where φ , ψ , and χ are S -substitutions of \underline{W} -formulas such that in the scheme T11 every essential variable of ψ is this of φ , and in T12 every essential variable of ψ is this of χ .

It is known (see [1]) that $T_{\underline{W}}$ is strongly adequate (see [3]) to \underline{W} , i.e. in $T_{\underline{W}}$ one may prove that all S -substitutions of the axioms of \underline{W} are in $Cn\Lambda$ and one may also prove every expression obtained from any of the axioms T1-T12 by exchanging every occurrence of Cn with $Cn_{\underline{W}}$, where $Cn_{\underline{W}}$ is the consequence function determined by \underline{W} .

Now, let $T'_{\underline{W}}$ be the theory resulting from $T_{\underline{W}}$ by replacing the axioms T9 and T10, with the following single one:

T9'. $x \in CnX$ iff $Cn(X \cup \{x \Rightarrow \sim x\}) = S$,

and by omitting the scheme T12.

Theorem 2. The theories $T_{\underline{W}}$ and $T'_{\underline{W}}$ are equivalent to each other.

The proof consists of three lemmas on T , the theory obtained from $T_{\underline{W}}$ by omitting the axioms T9, T10, and the schemes T11, T12.

Lemma 1.

- i. $\frac{}{\text{I}} x \in \text{Cn}X \text{ iff } \text{Cn}(X \cup \{x\}) = \text{Cn}X,$
- ii. $\frac{}{\text{I}} \text{ if } x \in \text{Cn}X \text{ and } x \Rightarrow y \in \text{Cn}X, \text{ then } y \in \text{Cn}X,$
- iii. $\frac{}{\text{I}} \text{Cn}\{x, \sim x\} = \text{Cn}\{x, x \Rightarrow \sim x\}.$

This is an easy consequence of T2, T3, T4, and T7.

Lemma 2.

$$\frac{}{\text{I}} (\text{Cn}\{x, \sim x\} = S \text{ and } (x \Rightarrow y \in \text{Cn}X \text{ iff } \text{Cn}(X \cup \{x \wedge (y \Rightarrow \sim y)\}) = S))$$

$$\text{iff } (x \in \text{Cn}X \text{ iff } \text{Cn}(X \cup \{x \Rightarrow \sim x\}) = S).$$

In other words, $\frac{}{\text{I}} ((\text{T9 and T10}) \text{ iff } \text{T9}').$

Proof. First, suppose

$$\text{Cn}\{x, \sim x\} = S$$

and

$$x \Rightarrow y \in \text{Cn}X \text{ iff } \text{Cn}(X \cup \{x \wedge (y \Rightarrow \sim y)\}) = S,$$

and let $x \in \text{Cn}X$. Then obviously

$$x \in \text{Cn}(X \cup \{x \Rightarrow \sim x\}),$$

hence by Lemma 1 iii.

$$\sim x \in \text{Cn}(X \cup \{x \Rightarrow \sim x\}).$$

Thus

$$S = \text{Cn}\{x, \sim x\} \subseteq \text{Cn}(X \cup \{x \Rightarrow \sim x\}),$$

and

$$\text{Cn}(X \cup \{x \Rightarrow \sim x\}) = S$$

follows. This gives the "only if" part of T9'.

To prove the "if" part of it let

$$\text{Cn}(X \cup \{x \Rightarrow \sim x\}) = S.$$

Then

$$x \in \text{Cn}(X \cup \{x \Rightarrow \sim x\}),$$

so T7 yields that

$$4. \quad ((x \Rightarrow \sim x) \Rightarrow x) \in CnX.$$

Since by T8 and Lemma 1 ii.

$$x, \sim x \in Cn\{((x \Rightarrow \sim x) \Rightarrow x) \wedge (x \Rightarrow \sim x)\}$$

holds, thus

$$Cn\{((x \Rightarrow \sim x) \Rightarrow x) \wedge (x \Rightarrow \sim x)\} = S.$$

Whence by T10

$$((x \Rightarrow \sim x) \Rightarrow x) \Rightarrow x \in Cn \wedge,$$

and all the more

$$((x \Rightarrow \sim x) \Rightarrow x) \Rightarrow x \in CnX.$$

Now, use 4. and Lemma 1 ii. to get $x \in CnX$.

To end the proof, suppose

$$x \in CnX \text{ iff } Cn(X \cup \{x \Rightarrow \sim x\}) = S.$$

Since $x \in Cn\{x\}$, so by assumption

$$Cn\{x, x \Rightarrow \sim x\} = S.$$

This, together with Lemma 1 iii., gives

$$Cn\{x, \sim x\} = S.$$

Finally, since by assumption again,

$$y \in Cn(X \cup \{x\}) \text{ iff } Cn(X \cup \{x, y \Rightarrow \sim y\}) = S$$

thus T7 and T8 yield

$$x \Rightarrow y \in CnX \text{ iff } Cn(X \cup \{x \wedge (y \Rightarrow \sim y)\}) = S,$$

and we are done.

Lemma 3.

1. $T11 \xrightarrow{T} T12$,
- ii. $T12 \xrightarrow{T} T11$.

Proof. i. Let φ , ψ , and χ be such S-substitutions of formulas of \underline{W} that the antecedent of T12 holds, i.e. that every essential variable of ψ is also this of χ , and that

$$Cn\{\chi, \varphi \wedge \sim\psi\} = S.$$

Then by T8

$$Cn\{(\chi \wedge \varphi) \wedge \sim\psi\} = S.$$

Moreover, the definition of essential variable of an S-substitution of a \underline{W} -formula, and assumption on these of ψ imply that every essential variable of ψ is an essential one of $\chi \wedge \varphi$. Thus T11 may be applied with $\chi \wedge \varphi$ instead of φ to receive

$$\chi \wedge \varphi \Rightarrow \psi \in Cn\Lambda,$$

which is, equivalent in \underline{T} to

$$\chi \Rightarrow (\varphi \Rightarrow \psi) \in Cn\Lambda.$$

So, the proof of i. is completed.

ii. Now, let φ and ψ be such that the antecedent of T11 holds. Since

$$\varphi \Rightarrow (\varphi \Rightarrow \psi) \in Cn\Lambda \quad \text{iff} \quad (\varphi \Rightarrow \psi) \in Cn\Lambda$$

and

$$Cn\{\varphi, \varphi \wedge \sim\psi\} = Cn\{\varphi \wedge \sim\psi\}$$

are provable in \underline{T} , thus to get

$$\varphi \Rightarrow \psi \in Cn\Lambda$$

it suffices to take φ for χ in T12. Details are left to the reader.

Now, it is easy to see that Theorem 2 is an immediate consequence of the above lemmas. So, the theory $\underline{T}'_{\underline{W}}$, being simpler than $\underline{T}_{\underline{W}}$, is still strongly adequate to \underline{W} . Lemma 3 makes it sure that the same holds for the theory resulting from $\underline{T}'_{\underline{W}}$ after the scheme T11 is replaced by T12 in it.

Since in both theories, $T_{\underline{W}}$ and $T''_{\underline{W}}$, the notion of essential variable, external of these, is equally important, the question arises if it is possible to define a theory of deductive systems, strongly adequate to \underline{W} not using that notion. In what follows, the positive answer to this question is given.

Let $T''_{\underline{W}}$ be the theory obtained from $T'_{\underline{W}}$ by replacing the scheme T11 with the following three axioms:

$$T10'. \quad Cn\{(\sim x \Rightarrow x) \Rightarrow x, (\sim y \Rightarrow y) \Rightarrow y\} =$$

$$Cn\{(\sim (x \wedge y) \Rightarrow (x \wedge y)) \Rightarrow x \wedge y\},$$

$$T11'. \quad Cn\{\sim (x \Rightarrow y) \Rightarrow (x \Rightarrow y)\} = Cn\{x \Rightarrow y\},$$

$$T12'. \quad Cn\{\sim(\sim x)\} = Cn\{x\}.$$

In this theory one may prove that all S-substitutions of the axioms of \underline{W} are elements of $Cn\Lambda$. If, moreover, $T''_{\underline{W}}$ is extended by adding a definition of $Cn_{\underline{W}}$, the consequence function determined by the derivability in \underline{W} , then in such a theory one may prove all the expressions obtained from the axioms T1 - T8 and T9' - T12' by replacing Cn with $Cn_{\underline{W}}$. Easy proofs of these remarks are omitted.

The above proves the following

Theorem 3. The theory $T''_{\underline{W}}$ is strongly adequate to \underline{W} .

REFERENCES

- [1] K. Piróg-Rzepecka : Teoria systemów dedukcyjnych silnie adekwatna względem rachunku zdań \underline{W} , Zeszyty Nauk. Wyż. Szkoły Ped. w Opolu, Mat. 19 (1976).
- [2] K. Piróg-Rzepecka : Systemy nonsense-logiczne, PWN, Warszawa-Wrocław, 1976.
- [3] W.A. Pogorzelski : Adekwatność teorii systemów dedukcyjnych względem rachunków zdaniowych, Studia Logica, 13 (1962).

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY,
45-052 OPOLE, POLAND
Received November 11, 1985.