

Jana Galanová

SOME PROPERTIES OF TENSOR PRODUCTS OF SEMIGROUPS

1. Introduction

Let \mathcal{J} be the variety of all semigroups, $\mathcal{J}\mathcal{C}$ be the variety of all commutative semigroups and \mathcal{G} be the variety of all groups.

The tensor product in the class $\mathcal{J}\mathcal{C}$ have been defined by T. Head [12]. The first properties of this tensor product have been investigated in a series of papers [3, 6, 12].

The tensor product in the class \mathcal{J} have been defined by P.A.Grillet [5] in 1969. The tensor product in a variety of algebras have been defined by G.A.Fraser [4] in 1976.

In this paper we will interested in relation between the tensor products in $\mathcal{J}\mathcal{C}$, \mathcal{G} and \mathcal{J} and similarities and differences of properties of tensor products in \mathcal{J} and $\mathcal{J}\mathcal{C}$.

Definition 1. Let $A, B \in \mathcal{J}$ and \mathcal{T} be a variety of algebras. Let $A \times B$ be the Cartesian product of A and B . An algebra $S \in \mathcal{T}$ is called a tensor product of A and B in \mathcal{T} if there is a bihomomorphism $\omega: A \times B \rightarrow S$, such that S is generated $\omega(A \times B)$ and for any $C \in \mathcal{T}$ and a bihomomorphism $\beta: A \times B \rightarrow C$ there exists a homomorphism $\alpha: S \rightarrow C$, such that $\beta = \omega\alpha$.

If $\mathcal{T} = \mathcal{J}$ then the tensor product A and B is denoted by $A \otimes B$ and $\omega(a, b) = a \otimes b$.

This paper is based on the lecture presented at the Conference on Universal Algebra held at the Pedagogical University in Opole (Jarnołtowski), May 23-25, 1985.

The tensor product of A in B in $\mathcal{I}\mathcal{C}$ we will call c-tensor product and we will denote it $A \otimes^c B$. The image of $(a, b) \in A \times B$ under $\omega: A \times B \rightarrow A \otimes^c B$ we will write as $a \otimes^c b$.

The tensor product of groups A and B in \mathcal{G} we will denote as $A \otimes^g B$.

By the Definition 1 follows next theorem in \mathcal{J} :

Theorem 1 ([5]): For any $A, B \in \mathcal{J}$ the semigroup $A \otimes B \cong (A \times B)^*/\tau$, where $(A \times B)^*$ is a free semigroup on $A \times B$ and τ is the smallest congruence over the relation τ_0 , which is defined on $(A \times B)^*$ in this way:

For any $a, c \in A$, $b, d \in B$ the conditions:

$(ac, b) \tau_0 (a, b)(c, b)$
 $(a, bd) \tau_0 (a, b)(a, d)$ hold.

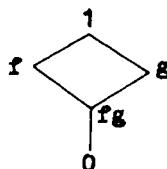
The congruence τ will be called the tensor congruence (on $(A \times B)^*$). The class of τ which contains the element $(a_1, b_1) \dots (a_n, b_n) \in (A \times B)^*$ is $(a_1 \otimes b_1) \dots (a_n \otimes b_n) \in A \otimes B$.

The c-tensor product is given analogously. If $A, B \in \mathcal{I}\mathcal{C}$, then $A \otimes^c B \cong (A \times B)^{*c}/\tau$, where $(A \times B)^{*c}$ is the free commutative semigroup on $A \times B$. The congruence τ and the element $(a_1 \otimes^c b_1) \dots (a_n \otimes^c b_n) \in A \otimes^c B$ are given in the same way.

Example 1. Let G be the two-elements semigroup $\{0, 1\}$ with a zero element 0 and a unique element 1 .

By [5] the tensor product $G \otimes G \cong \{0, 1\} \cup C$, where C is the semigroup generating by elements f, g with identities $ff = f$, $gg = g$ and 0 is a zero element of $G \otimes G$ and 1 is a unique element of $G \otimes G$.

The c-tensor product $G \otimes^c G \cong D$, where $D = \{0, 1, f, g, fg\}$ is the next lower semilattice



Definition 2. A semigroup A is called N-semigroup, if for any $x, y \in A$ and any natural number $n \in \mathbb{N}$ the condition $(xy)^n = x^n y^n$ holds.

Let A be a semigroup. Then we will denote:

- $C(A)$ - the greatest commutative homomorphic image of A
- $E(A)$ - the greatest idempotent homomorphic image of A
- $N(A)$ - the greatest homomorphic image of A which is an N -semigroup
- E - a one element semigroup
- F - a free semigroup with one generator
- G - the semigroup by Example 1
- X^* - a free semigroup on a set X
- X^{*c} - a free commutative semigroup on a set X .

Example 2. ([5]). Let A be a semigroup, then $A \otimes E \cong E(A)$ and $A \otimes F \cong N(A)$ hold.

Which is a relation between \otimes^c , \otimes^g and \otimes ?

Theorem 2 ([6]): Let A, B be commutative semigroups, then $A \otimes^c B \cong C(A \otimes B)$ holds.

Theorem 3 ([5]): Let A, B be groups, then $A \otimes^g B \cong A \otimes B$ holds.

Theorem 3' ([6]): Let A, B be commutative groups, then $A \otimes^c B$ is the same that the tensor product commutative groups A and B .

Let us remark, that it is not known when $A \otimes^v B \cong A \otimes^r B$, if V is a subvariety of \mathcal{J} and $A, B \in V$.

Example 3: Let A be a commutative semigroup, then

$$A \otimes^c E \cong C(A \otimes E) \cong C(E(A)) \cong E(A)$$

$$A \otimes^c F \cong C(A \otimes F) \cong C(N(A)) \cong C(A) \cong A.$$

2. Some properties of \otimes and \otimes^c

The functors \otimes^c on $\mathcal{J}\mathcal{C}$ and \otimes on \mathcal{J} have interesting properties. We will mention to some of their. Let us remark that in most of papers about tensor products of semigroups have been studied the c -tensor product. The tensor product in \mathcal{J} have been studied only in [5, 9, 10, 11, 25, 26]. In the References is given the most of papers about tensor products of semigroups.

Theorem 4 ([5]): a) For every $A, B \in J$ the commutative law $A \otimes B \cong B \otimes A$ holds.

b) There exist semigroups $A, B, C \in J$, such that $(A \otimes B) \otimes C \not\cong A \otimes (B \otimes C)$.

For example, if $A = B = G$ and $C = E$, then by Example 2 we have

$$(G \otimes G) \otimes E \cong E(G \otimes G)$$

$$G \otimes (G \otimes E) \cong G \otimes E(G) \cong G \otimes G$$

and by Example 1 $G \otimes G$ is not a idempotent semigroup. That means $(G \otimes G) \otimes E \not\cong G \otimes (G \otimes E)$.

There are example where the associative law holds. For example $S \otimes (S \otimes S) \cong (S \otimes S) \otimes S$ for any semigroup S by Theorem 4a.

Theorem 4'. ([6]): If $A, B, C \in J$, then $A \otimes^c B \cong B \otimes^c A$ and $(A \otimes^c B) \otimes^c C \cong A \otimes^c (B \otimes^c C)$ hold.

By Example 1, the tensor product \otimes of finite semigroups need not be a finite semigroup and the tensor product \otimes of idempotent semigroups need not be a idempotent semigroup. It is not known any condition for preservation of these properties with the tensor product.

Theorem 6 ([1]): If $A, B \in J$ and $\text{card}(A - A^2) > 1$ and $\text{card}(B - B^2) > 1$, then $A \otimes B$ is infinite non-commutative semigroup.

It is the following situation for \otimes^c :

Theorem 6': a) If $A, B \in J$, A is a finite semigroup and B is a finite generated semigroup, then $A \otimes^c B$ is finite.

b) If $A, B \in J$ and A is a idempotent semigroup, then $A \otimes^c B$ is a idempotent semigroup.

Theorem 6'a is proved in [6]. Theorem 6'b follows from commutativity of $A \otimes^c B$ and from the fact $(a \otimes^c b)^2 = a^2 \otimes^c b = a \otimes^c b$ for $a \in A, b \in B$.

Now we are interested in codomains of \otimes and \otimes^c .

Theorem 7 ([10]): Let S be a semigroup, $\text{card}(S-S^2) > 1$ and there exists for every $x, y \in S-S^2$, $x \neq y$, a natural number $n \in \mathbb{N}$, $n > 1$, such that $(xy)^n \neq x^n y^n$. Then S is not a tensor product of semigroups.

By [10] from Theorem 7 follows that there exist infinitely many semigroups, finite and infinite, which are not tensor products \otimes of semigroups. For example, any free semigroup X^* , where $\text{card}X > 1$, is not a tensor product of semigroups.

Finite semigroups, which are not a tensor product of semigroups, we can construct in this way:

Let X^* be a free semigroup, $1 < \text{card}X < \infty$ and J be a ideal of all words of X^* the lenght of which is greater then a fixed natural number k , $k \geq 4$. Then the Rees factor semigroup X^*/J is not a tensor product of semigroups.

There exist classes of semigroups which are a tensor product of semigroups.

Theorem 8 ([10]): Every N -semigroup is a tensor product of some semigroups.

Because any commutative semigroup is an N -semigroup, then the class of all commutative semigroups is obtain in the codomain of \otimes .

It is not known any necessary and sufficient condition for the fact, if a semigroup is an element of the codomain of \otimes .

In this point of view the situation is simply for c -tensor product of commutative semigroups.

Theorem 7' ([10]): Every commutative semigroup is a c -tensor product of some commutative semigroups.

3. Classes of the tensor congruence

Some investigations of tensor products of semigroups given the question, when are two elements of a tensor product of semigroups different. Some results of this problem in J and $J\zeta$ is given in [9, 10].

Theorem 9 ([10]): Let $A, B \in J$ and $a_1, \dots, a_n \in A-A^2$, $b_1, \dots, b_n \in B-B^2$, where $a_i \neq a_{i+1}$, $b_i \neq b_{i+1}$ for

$i=1, \dots, n-1$. The class $(a_1 \otimes b_1) \dots (a_n \otimes b_n)$ of the tensor congruence on $(A \times B)^*$ contains only unique element, namely $(a_1, b_1) \dots (a_n, b_n)$.

Remark. In special case $n=2$, if we have indecomposable elements a, b, c, d and $a, c \in A$, $b, d \in B$ then $a \otimes b \neq c \otimes d$ iff $(a, b) \neq (c, d)$ in $(A \times B)^*$.

Theorem 9' ([10]): Let $A, B \in \mathcal{J}\mathcal{C}$ and $a, c \in A$, $b, d \in B$ are indecomposable elements. Then $a \otimes^c b \neq c \otimes^c d$ iff $(a, b) \neq (c, d)$ in $(A \times B)^{*c}$.

Theorem 10 ([9]): If A, B are idempotent semigroups and $a, c \in A$, $b, d \in B$, then $a \otimes b \neq c \otimes d$ iff $(a, b) \neq (c, d)$ in $(A \times B)^*$.

Theorem 10 is a corollary of the next theorem:

Theorem 11 ([9]): Let $H(A)$ be an idempotent homomorphic image of $A \in \mathcal{J}$ and δ be that homomorphism. If $\delta(a_1 \dots a_n) \neq \delta(c_1 \dots c_m)$ for $a_1, \dots, a_n, c_1, \dots, c_m \in A$, then for all elements $b_1, \dots, b_n, d_1, \dots, d_m \in B$, $B \in \mathcal{J}$, is

$$(a_1 \otimes b_1) \dots (a_n \otimes b_n) \neq (c_1 \otimes d_1) \dots (c_m \otimes d_m).$$

It is clear, that the interesting case is $H(A) = E(A)$. By [5, Example 2.3] Theorem 11 is given only sufficient condition, not necessary.

Theorem 11' ([9]): Let $A, B \in \mathcal{J}\mathcal{C}$, $H(A)$ be an idempotent homomorphic image of A and δ be this homomorphism. If $\delta(a_1 \dots a_n) \neq \delta(c_1 \dots c_m)$ for $a_1, \dots, a_n, c_1, \dots, c_m \in A$, then for all elements $b_1, \dots, b_n, d_1, \dots, d_m \in B$ are

$$(a_1 \otimes^c b_1) \dots (a_n \otimes^c b_n) \neq (c_1 \otimes^c d_1) \dots (c_m \otimes^c d_m) \quad \text{in } A \otimes^c B.$$

If in Theorem 11 we have $H(A) = E(A)$, then we have some interesting corollaries:

Theorem 12. Let A be an idempotent semigroup and $B, C \in \mathcal{J}$. Then

- a) $A \otimes B \cong A \otimes E(B)$,
- b) $A \otimes B \cong A \otimes C$, if $E(B) \cong E(C)$.

Theorem 13. Let A be finite idempotent semigroup. Then a semigroup X is the solution of a equation $A \otimes X \cong A$ iff $\text{card}(X) = 1$.

In the special case we can take X equal of any group or a bicyclic semigroup.

REFERENCES

- [1] J.A. Anderson : The tensor product of semigroup with a union of groups, Semigroup Forum 8 (1974) 65-68.
- [2] J.E. Delaney : The tensor product of semilattices, Portugal. Math. 31 (1972) 193-202.
- [3] R. Fulp : Tensor and torsion products of semigroups, Pacific J. Math. 32 (1970) 685-696.
- [4] G.A. Fraser : Tensor products of semilattices and distributive lattices, Semigroup Forum 13 (1976) 178-184.
- [5] P.A. Grillet : The tensor product of semigroups, Trans. Amer. Math. Soc. 138 (1969) 267-280.
- [6] P.A. Grillet : The tensor product of commutative semigroups, Trans. Amer. Math. Soc. 138 (1969) 281-293.
- [7] P.A. Grillet : Interpolation properties and tensor product of semigroups, Semigroup Forum 1 (1970) 1962-1968.
- [8] P.A. Grillet : The tensor product of cancellative semigroups. Research supported by NSF grant GP-9004, Kansas State University 6.12.1969.
- [9] J. Galanová : Tenzorné proizvedenie polugruppy i polugruppy idempotentov, Math. Slovaca 32 (1982) No. 1, 55-60.
- [10] J. Galanová : Codomain of the tensor product of semigroups, Math. Slovaca 35 (1985) No. 1, 51-57.
- [11] J. Galanová : A note on indecomposable elements in the tensor product of semigroups. To appear.

- [12] T.J. Head : Homomorphisms of commutative semigroups as tensor maps, *J. Natur. Sci. and Math.* 7 (1976) 39-49.
- [13] T.J. Head : The tensor product of a group with a semigroup, *J. Natur. Sci. and Math.* 7 (1967) 155-159.
- [14] T.J. Head : The tensor product of semigroups with minimal ideals, *J. Natur. Sci. and Math.* 7 (1967) 161-165.
- [15] T.J. Head : Functor properties of semigroup tensor products, *J. Natur. Sci. and Math.* 7 (1967) 167-171.
- [16] T.J. Head : A direct limit representation for abelian groups with an application to tensor sequences, *Acta Math. Acad. Sci. Hung.* 18 (1967) 231-234.
- [17] T.J. Head : Problems and conjectures concerning tensor products of commutative semigroups, *J. Natur. Sci. and Math.* 8 (1968) 211-215.
- [18] T.J. Head : Tensor products and maximal subgroups of commutative semigroups, *Publ. Math. Debrecen* 16 (1969) 145-147.
- [19] T.J. Head, N. Kur o k i : Greatest regular images of tensor products of commutative semigroups, *Kodai Math. Rep.* 26 (1975) 132-136.
- [20] N. K i m u r a : Tensor products of semilattices, *Notices Amer. Math. Soc.* 17 (1970) 554.
- [21] N. Kur o k i : On the minimal group congruence on the tensor product of archimedean commutative semigroups, *Proc. Japan Acad.* 47 (1971) 305-308.
- [22] N. Kur o k i : Note on congruences on the tensor product of archimedean commutative semigroups, *Comen-tarii Math. Universitatis Sancti Pauli Tokyo* 20 (1972) 93-96.
- [23] N. Kur o k i : Certain fundamental congruences on the tensor product of commutative inverse semigroups, *Czechoslovak Math. J.* 23 (1973) 98.
- [24] A.M. N i k o l a e v : Tenzornee proizvedenie polugrupp. Voprosy sovremennoego analiza i algebry, II, Leningrad 1971, Ucen. Zap., 464.

- [25] L. Satko : Tenzornoe proizvedenie polugrupp i maximalnye polustrukturnye obrazy, Mat. Čas. 24 (1974) 239-246.
- [26] L. Satko : The tensor product of right groups, Math. Slovaca 26, No. 1 (1976) 57-61.

INSTITUTE OF MATHEMATICS, SLOVAK ACADEMY OF SCIENCES ,
842 19 BRATISLAVA, CZECHOSLOVAKIA
Received November 11, 1985.

