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EXTENSIONS OF INVERSE LOOPS

The paper consists of two parts, The firast one contains
necessary and suffioient conditions for extensions of inverse
loops. The seoond ons deals with mappings generating exten=~
sions of inverse loops,

The terms a left inverse loop and a right inverse loop
are used by Belousov [1]. The terminology concerning these
notions is not uniform, some authors use different termino=-
logy (of. [4])e

Notions as quasigroup, loop, subloop, normal subloop,
coset, quotient loop are used according to Bruck [2].

1. We start with the following definition,
Defindition 1 (ef.[3])e A loop) is said to
be an extension of a loop K by a loop L if the following
oonditions holds
(1) K is a normal subloop of the loop),
(i1) the quotient loop > /K and the loop L are isomorphic,
Let (3., o) be a loop, We define a mapping I 1, —=2
in the following way

(1) xoI{x) = 1

for er.

Ve shall often use the same letter I for a mapping of
type (1) in differsnt loops. The mapping I is a bijeotion
and 1(1) = 1,
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2 A. Chronowski

In the set Y. we define an operation ~lo by the formula

X 0y =2<&>20Y =X

for x,y,2 e .

An algebraic structure (X, ~'o) is a quasigroup but it
is not generally a-loop (cf. [1]).

In the set ). we define an operation / by the formula

xfy = z<>x "101(3) = 2

FOr X,742 €2, o
An algebraic structure (2., /) is8 a loop isotopie %o the
guasigroup (3, ~1o) (of. [1]). & triple (1dg, I, idz) is

an isotopy of (2., /) upon (3, =16). An identity of ths loop
(2., /) is an identity of the loop (2., °). If I and I, are
mappings of type (1) in the loops ()., o) and (2, /), res-

peotively, then I.l =1 ",
Let us notice that

x/y=12<>x "1oI(y) = g<>20I(y) = x

for X,¥,2 €2,
Further on we shall often omit the sign o in the loop

(3,0 ) writing xy and Y inetead of xoy and (2.s ©)e Thus,
x/y=3<>3 I{(y) =x

FOT X, 7,3 €2, o
Definition 2 (of. [1])e & loop (2., /) is

called a left inverse loop of a loop) .

Lemma 1 (ofs [1])e If (3, /) is a left inverse
loop of a loop), , then > is a left inverse loop of the
loop (2., /)e

Lemma 2, Let K and >, be loops. K is a normal
subloop of the loopd, if and only if the left imverse loop
(K, /) is a normal subloop of the left imvierse loop (3., /).
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Proof., (i) Let K be a normal subloop of the
loopd’ « The mapping I of type (1) is a bijection on the
set K. It is easy to check that (K, /) is a subloop of the
loop (3., /)e To show that {K, /) is a normsl subloop of the
loop (3., /) we are going %o prove the following conditionss
(a) x/ K=K/ x,

(b) x/ (y/ Kl =(x/73) /K,
(6) (K/x)/3=K/(x/73)

for x,ye ), »

{a) zex/K¢=>\/ z=x/k¢¢'\/zl(k) = x<>K 2 =
keK keK

Kxe=a(K 2)I(x) = (K x)I({x)<=K(2z I(x)) = Ke= k\/K zI{x)=
1€

k1©\/ z2 = k1 / x<=2e¢K / x.
k1eK

{v) Suppose that zex / (y / K) thenz =x / (y / k),
where ke K, Let us denote u =y 7/ k.

We get the following equivalences:
y/k=ue>ullk) =yand x / u=2<>2 I(u) = x. Thus
ukK=Ky=ulK I(y)) = u(K I(u)) =K I(y) = K I(u) =

= (z I(y))}K = {2z I(u))E = {z K)I(y) = x K:k,\/K (zk’)I(y) =
€

ZI(k1) =

/

-.-x=>\/ x/y=zk/:zx=(x/y)K:
kekK k1eK

=x/y=.k\e/Kz=(x/y)/k1=,~.ze(x/y)/K.

Suppose that 2¢(x / y) / K thenz = (x / y) / k for
some ke K, Let us denote u = x / ye.
We get the following equivalences:
x/y=u<s>ul(y) =xand u / k =2<>2 I(k) = ue Thuas
Kz = Ku=> K(2I(y)) = K(uI(y)) = Kx = 2(KI(y)) = Kx =
= k'\/K z(k'I(y)) =x. There existe a w ¢ ), such that I(w) =
€

= k'I(y) and so 2I{(w) = x that is z = x / w. Moreover, _

w(K I(w)) = (yK) I(y) =w([k(k'I(y))] = (yK) I(y)=>(wK)I(y) =

= (yK)I(y) =>wK = yK => \/ w I(k1) =y => \/ y / ky, = w,
k.‘ex k1eK

Since 2 = x /wand soz =x / (y / k1) for some k;€ K, that

iszex / (y / Ko
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The proof of (o) is similar,

{1i) Let (X, /) be a normal subloop of the left inverse
loop (2, /)

Using part (1) of this proof and Lemma 1 we obtain the
second part of the proof.

Lemma 3., Let K be a normal subloop of a loop), .
Then the lef%t inverse loop (2, /K, /) of the gquotient loop
Y. /K modulo K and the' quotient loop of the left inverse
loop (},, /) modulo (K, /) are identical,

Proof . At first, we shall show that x K = z/K for
an arbitrary xe ¥, . Indeed, ze x K<z K = x K <=
<> \/ z I(k) = X<=>\/ 3 =x / ke>3ex / K. Notlce that

I(x K) I{x)K for x Ke ):, /Ke In fact, (x K){I(x)K) =
= (x I{x))K = K,

In the quotient loop (3, /K, #) of the loop (D, /) modulo
(K, /) is defined an operation . in the followlng way

(xK) ¢ (yXK) = (x/ y)K

for arbitrary x K, y Ke 2 /K.
In the guotient loop 5. /K of the loop Y, modulo K is
defined an operation by the formnla

(x K) (y K} = (xy) K

for arbitrary x K, y K€ 2. /K.

We shall prove that the quotient loop (2,/K, ¢ ) and the
left inverse loop (2 /K, /) of the quotient loop, /K are
identiocal. Indeed, (x K) / (y K) = 2 K <>(2K)I(yK) = x K<>
=> (2 K)(I(y)K) = x K<> (zI(3)}K = x K@}e/x 21(y) =

=1k®>/1{(xk)/y=2©(x}{)/(yK)=zK~=>
€

<>(x/y) K=2 K forxK, yK, 2 Ke 2 /K,
Then, {x K} / (3 K)=(x/ y)K = (x X) ¢ (y K) for arbi-
trary x K, y Ke2, /K.
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1mma 4, Letd , and3] , be loops. 4 mapping
f: 2,1 - 22 is an isomorphism of the loops 2'1 and 22
if and only if the mapping f is an isomorphism of the left
inverse loops (21, /) and (2-2. /e

Proof. (i) Let f : 21 - Z?_ be an isomorphism
of the loops 21 and 22.

Since f(x I(x)) = 1 then f(x)£(I{(x)) = 1, hence f(I(x)) =
I(f(x)) for x¢ 21. We have £f(x / y) = flz)e=x /3 =
z<>z I{y) = x<==>f(z I{y)) = f(x})=> £(2)£(I(y)) =
f(x)=>f(2)I(f{y)) = £(x) = £(x) / £(y) = £(z) for
Xy7 42 € 2.1. Thus, £(x / y) = £{x} / £{y) for ardbitrary
X,¥ € 21.

(11) Let T 21_"22 be an isomorphism of the loops
(X4, /) and (25, /).

Using part (i) of this proof and Lemma 1 we get the second
part of the proof,

Theorenm 1, LetZ,KandLbeloops.The
loop 2, 18 an extension of the loop K by the loop L if and
only if the left inverse loop (2., /) is an extension of the
left inverse loop (K, /) by the lett inveras loop (L, /).

Proof. (1) Let the loop 2. be an extension of
the loop K by the loop L.

It tdllows from Lemma 2 that the loop (K, /) is a normal
subloop of the loop (Z, /)e In virtue of Lemma 3 the quotient
loep of the loop (2., /) modulo (K, /) and the left inverse
loop (2./K, /) of the loop 2. /K are identical. Since the
loops L and 2, /K are isomorphic, then by Lemma 4 we get
that the loops (L, /) and (J_/K, /) are isomorphic.

Thus, the loop (2., /) is an extension of the loop (K, /)
by the loop (L, /).

{i1) Let the left inverse loop (2,, /) be an extension
of the left inverse loop {K, /) by the left inverse loop
(L, /). Using part (i) of this proof and Lemma 1 we obtain
the second part of the proof,

We shall define a right inverse loop of a loop (2,0 ).
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In the set 3. we define an operation © ~' by the formula

xoly=zasxos=y
£O X,¥,% € D .
An algsbraic structure (X, ©~1) is a quasigroup but it
is not generally a loop.
In the set D2, we define an operation \ by the following
formula

x\y= z<sI"V(x) o1 y=2

£Or X,¥,% €2 o
An algebraio structure (2.,\ ) is a loop isotopic to the

quasigroup (2., o=1) (of. [1]). & triple (1'1,- idz, idZ‘.)

is an isotopy of (Y,\ ) upon (X, o=1). An identity of the
loop (X.,\ ) is an identity of the loop (2., °).

Omitting the sign of the operation o in the loop (Z,, o)
we can write

x\yzz@Iq(x) z2 =y

for x,y,z e Z..

Definition 3 (of. [1])e 4 loop (2.,\ ) is
called a right inverse loop of a loop .

Lemma 5 (of. [1])e If£1{2,\) is a right inverse
loop of a loop ), , then D, 1s a right inverse loop of the
loop (X,\ )e

By analogy with the oase of left lnverse loops we geil
the followlng

Theorem 2, ILet>,, K and L be loops. The
loop 2, is an extepsion of the loop K by the loop L 1f and
only if the right ipverse loop (., \ ) is an extension of
the right inverse loop (K,\ ) by the right inverse lodp (L,\ ).

Let (2., /™) be a left inveree loop of a loop (X,\ )
and (2,\* ) be a right inverse loop of a loop (J,,/ ). Le¥
(3°, o*) be a right inverse loop of a loop (X.,/ ™).
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Bxtensions of loops 7

We get the following loops:

(,00, (2, /1, (Z,\), &, 74, 2,\*), (22, o*).

One can prove that continuing the process of the inversion of
loops we get, up to isomorphism, the only six sbove-mentioned
loops (cf. [1]).

To simplify the formulation of the next theorem we denote
loops with the operations o,/ ,\, /%, \* ,0* by capital
letters with indices 0, 1, 2, 3, 4, 5, respectively.

In virtue of Theorems 1 and 2 we have the following

Theorem 3, A loop Z’i is an extension of a
loop K; by & loop L if and only if a loop >, is an exten-
sion of a loop Kj by a loop Ia3 for arbitrary i,jec {0,1,2,3.4,5}-

2. Let K and L be loope,

Let a mapping ¢ t LXKxLx K — K setisfy the following
conditions:
1° ?(13 k, 1, 1) = (1, 1, 1, k) = k,

2: 9(1y Xqs 1, ky) = KKy,
3” the mapping ¢(11,k1,12,°) t K—~ K is a bijection,
4° the mapping ¢ (1,,°y1,5,k,) + K—=K is & bijection,

for 1, 11, 12€L and k, k1, kze K,

It follows from the considerations in [3] the following
corollary.

By means of an arbitrary mapplng ¢ satisfying conditions
1° - 4° we get, up to isomorphism, an extension of the loop K
by the loop L. An arbitrary extension of the loop K by the
loop L obe can obtain, up to isomorphism, by means of a
mapping satisfying conditions 1° - 4°.

Definition 4. A mapping 9 ¢t LxKxLxK —K
satisfying conditions 1% - 4° 15 said to be a mapping gene-
reting an extenslon of a loop K by a loop L.

Lemma 6, If¢ is a mapping generating an exten-
gion of a loop K by a loop L, then the following condition:
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8 A. Chronowski

2 /\ /N 901, ,k,,1,0,) = k <> (
151eL Kk koek | 11722 k}é{ #1y,k,,

I(1,) k) = 1A@(13/1,,k,I(1,),k ) = k,),

where I is a mapping of type (1) in the loop L, defines a
mapping generating an extension of the left inverse loop
(K, /) by the left inverse loop (L, /).

Proof., Applying conditions 3° and 4° to the mapplng
¢y 1t is easy to see that condition (2) defines a mapping
Py 3 LxKxLxK-—K, Wa shall prove that the mapping P4
satisfies conditions 1° - 4° for the loops (K, /) and (L, /).

Notice that p,(1,,k,,1,1) = k<> \/ (9(1,1,1,k) =

koeK
= 1AQ(1,,0,1,k,) = k”@x\e/x (ky=1Ak=k ) <>k = k,
)

for 1,¢ L and k,k, € K. Similarly, 9,(1,1,1,,k,) = k <>

= \/ (Qo(lzpkzox(lz)!ko) = 1A¢(l2!k'1(12)’k°) = 1)®
o
<> k = k2 for 126 L and k k2e K. Then the mapping ¥, sa~
tisfies ocomdition 1°.
The mapping ?4 satisfies condition 2°. Indeed,

P1(1,k,1,k,) = k<> \/ (@(1,kp, 1,k ] = 1A P01,k 1,k ) =k }<>

@k\/x(kk = 1Ak k, ak)%\/(k = I(k,) A
€

Ak (k) = k1):=>k\e/K (k, = I(ky)Aky / Ky = k) <>

¢>k1 /k2 = k for k1.kzeK.

Let us take arbitrary fixed elemants 11,12e L and k1 e K.
We shall prove that thg mapping 9)1(11, 1,1‘.2,’) t K—K is
a bijection, Supposa that 931(11,1:1,12,1:2) = k and
<p1(11.k1,12,k2) = k and for kz,kae K, It is easy to ocheok
that there exists k ¢ K such that 50(1 k ,I(lz),k ) = 1 and
50(12,1:2,1(12) k,) = 1, hencs k, = k2. If k € K then there
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BExtensions of loops 9

exist k ,k,€ K such that ¢(11/12,k,I(12),k°) = k, and
P(1,,k,,I(15),k,) = 1 that 18 ¢,(1,,ky,15,k,) = k. Thus,
the mapping ¢, satlsfles condition 3°,

By analogy with condition 3° we oan prove that the mapping
¢1 satiasfies condition 4°.

Then P4 is a mapping generating an extension of the loop
(K, /) by the loop (L, /).

Let Fo be a family of all mappings generating extensions
of a loop K by a loop L. Let F1 be a family of all mappings
defined by condition (2) for any mepping g€ F,.

Theorem 4. The family F, is a family of all
mappings generating extensions of the laeft inverse loop (K, /)
by the left inverse loop (L, /).

Proof. It follows from Lemma 6 that svery mapping
P4 € F1 is a mapping generating an extension of the loop (K, /)
by the loop (L, /). Let 2 be an arbitrary mapping generating
an extension of the loop (K, /) by the loop (L, /).

We define a mapping @3 LxXKxLxK—=K as follows:

[p(11skp02p0kp) = ko> N/ ({15005, T4(15),
1,k (3 o
ko) = 1/\¢1(1112,k,11(12),k°) = k1], where I1 is a mapping
of type (1) in the loop (L, /). It follows from Lemmas 1 and 6
that pe P .
We shall prove that the tappings ¢ and ®1 satisfy condi=-
tion (2). Indeed,

l1 1161 k,k

k\e/l( [go(lzokzol(lz), ko) =
o)

= 1M1y / 1, Kk, T(1,), k) = k] <>

1 Yo
<> k¥x Iik}e/x (?’1( (12)’k0'12’ko)
= 1AP(1,I(1,5),1,1,,k;) = k,)A k"\e/x (py (T(15),k,,1,,k)) =
o
= 109 ((1y / 1)T(L)ky,1p,k0) = k)] <=

-53 -
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S { I(1,),k ,1,,k') =

= 1A9,(1,1,15,k ) = ky) A

<> @(1,ky,15,k,) = k for 1,,1,¢L and k,k,kyeK.

1*
The proof of the theorem is complste,

Lemma 7. If ¢ is a mapping generating an exten-
sion of a loop K by a loop L, then the following oondition:

(3) /\ /\ [902(11,1:1,12,1:2) = k<>
1,160 kk,k, K

k\e/K (P(17(1,),k,,1,,k,) =
o]
= 1A<p(I"1(11),k°,11 \ 1,,k) = kz’:’ .

where I is a mapping of typs (1) in the loop L, defines
a mapping gensrating an extensidn of the right inverae loop
(K,\ ) by the right inverse loop (L,\ ).

The proof of thls lemma is analogous to the proof of
Louma 6.

» Ist F2 be a family of all mappings defined by ocondition
(3) for any mapping peP,.

Theorem 5, The family F, 1s a'fanily of all
mappings generating an extension the right inverse loop (K,\ )
by the right inverse loop (L, \ ).

Proof. It follows from Lemma 7 that an arbitrary
mapping o€ F, is a mapping gensrating an extension of the
loop (K,\ ) by the loop (L, \ ).
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Extensions of loops 11

Let Po be an arbitrary mapping generating an extension
of the loop (K, \ ) by the loop (L,\ ). We define a mapping
¢t LxKxLxK—K as follows

/\ [90(11,1{1,12,1(2) = k<> \/ ((/’2(:[-2-1(11)’
11,126L k,k1,k2€K koeK

-1 -
korlysky) = 1A9,5(I57(1,),k ,1,1,,k) = kz)J,

where I, is a mapping of type (1) in the loop (L, \ ).

From Lemmas 1 and 7 we deduce that @€ F . Analogously
like in the proof of Theorem 4 we can show that the mapping ¢
satisfies condition (3), what completes the proof,

Using the notations for inverse loops introduced for the
formulation of Theorem 3 we obtain the followlng corollary.

Corollary. IfPF is a fanily of all mappings
generating extensions of a loop Ki by a loop L1 for some
ie {0.1,2.3,4,5}, then, by means of the formulas of types (2)
and {3), one can determine a family of all mappings generating
extensions of #he loop K;j by the loop IJ for each
3¢ {0,1,2,3,4,5}.
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