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EXTENSIONS OF INVERSE LOOPS 

The paper c o n s i s t s of two p a r t s . The f i r s t one con ta ins 
neoessary and s u f f i c i e n t oondi t ions f o r ex tens ions of inverse 
loops . The seoond one dea ls with mappings gene ra t ing ex ten -
s ions of inverse loops« 

The terms a l e f t inverse loop and a r i g h t inverse loop 
are used by Belousov [1] . The terminology concerning these 
not ions i s not uniform, some au thor s use d i f f e r e n t te rmino-
logy ( c f . [ 4 ] ) . 

Notions as quas igroup, loop , subloop, normal subloop, 
o o s e t , q u o t i e n t loop are used aocording to Bruok [2]» 

1. We s t a r t wi th the fo l lowing d e f i n i t i o n . 
D e f i n i t i o n 1 {of . [ 3 ] ) . A l o o p l ^ i s sa id t o 

be an ex tens ion of a loop K by a loop L i f the fo l lowing 
oondi t ions ho ld t 

( i ) K i s a normal subloop of the l o o p y . . 
( i i ) the quo t i en t loop £ / K and the loop L are isomorphio. 

Let ( Z , ° )< be a loop . We de f ine a mapping I 1 —— ? . 
i n the fo l lowing way 

(1) x o l ( x ) - 1 

f o r x e y . . 
We s h a l l o f t e n use the same l e t t e r I f o r a mapping of 

type (1) i n d i f f e r e n t loops . The mapping I i s a b i j e o t i o n 
and I{1) * 1. 

- 45 -



2 A. Chronowski 

In the set 21 we define an operation by the formula 

-1 x o y = z «£=> z o y = x 

f o r x ,y , z e 51 . 
An algebraic structure (21, i s a quasigroup but i t 

i s not generally a-loop ( c f . [ l ] ) . 
In the set 21 we define an operation / by the formula 

x/y ® z <£=̂ >x ~ 1 o l ( y ) = z 

f o r x ,y , z &21 • 
An algebraic structure (21, /) is a loop isotopio to the 

quasigroup (21, ~1o) ( c f . [ l ] ) . A t r i p l e ( i d ^ , I , i d £ ) i s 

an isotopy of (21. /) upon (21, An ident i ty of the loop 

GL , /) i s a n ident i ty of the loop (21, I f I and I 1 are 
mappings of type (1 ) in the loops (21, and (5L, /) » r es -
pect ive ly , then I 1 = I " 1 . 

Let us notice that 

X / y = i <^>x o I ( y ) x z z o I { y ) = x 

f o r x ,y , z e21 • 
Pwfther on we shal l o f ten omit the sign o in the loop 

(21, o ) wri t ing xy and 21 instead of j o y and (21, ° )• Thus, 

x / y = z z I ( y) - x 

f o r x,y,st . 
D e f i n i t i o n 2 ( o f . [ l ] ) . A loop (21, /) i s 

oal led a l e f t inverse loop of a loop 21 • 
L e m m a 1 ( o f . [ l ] ) . I f (21, /) i * a l e f t inverse 

loop of a loo P21 » then 51 i s a l e f t inverse loop of the 
loop ( J , , / ) . 

L e m m a 2. Let K and 21 138 loop8* K i s a normal 
subloop of the loop51 i f and onl^ i f the l e f t inverse loop 
(K, /) i s a normal subloop of the l e f t inverse loop (21, /)• 
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Extensions of loops 3 

P r o o f . ( i ) Let K be a normal subloop of the 
l o o p i : . The mapping I of type (1) i s a b i j e c t i o n on the 
set K. I t i s easy to check that (K, / ) i s a subloop of the 
loop ( X * / ) • To show that {K, / ) i s a normal subloop of the 
loop , / ) we are going to prove the fo l lowing condit ions: 
(a) x / K = K / x , 
(b) x / (y / K) = (x / y ) / K, 
(o) (K / x) / y = K / (x / y 
f o r x ,y € £ . 

(a) z e x / K<̂ V z = x / k «=> V z I ( k ) = x < ^ K z = 
ktK keK 

= K x«s=>(K z ) I ( x ) = (K x ) I ( x )< i=> K(z I ( x ) ) = K V z l ( x ) 

= k. .. V z = k. / z e K / x . 1 b- = v I 

k ^ K 

k ^ K 
(b) Suppose that z e x / (y / K) then z = x / (y / k ) , 

where k e K . Let us denote u = y / k . 
We get the fo l lowing equivalences: 

y / k = u <s=t> u I ( k ) = y and x / u = z<s=> z I ( u) = x . Thus 
u K = K y = > u(K I ( y ) ) = u(K I ( u ) ) =s> K I ( y ) = K I ( u ) = > 

=s> (z I ( y ) ) K = (z I ( u ) JK =s> (z K ) I ( y ) = x K ) y / ( z k ' ) I ( y ) = 
k £ K 

X / y = Zk =s> zK = (x / y)K V z K k J = 
k e K k ^ K 1 

= x / y V z = ( x / y ) / k 1 = ^ z e ( x / y ) / K . 
k-jG K 1 

Suppose that z c (x / y ) / K then z = ( x / y ) / k f o r 
some ke K. Let us denote u = x / y . 

We get t^e fo l lowing equivalences: 
x / y = u<s=>ul(y) = x and u / k = z <s=> z I ( k ) = u. Thus 
Kz = K u = > K ( z l ( y ) ) = K ( u l ( y ) ) - Kx = s * z ( K I ( y ) ) « Kx = > 
= > \ / z ( k ' l ( y ) ) =x. There exist® a w e E suoh that ! ( » ) • 

k e K 
« k ' l ( y ) and so z l ( w ) = x that i s z <= x / w. Moreover, 
w(K I ( w ) ) = (yK) I ( y ) = > w [ K ( k ' I ( y ) ) ] = (yK) I ( y ) = > ( w K ) I ( y ) -

« ( y K ) I ( y ) =*> wK = yK = > V w I ( k . ) = y V J / k , - w. 
k ^ K 1 k ^ K 1 

Since % - x / w and so z * x / (y / k^) fo r some k 1 e K, that 
i s z e x / (y / K) . 
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4 A* Chronowski 

The proof of (o) is similar. 
( i i ) Let {K, /) be a normal subloop of the l e f t inverse 

loop /) . 
Using part ( i ) of this proof and Lemma 1 we obtain the 

second part of the proof. 
L e m m a 3. Let K be a normal subloop of a loop£ • 

Then the l e f t inverse loop (X. /K, /) of the quotient loop 
Z/K modulo K and the quotient loop of the l e f t inverse 
loop QT, /) modulo (K, /) are identioal. 

P r o o f . At f i r s t , we shall show that x K « z/K for 
an arbitrary x e E . Indeed, ze x K«s=>z K = x K 
<s=> \ / z I (k ) = x \ / z • x / k<=> z € x / K. Notioe that 

ke K ke K 
I (x K) = I (x )K for x K e E /K. In fact , (x K) { I (x )K) -
- (x I (x ) )K = K. 

In the quotient loop (£, /K, <f>) of the loop (]£ , /) modulo 
(K, /) is defined an operation ,<j> in the following way 

(x K) <M? K) » (x / y)K 

for arbitrary x K, y Ke H, /K. 
In the quotient loop £ /K of the l o op£ modulo K is 

defined an operation by the formula 

(x K) (y K) = (x y) K 

for arbitrary x K, y K e Z /K. 
We shall prove that the quotient loop (Z./K, <t>) and the 

l e f t inverse loop (£/K, /) of the quotient loop £ /K ar® 
identioal. Indeed, (x K) / (y K) - z K «s=i*{zK)I(yK) = x 

(z K) ( I (y )K) = x ( z I (y ) )K = x K<zz> V z I ( y ) = 
keK 

= x k (x k) / y = z <s=> (x K) / ( y K ) = z 
kfeK 

<s=s> (x / y) K = z K for x K, y K, z K t l / K , 
Then, (x K) / (y K) = (x / y)K « (x K) <f> (y K) for arbi-

trary x K, y K e L /K. 
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3 m m a 4. Let 21 -j andJT] 2 b e l o o P s * A mapping 
f ; 2L-) "" Z 2 i s an isomorphism of the loops 21-j and SUg 
i f and only i f the mapping f i s an isomorphism of the l e f t 
inverse loops (21.,, /) a n d (2L2» 

P r o o f . ( i ) l e t f s 21-, " a n isomorphism 
of the loops 21-, and 2 1 2 . 

Since f (x l ( x ) ) = 1 then f ( x ) f ( I ( x ) ) = 1, honoe f ( I ( x ) ) = 
= I ( f ( x ) ) for x e We have f ( x / y) = f(z)<*=> x / y = 
= z ^ > z I(y) = x<=*>f(z I (y ) ) = f(x)*s=> f ( z ) f ( I ( y ) ) = 
= f(x)<t=s>f(z)I(f(y)) = f (x)<t i>f (x) / f (y) = f (z ) for 
x ,y , z € 21.,. Thus, f (x / y) • f ( x ) / f (y) for arbitrary 
x,y € 21 1 • 

( i i ) Let f J 21., G B® AN isomorphism of the loops 
(21.,, /) and ( S 2 , /). 

Using part ( i ) of this proof and Lemma 1 we get the second 
part of the proof* 

T h e o r e m 1. Let , K and L be loops. The 
loop 21 i s an extension of the loop K by the loop L i f and 
only i f the l e f t inverse loop (21» /) i s an extension of the 
l e f t inverse loop (K, /) by the l e f t inverse loop (L, /). 

P r o o f . (1) Let the loop 2 ! be an extension of 
the loop K by the loop L. 

I t fallows from Lemma 2 that the loop (K, /) i s a normal 
subloop of the loop (21, /)* In virtue of Lemma 3 the quotient 
loop of the loop (21, /) modulo (K, /) and the l e f t inverse 
loop (21/K, /) of the loop 21 /K are identioal . Since the 
loops L and 21 /K are isomorphic, then by Lemma 4 we get 
that the loops (L, /) and (21/K, /) are isomorphic. 

Thus, the loop (22, /) i s an extension of the loop (K, /) 
by the loop (L, /). 

( i i ) Let the l e f t inverse loop (21, /) be an extension 
of the l e f t inverse loop (K, /) by the l e f t inverse loop 
(L, /). Using part ( i ) of this proof and Lemma 1 we obtain 
the second part of the proof. 

We shall define a right inverse loop of a loop (21, ° )• 
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6 A* Chronowski 

In the set 22 we define an operation ° 1-1 by the formula 

x o " 1 y = z x o z = y 

for x ,y ,z fc X , • 
An algebraic structure (21» ° ) i s a quasigroup but i t 

i s not generally a loop* 
In the se t 21 we define an operation \ by {¡he following 

formula 

x \ y = z«s=^I~1(x) y • t 

for x ,y ,z e Z . • 
An algebraio structure (21 ,\ ) i s a loop isotopio to the 

quasigroup (22, ° " 1 ) ( o f . [ l ] ) . A t r i p l e ( I " 1 , i d ^ , i d ^ ) 
i s an isotopy of (21»\ ) (21» ° " 1 ) » An identity of the 
loop (21»\ ) i s an identity of the loop (21» ° ) . 

Omitting the sign of the operation ° in the loop (21» 0 ) 
ve can write 

x \ y « z<=>I~ 1 ( x ) z » y 

for x ,y ,z e 2 1 . 
D e f i n i t i o n 3 ( o f . [ l ] j . A loop (22, \ ) i s 

called a r ight inverse loop of a loop 21 • 
L e m m a 5 ( o f . [ l ] ) . I f (21, \ ) i s a r ight inverse 

loop of a loop 22 » 22 i a a r ight inverse loop of the 
loop (22»\ ) . 

By analogy with the oase of l e f t Inverse loops we get 
the following 

T h e o r e m 2. Let 21 » K and L be loops. The 
loop 22 i s an extension of the loop K by the loop L i f and 
only i f the rj-ght inverse loop (21. \ ) i s an. extension of 
the right inverse loop (K,\ ) by the right inverse lotfp (L,\ ) . 

Let (21» / * ) be a l » f t inverse loop of a loop ( £ » \ ) 
and (21 »\* ) be a r ight inverse loop of a loop ( H , / ) . Let 
(22» be a r ight inverse loop of a loop ( 2 2 » / * ) « 
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We get the following loops: 

a : . ° ) , i s , /), ), e . /*>, c l , V ) , t z : , 
One can prove that continuing the process of the inversion of 
loops we get , up to isomorphism, the only six above-mentioned 
loops (of . [ 1 ] ) . 

To simplify the formulation of the next theorem we denote 
loops with the operations ° t / , \ , / * , \* , by capital 
l e t t e r s with indices 0 , 1, 2, 3, 4, 5, respectively. 

In virtue of Theorems 1 and 2 we have the following 
T h e o r e m 3. A loop i s an extension of a 

loop K̂  by a loop L^ i f and only i f a loop Z - j 1 8 an exten-
sion of a loop Kj by a loop L̂  for arbitrary i , j e {0 ,1 ,2 ,3 ,4 ,5 ] . 

2. Let K and L be loops. 
Let a mapping (p : L v K x L x K —• K sat is fy the following 

conditions: 
1° cp( 1, k, 1, 1) = ( 1 , 1 , l , k) = k, 
2° k v 1, k 2) - ^ k g , 
3° the mapping ( l ^ . k ^ l g , * ) i K — K i s a bisect ion, 
4° the mapping <p ( l . , , * , l 2 , k 2 ) : K — K i s a b i j ec t ion , 

for 1, l . j , l g 6 L and k, k ^ kg e K. 
I t follows from the considerations in [3] the following 

corollary. 
By means of an arbitrary mapping <p satisfying conditions 

1° - 4° we get , up to isomorphism, an extension of the loop K 
by the loop L. An arbitrary extension of the loop K by the 
loop L one can obtain, up to isomorphism, by means of a 
mapping satisfying conditions 1° - 4°. 

D e f i n i t i o n 4 . A mapping cp : L x K x L * K — K 
satisfying conditions 1° - 4° i s said to be a mapping gene-
rating an extension of a loop K by a loop L. 

L e m m a 6. I f 9? i s a mapping generating an exten-
sion of a loop K by a loop L, then the following condition: 
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(2J A A % ( L , k 1 t l 2 , k 2 ) « k<s^> V ^ f i k 
l^lgGL k,k1fk2eK 1 1 1 2 2 k ^ K l ^ W 

I ( l 2 ) , k 0 ) - 1 A ^ d ^ l g . k . I f l g ) ,k0) = k , ) , 

where I i s a napping of type (1) in the loop L, defines a 
mapping generating an extension of the lef t inverse loop 
(K, / ) by the lef t inverse loop (L, / ) . 

P r o o f * Applying conditions 3° and 4° to the napping 
< p t i t is easy to see that condition (2) defines a mapping 

s L x K x L x K —- E. Ve shall prove that the napping ^ 
satisfies conditions 1° - 4° for the loops (K, / ) and (L, / ) . 

Hotioe that ^ ( 1 ^ ^ , 1 , 1 ) « k < ^ V (?(1 ,1 ,1 ,k Q ) » 
k.€ K 0 

- 1Ay{l 1 ,k ,1 , ]c 0 ) • k ^ ) \ / ( k 0 » 1 A k . k.,)<£=>k k1 
k.t K o 

for L and ktk^ e K. Similarly, cp̂  (1,1 , l 2 , k 2 ) * k 

<=> \ / (9>( l 2 ,k 2 , I ( l 2 ) ,k 0 ) « l A ^ ( l 2 , k , I ( l 2 ) , k 0 ) « 1) 
k_6 K o 

<z=> k • k2 for l 2 e L and k,k2e K. Then the mapping <p1 sa-
t i s f ies oondition 1°. 

The mapping satisfies condition 2°. Indeed, 
^ ( l . k ^ i . k g ) = V (9(1»k2» 1 J - 1 a9>( 1 skvivk0j-k,)-^ 

Ire K o 
V ( M o = lAk k - k j ^ V (k - I(k_)A 

k„eK 2 0 o i k £ K o z 
0 0 

Ak Il(k2) . k.,) V (k0 = I(k2)A k, / k2 - k) <i=> 
k g K o 

k1 / k2 • k for ^ ,k2 € K. 
Let us take arbitrary fixed elements l ^ l g e L and k1 e K. 

We shall prove that thg mapping ^ ( 1 1 f l g f • ) : K —— K is 
a bisection. Suppose that (p̂  (11 .k^ »lgjkg) « k and 
9 1 (1 1 ,k1 , l 2 , k 2 ) » k and for k^.k^el , I t is easy to oheok 
that there exists kQ 6 K suoh tJSat y>(l 2 ,k 2 , I ( l 2 ) ,kQ) - 1 and 
9>( l 2 ,k 2 , I { l 2 ) ,k 0 ) « 1, henoe kg - kg. I f keK then there 
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ex is t k 0 , k 2 e K 8 U 0 h t i l a t 9>( l 1A 2» k» I ( " k1 a n d 

9>( l 2 , k 2 , I ( l 2 ) , k 0 ) = 1 that 1b ^ ( L j . k . j . l g . k g ) = k. Thus, 
the mapping cp̂  s a t i s f i e s condition 3°* 

By analogy v i th oondition 3° we can prove that the mapping 
^ s a t i s f i e s oondition 4°. 

Then <p.J i s a mapping generating an extension of the loop 
(K, /) by the loop (1, /) . 

Let Fq be a family of a l l mappings generating extensions 
of a loop K by a loop L. Let F̂  be a family of a l l mappings 
defined by condition (2) for any mapping cpe F 0 . 

T h e o r e m 4 . The family i s a family of a l l 
mappings generating extensions of the l e f t inverse loop (K, /) 
by the l e f t inverse loop (L, /) . 

P r o o f . I t follows from Lemma 6 that aivery mapping 
e i s a mapping generating an extension of the loop (K, /) 

by the loop (Lf /) . Let be an arbi trary mapping generating 
an extension of the loop (K, /) by the ^oop (L, /) . 

We define a mapping <p s L* K * L * K — K as follows: 

l v l 2 e l k,k1tk26KL 1 1 * Z k0eK 1 * i 1 * 

kQ) « 1 A ^ ( l 1 l 2 , k , I 1 (12 ) ,k 0 ) • k^J , where I 1 i 8 a mapping 
of type {}) in the loop (L, / ) . It follows from Lemmas 1 and 6 
that <p e F 0 . 

We sha l l prove that the Mappings <p and s a t i s f y condi-
tion (2 ) . Indeed, 

k V [9(1 2 . J c 2 , I (1 2 ) , k0) = 

= 1A 90(1, / 1 2 , k, I{1 2 ) , k 0 ) « 

k y K ( ^ ( k i , ) , ^ . ! , , ^ ) -

= i A 5 i ) { i 2 i ( i 2 ) , i , i 2 , k ; } - k 2 , A k < ^ ( K i 2 ) . k 0 . i 2 , k ; ) -
o 

- 1A9>1((11 / l g J K ^ J . k ^ i g . k p ) « 

- 53 -

V 
k0eK 



10 A. Chronowski 

V k.eK o . 0 

- l A ^ d . i . l g . k p ) - k2)A 

V ( ^ d d g J - V V 1 ^ - l A ^ d ^ k ^ i g . k ; ) « k) 
ke K o 

^ ( l ^ k ^ l g . k g ) - k for l 1 t l 2 e L and k . k ^ k g e K . 

The proof of the theorem i s complete. 
L e m m a 7. I f $£> i s a mapping generating an exten-

sion of a loop K by a loop L, then the following oonditions 

(3) A A 1*99(1,,k^Ufko) * k 
l 1 t l 2 e L k , k r k 2 K L 2 1 1 2 z 

V ( S P d - 1 « ! , ) . ^ . ! , ^ ) = 
0 

- l A y d ' ^ l , ) , ^ , ^ \ l 2 , k ) - kg}] , 

where I i s a mapping of type (1) in the loop L, defines 
a mapping generating an extensión of the r ight inverse loop 
(K,\ ) by the r ight inverse loop (L, \ ) . 

The proiof of th is lemma i s analogous to the proof of 
¿9moa 6. 

Let P2 be a family of a l l mappings defined by oondition 
(3) fo r any mapping <pev . 

T h e o r e m 5. The family Fg i s a family of a l l 
mappings generating an extension the r ight inverse loop (K,\ ) 
by the r ight inverse loop ( L , \ ) . 

P r o o f . I t follows from Lemma 7 that an arb i t rary 
mapping <p2£ Fg i s a mapping generating an extension of the 
loop (K,\ ) by the loop (L , \ ) . 
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Let y>2 be an arbitrary mapping generating an extension 
of the loop (K, \ ) by the loop (L,\ ). Ve define a mapping 
<p s L x K x L x K — K as follows 

A A U ( i 1 f k , i 2 , k ) = V ( ^ ( I ^ u j , 
l r l 2 6 L k.k^kgfiKL 1 1 * d k0eK * * 1 

k ^ W - 1 A 9 2 ( I ^ 1 ( l 1 ) , k o f l 1 l 2 , k ) = k 2 ) ] , 

where I 2 i s a mapping of type (1) in the loop (L, \ ). 
From Lemmas 1 and 7 we deduoe that <pe ? , Analogously 

l ike in the proof of Theorem 4 we can show that the mapping <p 
s a t i s f i e s condition (3), what completes the proof* 

Using the notations for inverse loops introduced for the 
formulation of Theorem 3 we obtain the following corollary. 

C o r o l l a r y . I f F^ i s a family of a l l mappings 
generating extensions of a loop K̂  by a loop L^ for some 
i e { o , 1 , 2 , 3 , 4 t 5 } . then, by means of the formulas of types (2) 
and (3)', one oan determine a family of a l l mappings generating 
extensions of the loop Kj by the loop ¡¿̂  for eaoh 
j€ {0,1 ,2 ,3 ,4 ,5} . 
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