

Jan Gajuszka

ON BISEMILATTICES WITH GENERALIZED ABSORPTION LAWS, I

0. The aim of this paper is to present some results concerning powers of bisemilattices with generalized absorption laws ([4]).

An algebra $\alpha = (A, +, \cdot)$ of type (2.2) is called a bisemilattice if it satisfies the following conditions ([8], [9]):

$$x+x = x \quad xx = x;$$

$$x+y = y+x, \quad xy = yx;$$

$$(x+y)+z = x+(y+z), \quad (xy)z = x(yz).$$

For a bisemilattice α we can define two partial orders on A ([1], [10]): $x \leq_+ y$ iff $x+y = y$; $x \leq_- y$ iff $xy = x$. The partial order \leq_+ satisfies the least upper bound condition for finite subsets of A; the partial order \leq_- satisfies the greatest lower bound condition for finite subsets of A. On a set with two partial orders which satisfy the above conditions we can define a bisemilattice structure.

For a polynomial f over a bisemilattice we define the dual polynomial \hat{f} as follows: $\hat{x} = x$, $\hat{y} = y$, $\hat{x+y} = \hat{x}\hat{y}$, $\hat{xy} = \hat{x}\hat{y}$ and the following polynomials are obtained by induction.

As in [4] we define the following sequence of binary polynomials:

$$f_0(x,y) = x+y, \quad f_{n+1}(x,y) = f_n(x,y)(n)y,$$

where (n) is \cdot if n is even and $+$ if n is odd.

The following identities are called the n-generalized absorption laws ([4]):

$$(a_n) \quad f_n(x, y) = y,$$

$$(\hat{a}_n) \quad \hat{f}_n(x, y) = y.$$

Let Bsl denote the variety of all bisemilattices, $Bsl(a_n)$ denote the subvariety of the variety Bsl which is defined by the identity (a_n) . Analogously we define the subvariety $Bsl(\hat{a}_n)$. Let L_n denote the subvariety of the variety Bsl which is defined by the identities (a_n) and (\hat{a}_n) ([4]).

By Lemma 2.2 in [4] we have that for every natural number n , $Bsl(a_n) \cup Bsl(\hat{a}_n) \subseteq L_{n+1}$. It is easily checked that for the elements a, a' of the bisemilattice α_{n+1} defined in [4], we have $f_n(a', a) \neq a$ and $\hat{f}_n(a', a) \neq a$ (cf. [4] item 9 of the proof of Lemma 2.4). It is also shown in [4] that α_{n+1} is an element of L_{n+1} . Then we have the following inclusions:

$$(1) \quad \begin{array}{c} L_n \subseteq Bsl(a_n) \subseteq \\ Bsl(\hat{a}_n) \subseteq Bsl(a_n) \cup Bsl(\hat{a}_n) \subseteq L_{n+1}. \end{array}$$

1. Proposition 1.1. Let $\alpha \in Bsl(a_{n+1})$ for a natural number n . Then $\alpha \in Bsl(a_{n+1}) \setminus Bsl(a_n)$ iff there exist two elements $a, b \in A$ such that the elements $f_0(a, b), \dots, f_n(a, b), f_{n+1}(a, b) = b$ are all distinct.

The dual version of this proposition is also true.

Proof. \Leftarrow By the assumption $f_n(a, b) \neq b$. Thus $\alpha \notin Bsl(a_n)$.

\Rightarrow . Suppose that for any $a, b \in A$ there exists $r, s \leq n+1$ such that $f_r(a, b) = f_s(a, b)$ and $r \neq s$. Take $a, b \in A$ and $r, s \leq n+1$ satisfying the above assumption. Without loss of generality we can assume that $r < s$. Then $f_r(a, b)(s)b = f_s(a, b)(s)b = f_{s+1}(a, b)(s)b = f_{s+2}(a, b)$ and so on. Thus we obtain that $f_r(a, b)(s)b \dots (n)b = f_{n+1}(a, b) = b$. By the definition of the operation (\circ) one

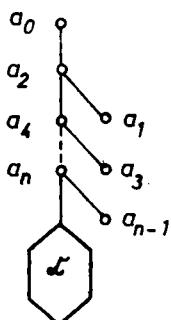
has: $f_r(a, b)(s)b = f_r(a, b)$ or $f_r(a, b)(s)b = f_{r+1}(a, b)$;
 $f_r(a, b)(s)b(s+1)b = f_r(a, b)(s+1)b = f_{r+1}(a, b)$ or
 $f_r(a, b)(s)b(s+1)b = f_{r+1}(a, b)(s+1)b = f_{r+2}(a, b)$ and so on.
Then $f_r(a, b)(s)b \dots (n)b = f_{r+n-s}(a, b)$ or $f_r(a, b)(s)b \dots (n)b = f_{r+n-s+1}(a, b)$. Hence $f_{r+n-s}(a, b) = b$ or $f_{r+n-s+1}(a, b) = b$. Analogously as in Lemma 2.2 of [4] we conclude that $f_n(a, b) = b$ (because $r+n-s \leq r+n-s+1 \leq n$). Then for all $a, b \in A$ $f_n(a, b) = b$, a contradiction with the assumption that $a \notin \text{Bsl}(a_n)$.

Analogously we prove the dual version of this proposition.

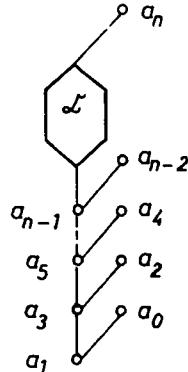
2. Let $\mathcal{L} = (C, \leq)$ be a nonempty chain. It is obvious that (C, \leq, \leq) is a bisemilattice. For every natural number n let us consider two bisemilattices $\mathcal{M}_{n, \mathcal{L}}$ and $\mathcal{M}'_{n, \mathcal{L}}$ defined as follows: the underlying set of $\mathcal{M}_{n, \mathcal{L}}$ is ordered as in Figure 1 if n is even and as in Figure 3 if n is odd, the underlying set of $\mathcal{M}'_{n, \mathcal{L}}$ is ordered as in Figure 2 if n is even and as in Figure 4 if n is odd, where \mathcal{L} is a subbisemilattice of $\mathcal{M}_{n, \mathcal{L}}$ and $\mathcal{M}'_{n, \mathcal{L}}$ for every n .

n even:

$\mathcal{M}_{n, \mathcal{L}}$:

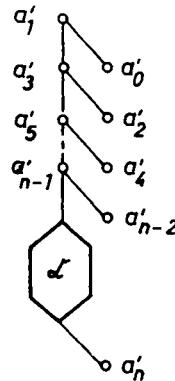


" \leq_+ "

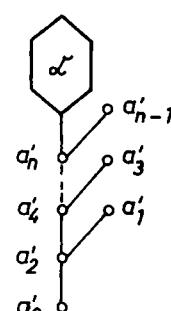


" \leq_- "

$\mathcal{M}'_{n, \mathcal{L}}$:



" \leq_+ "



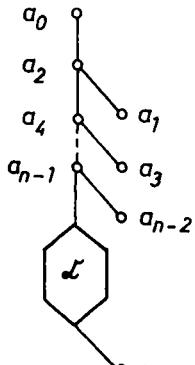
" \leq_- "

Fig.1

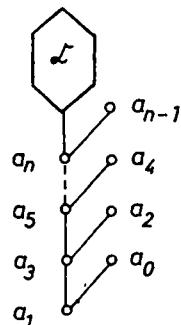
Fig.2

n odd:

$\mathcal{M}_{n,\alpha}$:

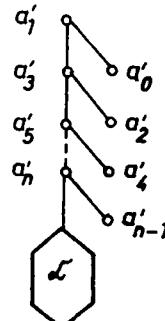


\leq_+

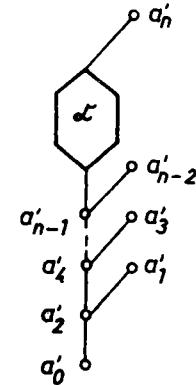


$\leq.$

$\mathcal{M}'_{n,\alpha}$:



\leq_+



$\leq.$

Fig.3

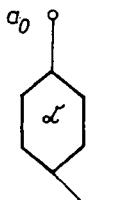
Fig.4

Remark: We can easily see that $C \cap \{a_0, \dots, a_n\} = \emptyset$, $C \cap \{a'_0, \dots, a'_n\} = \emptyset$.

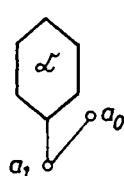
Lemma 2.1. For every positive number n $\mathcal{M}_{n,\alpha} \in \text{Bsl}(\hat{a}_n) \setminus \text{Bsl}(a_n)$, $\mathcal{M}'_{n,\alpha} \in \text{Bsl}(a_n) \setminus \text{Bsl}(\hat{a}_n)$.

Proof. Let us take two elements a, b from $\mathcal{M}_{n,\alpha}$ or from $\mathcal{M}'_{n,\alpha}$. If $a, b \in C$ then $f_1(a, b) = \hat{f}_1(a, b) = b$ (for every n). Without loss of generality we can assume that $a \neq b$ and $a \notin C$. We proceed by induction on n . For $n = 1$ we have the following bisemilattices:

$\mathcal{M}_{1,\alpha}$:



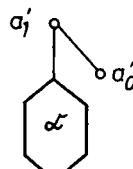
\leq_+



$\leq.$

Fig.5

$\mathcal{M}'_{1,\alpha}$:



\leq_+

$\leq.$

Fig.6

Let $a, b \in M_{1,\omega}$. If $b \notin C$ or $a = a_1$ then the elements a, b form a two-element sublattice and $f_1(a, b) = \hat{f}_1(a, b) = b$, $f_1(b, a) = \hat{f}_1(b, a) = a$. Assume that $b \in C$, $a = a_0$. Then we have $f_1(a, b) = f_1(a_0, b) = (a_0 + b)b = a_0b = a_1 \neq b$; $f_1(a, b) = \hat{f}_1(a_0, b) = a_0b + b = a_1 + b = b$, $\hat{f}_1(b, a) = \hat{f}_1(b, a_0) = ba_0 + a_0 = a_1 + a_0 = a_0$. Thus $M'_{1,\omega} \in Bsl(\hat{a}_1) \setminus Bsl(a_1)$. Analogously we prove that $M'_{1,\omega} \in Bsl(a_1) \setminus Bsl(\hat{a}_1)$. Assume that the lemma is true for $n-1$. Moreover assume that n is even. (The case of n odd is similar). Let $a, b \in M_{n,\omega}$. If $b \notin C$ then a, b belong to M_{n-1, α_n} , where α_n is the one-element chain (a_n) . Then by induction hypothesis and by Lemma 2.2 of [4] we have $\hat{f}_n(a, b) = b$, $\hat{f}_n(b, a) = a$. If $b \in C$, $a \neq a_0$ then a, b belong to a subbisemilattice isomorphic to $M'_{n-1,\omega}$. Then by the induction hypothesis and by Lemma 2.2 of [4] we have $\hat{f}_n(a, b) = b$, $\hat{f}_n(b, a) = a$. Let $b \in C$, $a = a_0$. Then $f_0(b, a) = f_0(b, a_0) = b + a_0 = a_0$, $f_n(b, a_0) = a_0 = a$; $f_0(a, b) = \hat{f}_0(a_0, b) = a_0 + b = a_0$, $f_1(a, b) = a_0b = a_1, \dots, f_n(a, b) = a_{n-1} + b = a_n \neq b$; $\hat{f}_0(b, a) = \hat{f}_0(b, a_0) = ba_0 = a_1, \hat{f}_1(b, a) = \hat{f}_1(b, a_0) = a_1 + a_0 = a_0$, $\hat{f}_n(b, a) = \hat{f}_n(b, a_0) = a_0 = a$; $\hat{f}_0(a, b) = \hat{f}_0(a_0, b) = a_0b = a_1, \hat{f}_1(a, b) = a_1 + b = a_2, \dots, \hat{f}_{n-1}(a, b) = a_{n-1} + b = a_n, \hat{f}_n(a, b) = a_n b = b$. Therefore (\hat{a}_n) holds in $M_{n,\omega}$ but (a_n) does not hold in $M_{n,\omega}$. Thus $M'_{n,\omega} \in Bsl(\hat{a}_n) \setminus Bsl(a_n)$. Analogously we prove that $M'_{n,\omega} \in Bsl(a_n) \setminus Bsl(\hat{a}_n)$.

3. Theorem 3.1.

1) Let n be a natural number.

- (i) If $\alpha \in Bsl(a_{n+1}) \setminus Bsl(a_n)$ then $\text{card } A \geq n+2$.
- (ii) For every cardinal number $m \geq n+2$ there exists a bisemilattice $\alpha \in Bsl(a_{n+1}) \setminus Bsl(a_n)$ such that $\text{card } A = m$.

The dual versions of (i) and (ii) are also true.

2) Let n be a positive number.

- (i) If $\alpha \in Bsl(\hat{a}_n) \setminus Bsl(a_n)$ then $\text{card } A \geq n+2$.
- (ii) For every cardinal number $m \geq n+2$ there exists a bisemilattice $\alpha \in Bsl(\hat{a}_n) \setminus Bsl(a_n)$ such that $\text{card } A = m$.

The dual versions of (i) and (ii) are also true.

3) Let n be a natural number.

(i) If $\alpha \in L_{n+1} \setminus L_n$ then $\text{card} \alpha \geq n+2$.
(ii) For every cardinal number $m \geq n+2$ there exists a bisemilattice $\alpha \in L_{n+1} \setminus L_n$ such that $\text{card} \alpha = m$.

Proof. 1)(i) and its dual version are obtained as corollaries from Proposition 1.1.

2)(i). By Lemma 2.2 of [4] we get that $\text{Bsl}(\hat{a}_n) \setminus \text{Bsl}(a_n) \subseteq \text{Bsl}(a_{n+1}) \setminus \text{Bsl}(a_n)$. Therefore by 1)(i) we obtain 2)(i). Analogously we obtain the dual version of 2)(i).

3)(i). Let $\alpha \in L_{n+1} \setminus L_n$ ($= L_{n+1} \setminus (\text{Bsl}(a_n) \cap \text{Bsl}(\hat{a}_n))$). Then $\alpha \in (L_{n+1} \setminus \text{Bsl}(a_n)) \cup (L_{n+1} \setminus \text{Bsl}(\hat{a}_n)) \subseteq (\text{Bsl}(a_{n+1}) \setminus \text{Bsl}(a_n)) \cup (\text{Bsl}(\hat{a}_{n+1}) \setminus \text{Bsl}(\hat{a}_n))$. Therefore by 1)(i) we get $\text{card} \alpha \geq n+2$.

2)(ii). By Lemma 2.1 $\pi_{n,\alpha} \in \text{Bsl}(\hat{a}_n) \setminus \text{Bsl}(a_n)$ (for every positive n). If m is infinite, let us take a chain ω such that $\text{card} \omega = m$. Then $\text{card} \pi_{n,\omega} = \text{card} \omega = m$. If m is finite let us take a chain ω such that $\text{card} \omega = m-n-1$. Then $\text{card} \pi_{n,\omega} = \text{card} \omega + n + 1 = m$.

1)(ii). By Lemma 2.2 of [4] we have $\text{Bsl}(\hat{a}_n) \setminus \text{Bsl}(a_n) \subseteq \text{Bsl}(a_{n+1}) \setminus \text{Bsl}(a_n)$. Then we obtain 1)(ii) as a consequence of 2)(ii).

Analogously we obtain the dual versions of 1)(ii) and 2)(ii).

3)(ii). Lemma 2.2 of [4] implies that $\text{Bsl}(\hat{a}_n) \setminus \text{Bsl}(a_n) \subseteq \text{Bsl}(\hat{a}_n) \setminus L_n \subseteq L_{n+1} \setminus L_n$. Then by 2)(ii) we have 3)(ii).

As a corollary from Lemma 2.1 we have also a stronger form of the inclusions (1).

Corollary 3.2. For every positive n we have the following inclusions:

$$(2) \quad \begin{array}{c} \text{Bsl}(a_n) \\ \subset \\ L_n \end{array} \quad \begin{array}{c} \text{Bsl}(\hat{a}_n) \\ \subset \\ \text{Bsl}(a_n) \cup \text{Bsl}(\hat{a}_n) \\ \subset \\ L_{n+1} \end{array}$$

REFERENCES

- [1] R. Balbes : A representation theorem for distributive quasi-lattices, *Fund. Math.* 68 (1970) 207-214.
- [2] G. Birkhoff : *Lattice Theory*, New York, 1948.
- [3] J. Dudek : On bisemilattices I, *Colloq. Math.* 47 (1982), 1-5.
- [4] J. Gałuszka : Generalized absorption laws in bisemilattices, *Algebra Universalis*, 19 (1984) 304-318.
- [5] G. Grätzer : *General Lattice Theory*, Berlin, 1978.
- [6] G. Grätzer : *Universal Algebra*, Springer Verlag, 1979.
- [7] R. McKenzie, A. Romanowska : Varieties of \wedge -distributive bisemilattices, in: *Contributions to General Algebra*, Proceedings of the Klagenfurt Conference, Klagenfurt, 1979, 213-218.
- [8] R. Padmanabhan : Regular identities in lattices. *Trans. Amer. Math. Soc.* 158 (1971) 179-188.
- [9] J. Płonka : On distributive quasilattices, *Fund. Math.* 60 (1967) 191-200.
- [10] A. Romanowska : On bisemilattices with one distributive law, *Algebra Universalis* 10 (1980) 36-47.

JAGIELLONIAN UNIVERSITY, 30-059 KRAKÓW, POLAND

Received September 20, 1985.

