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ON COMPARISONS OF ALGEBRAS
BY USING THE ENRICHMENTAL THEORIES AND CLONING SYSTEMS

In universal algebra there are problems ocongerning the
enrichments of algabras, For those problems flhe notion of
abstract algebra as an algebra of a given type is not com=-
fortable. We study in this paper algebras without types. We
introduce a category AL of algebras. The posset category
Enr(aL) = <{0b AL, <> is a subcategory of AL admiting only
the enriohmental morphisms, The enrichmental theories of alge-
bras are considered as the monads of the category Enr(AL).

We also study a notion of a clone, We remark that the general
notion of a clone depends on a given cloning closurs operator
or a oloning system of algebras. We introduce a notion of

a oloning closure operator as a special quasi-functor from

a covering poset category to the Set ocategory. A quasi-funotor
from a category K to a oategory XK' is a pair F = <F°,F1> of
mappings F, : Ob K —= 0b X' and P,:Mor XK ——Mor K’ having the

h P1(h) ,
properties: F1(A——B) = Fy(A) PO(B) and F1(hoh) =
= F,(h") P, (h) for all h and h in Mor K, If a quasi-func-
tor F:K — K’ fulfils the aquality P.(1,) = 1 for all
114 P,(4)

objedts A in K, then P is a functor. If F is a quasi-functor,
then we write F(A) and F(h) instead of PO(A) and F1(h). We

This paper is based on the lecturs presented at the Sym-
posi;m on Universal Algebra held at Nicolaus Coperniocus Uni-
versity in Torud (Bachotek), May 23-27, 1984.

- 11 -



2 J. Stomiriski

glve for avery set M the interpolational I(l) and looaliza-
tional L M cloning olosure operators over M., We have for
every algebra A the algebraic al(A), interpolation-algebraic
Int(4A) and localization-algebraic Loc(A) cloning closure ope-
rators induoced by A. Every topological algebra A determines
a smooth cloning closure operator D{A). The opsrator D(A) for
the usual topological algebra A of all real numbers with sll
oo ~differentiable operations is used in differential geometry.
A notion of a oloning system of algebras as a spsoial
funotor from the category Enr(AL) to a poset category CLO,
of all cloning olosure opserators is considered. Each cloning
closure operator B determines a category Sp(E} of invariant
spaces over K. A cloning system Q of algebras defines a com-

parison z of algebras such that: A f A" if and only if
)

Sp(Q(a)) = splQ(a’)). If

theory H of algebras (i.e. A? A" iff H(A) = H(A')), then H

is a kernsl of an enriohmental

ol

is said to be an enrichmental hull of Q. We prove that the
cloning systems of algebras al, Int, Loa, D and theirs sub-
systems have: the emrighmental hulls, Moreover, the ways of
enrichment 6f algebras to olones over olonlng asystems are
glven, For concepts used in this paper without definitions
see [5,8].

1. The enrichmental theories and comparisons 6f algsbras

A n-ary operation over a set X is a funotion £:x° — 1,
If £:X° — X418 a n-ary operation over X and YS X, then Y 1s
said to be closed under t provided f(Y®)cY. If Y = ¢ is
olosed under f, then f ’'is non-constant. An abstract algebra
or briefly an algebra is a pair A =<(AO,A1> such that 4, is
a non-ompty set and A1 is a function that relates to each
natural number n & set A1 n of some n~ary operations over
4ge .It may be sssumed (without loss of generality) that for
all n # ¢ the projections prJ.Ao — &y belong to A1 p» for
J = 15¢0e,ns Lot 4 be an algedra. Then ‘0 is oalled the
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Comparisons of algebras 3

aniverse of 4 ané for all n, A1,n is said to be the set
of all n-ary fundamental operations of A. A subset YA, is
closed in A if for all n and 211 f in A1 n? Y is closed
ander f. An algebra A’ i3 said to be a subalgebra of A pro-
vidad AO is 3 closed subset in A and for all n A1,n is the
set of all restricted functions f]Ao, where fe A, po If YS4,
is any non-empty sucset, than there is the laast subalgebra A
of A4 with Ys;AO, it is denoted by [Y]A and called generated
by Y. For eacn non-sapty set M we nave the M-power algabra
¥ or Ao M is an alpebra suczk. that (AM)0 = Ag is the set of

all functions “rom M to A, and (AM 4 is a function tnat re-

lates to each natural number n a sst (A ) of all func-
tions £ : (AO | L ApM induced by functlono fe A, n? i.s,
4 ’

- is defined by tae formula

f(9)1 ,?2’0'0'¢n) = fo <So1’502,..-,¢n>0

If n = 0, then f is ta: constant funotion wita value f. The
M-power A for M = 4" will be denoted by F (). If K = ¢,
than AM is a one~slemant algebra,

An equivalence relation ~ over a set X is said to be
a congruence of a n-ary operation £:X0 X provided for all

ai,a&e X it ai«;a& for L = 1,2,...,n, then f(a,,a5,400,a,) ~
n;’ If an equivalence relation ~ over AO ig

a congrusnhce relation of all fundamental operations of 4,

xzf(aa,aé,...,é

than ~ 1is called a congruenca of algebra A, & howmomorphism
from an algaetra A to an algebra A’ is a pair h = <h0,h1>
such that hO:A0 —°-Ab, h1 is a function that relaztss to each
natnral number n a function h A — 4 having the

1,n°"1,n i,n
following property: for all fe A1 n and all XqseeesXp
h”(f(XT,...,xn)) = h1 (£)(hy(x, ),...,h (x )}. The ocomposition
ol homomorpinisms h:A —-—A and h'A S 15 given by the

in Ay,

foraulas:

,lo \ - ’ ,/ sy . ,,
(2 e hig = hyohy, (hiehjy =y pohy
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4 Je Stomirski

end it is a homomorphism h o h : A — A", Hence we obtain

a category AL of all algebras regarding algebras as objects
and homomorphisms as morphisms, If A and 4’ are algebras,
then A’ is said to be an enrichment of A if A = A and for
all n A1 n"A1 n- Hence 4’ is an enrichment of A iff there
is a homomorphism r:A — A’ of the form'r = (ro,r ), where

/
Ty = 1Ao and for all n r1,n“1,n A1,n is the inclusion

map, ihe homomorphisme of the form » are called enrichmen-
tal. The composition of enrichmantal homomorphisms is an en-
richmental homomorphism, If A’ is an earichment of A, then
we write A< A, The subcategory of AL defined by all en-
riohmental homomorphisms will be denoted by Enr(AL) and called
enrichmental oategory of algsbras. Hence Enr(AL) is the poset
category < Ob Al,< > Now let us consider the endofunctors
of the category Enr(AL), i.e. the funotors of the form
H : Enr{AL) — Enr{(AL). H is called an enrichmental endofuno-
tor of algebras it for all algebras A we have A<, H(A). The
monads of the category Enr(AL) are said to be the enrichmen-
tal theories of algebras. Henos H 1is an enrichmental theory
of algebras if and only if H is an enrichmental endofunctor
of algebras and H2 = H. We give examples of enriochmental theo-
ries of algebras,

Example 1e For each algebra A we relate an alge~-
bra O(A) such that 0(4)y = Ay and O(A)1,n is the universe of

the subalgebra of Fn(A) generated by the set pr? of all pro-

jections pr?:kon—~— Age The elements of O(A)1 n o8re called
! ?
n-ary algebraic operations of A,

Example 2. PFor each algebre 4 we relate an
algebra p(A) such that p(A), = Ay and p(A)1.n is the universe
'of the subalgebrea of Fn(A) generated by the set prnlJ{c::aer},
where cg is the constant function with value a. The elsments
in p(A)1 n 8re called n~ary polynomials of 4.

A subuniverse of an algebra A 1s any clorsed subset in A

and moreover the empty subset provided every algebraical ope~-
ration of A is a non-constant function over A,. The set of all
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Comparisons of algebras 9

subuniverses of A is denoted by Su(4). Su(A)} is an interseo-
tion structure on the set AO and therefore it defines a clo-
sure operator on Ao. For every YE;AO there is the least sub-
universe U of A& such that YS U, it will be denoted by SgA(Y)
and called generated by Y. If Sg,(@) ¢ @, then X = Sg,(9¢) is
a olosed subset in A and thus X defines a subalgebra A’ of &
with Ab = X which is called generated by ¥ and we write
= [¢]A'

Examples 3. For any algaebra A we relate an alge-
bra Cs(A) such that Cs(A)O = A, and for all n CE(A)1 is the
set of all functions f: Ao - 4 having the property: for every
non-empty set M

(k) if Z is a subuniverse of AM and Pq1Poseeespy € Z, then

Lol P1PpreserPp) €20

The elements in Cs(A)1 p 8re n-ary operations of A ocompatible
with power subuniverses. In analogical way using (k) only for
a fixed M we obtain the algebra Cs ’(A).

Example 4, ©Por any algedbra A we relate an alge-
bra Co{4) such that Co(A)y = A, and Cc(A) is the set of
all n-ary operations f over Ay such that 1f ~ 18 a congruence
of A, then ~ is also a congruence of f, The elements in
C°(A’1,n are the n-ary operations of A compatible‘with con-~
gruences,

From above we obtain
{11) The mappings 0, p, Cs, Cs(") and Co defined in exam-

plés 1-4 are enrichmental theories of algebras sugh
that for all algsbras A:A < , O(A)< , p(4) < , Cola).

The identity endofunctor id of algebras (1d(A) = A) is

the least emrichmental theory of algebras. The complete endo-
n

functor om such that om(A), = Ap and cm(A)1 n= AOAO is the
greatest enrichmental theory of algebras. If H is an enrich-
pental endofunctor of algebras, then H is said to be closed
under an algebra A provided for all n H(A)1'n is a subuni-
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6 J. Stomirski

verse of F (A). If this condition holds only for a tixed n,
then H is n-closed under A, If the identity endcfunctor id

is closed under an zlgebra A and prng;A1’n for all n # O,

then A is called an slgebraic clone. The enrichmentel theories
0O, p, Cs and Cc are closed i.e. closed under all algebras ard
enrictments under those theceries are algebraic clones. H-al-
pebras under an anrichmenial theory H are algebras A such: thai
H{A) = A. O-algebras are algebras in the sense of liarczewski
[9]. An equivalenze = between algabras is said to be an
enrichmental comparison of algabras provided there is an en-
richmental taneory H of aigabras such %hat for any algebras A
and &’ we have

(¢) A= 4" if and only if H(A) = H(4 ).

If = 1is an enrichmental compariscn of algebras, then I
from (¢) is callad an enrichimental hull of = . Hence the
enrichmental comparisons of algebras are the kernels of en-
richmental theoriss, For an example let us observe that
J. Schmidt [10] has proved that the squivalence: A=, Iy
if '‘and only if Su(A) = Su(A’) has an enrichmental hull
H = Cs1, where 1 = {¢} (see abovs Ex. 3) anu taus =4 is an
enrichmental comparison of algabras. In ths sequel we give
othar enrichmental comparisons by using the cloning systems.

Remark. If G is a fixed function %that relates
to each natural number n a sat Gn f neary symbols with
G NGy = ¢ for n # m, thsn an algebra of tha type G is an
algebra 4 togetner with a family ¢ = {¢n of surjective func-
tions 3Gy —=4, po If 4 or {h,p>is an algsbra of the ty-
pe G, then sach n-ary symbul ge G, determines the n-ary fun-
damental operation ¢n(g) of A which is denoted by g,. The
category G~AL of algabras of iths typs G is a subcategory of
AL with morphisms h:A —= A suca that h1,n(gA) = gy for all n
and all ge;Gn. For the %theory of algebras of a type G see
the papers [3,5,11].
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Comparisons of algebras 7

2. The cloning closure operators

4 oovering space is a pair C =<CO,C1> such that C, is
a set and C, is a subset of 2 0 with Gy = U C;u If C is a
oovering space, then Cj, is oalled the support of C and C1
the coverring family of C. If C and C' are covering spaces,
then a morphism from C to €’ 1s a function h:Cy — C('J such
that for all XeC; h™'(X)e C,. The composition of the mor-
phisms is a morphism, Hence we obtain a category Cov of all
covering spaoces. A covering space C is ocalled topological if
the following conditions hold:
(¢p 1) ¢,CyecCy,
(tp 2) if X,YeC,, then XnYeCy,
(tp 3) for allaSC.] Uo<eC1.
A covering space C is said to be open provided

{op) for all peCy,X,YeCy, 1f pe XNY, then thers is
Ue c1 with peUc X nY. Ever,z open covering space c_determines
a unique topological space C with C0 = C0 and C1QC1 guoch
that C1 is a base of C. The full subcategory of Cov defined
by all topological spages is denoted by Top.

A morphism h:C — C’ in Cov is said to be minimal provided
Cq = {h'1(x):XeC'1}. The subcategory of Cov defined by the
ninimal norphisms is denoted by Covm. Moreover, we shall de-
note by Cov, the suboategory of Covy admitting only the in-
clusion map h{(x) = x for xeCo. If h:C ‘I'-—C' is a morphism
in Covy, then C, = {XnCO:Xe c’1}, CyS Cy and we write C<_ C
or C = C'[C, and moreover, C is called a subspace of C'.
For every subset XSC(') there is exactly one subspace Csgy C
with Cy = X and we write C = C’|X. The set of all subspace
of C' will be denoted by 8(C’). Henoe the category Cov, may
bé considered as the poset category < Ob Cov,\<s>. A covering
poset category is a full subecategory of Covs defined by a
oclass of cowvering spaces closed under the subspace opera-
tor s, Hence a covering poset category 1s a poset category
<V,$8>, where VS Ob Cov and 8(V) = V. The covering poset
category <V,$B> will-be briefly denotad by V and the opposite
category {V, B>>by vOP, Now we give a definition.

1

/
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8 Jo Stominski

(2,1) Definition. A cloning closure operator
is a triple E = (EO,E1,E2> such that B, 1s a non-empty set,
E1 is a oovering poset category and E2 is a quasi-functor
from E?p to Set having the following properties:

{00) for all objeots C in By Ez(c) is the set of all sub=-
sats of Eoco

(01) for every morphism C<C’ in E, the funotion B,(C< c’)
preserves the inclusion relation 'and for eyery Ze Ez(c')
and Xe C, we have ZIXQEE(CIXSC’)(Z), where Z|X is the

set of all restricted functions f|X with fe Z , c
{c2) for every morphism C<C' in E,, set Z¢€ EZ(C’) and fe B Y

we have f€ B (C<C )(2) if and only if for each Xe¢ C1

the function flx belongs to B (c|x<c 1(Z).

If B is o oloning closure operator and U is a full sub-
category of E1 closed under the operator s, then the triple
E|U :(EOV,U,E?_[U”)ia also a cloning closure operator and
we call it the suboperator of B induced by U, Now we prove
the following faot,

(2.2) For every oloning alosure operator B we have:

(1) E,(CsC’) = By(1g) o By(C<C') = Ep(C<C') o By(1gr) =
= E51g) o By(C<C) o Bo(140),
(11) z|cysE,(C<c’)(2),
{1i1) for aevery object C (i}n E, Eg = 32(1C) is a closure ope=~

rator on the set By 0.
Proof . (i) holds since E, is a quasi-funotor.
(11) holds-by (e1) and (02). By (e1) B preserves the inclu~
sion relation, By (ii) we have ZSBq (Z) and Eg = B, since
E2(1 ) = E, (1 ) o E2(1C) by (1). Henoo B, 18 a closurs opsra-

tor on the set By O and (111) holds,

An invariant space over a oloning closure operator B is
a pair<{¢,Z> such that C 1s an object in E,.and Ey{2) = Z.
1£<{C,z> and <C',%’) are invariant spaces over E, then a
morphism from<C,z) to{C’,2> is any function hiCy —= Cy
such that for all f¢ Z' the composition £°oheZ. Hence we
have a category Sp(E) of all inveriant spaces over a cloning

- 18 =



Comparisons of algebras 9

olosure operator ¥, Bvery invariant spaoce (C,Z} over E and
any subset X< C, determines by (2.2) a invariant space
{c|x, EZ(C)X<:C)(Z)> over B which is called a subspace of
{C,Z> induced by X. A selection over a cloning closurs ope-
rator B is a tunction & that relates to each natural number n
an objeot «(n) in E, such that(x(n)o = Eo. Every selection «
over E defines a tunction B o) that relates to sach algebra A
with 4, = EO an algebra A = E( )(A) such that AO = By, and
for all n A1 n = q(n)(A1 n)e From (2.2) we obtain:

(2.3) For every selection & over & cloning closure ope-
rator E the function E(a' is a monad of the poset category

EanO(AL) being the full subcategory of Enr(AL) defined by

all algebras A with by = Eo.

An slgebra 4 with pr® SAy p for alln ¥ 0 is said tc be
a clone over E provided there 15 a selection & over E and
A = ( (A). Since B does not depend on A the algebra
A = BY%)(a) with pr C:A1 p 18 slways a clone for all A and
all selections x over E, If A 18 a clone over E and A = Ekﬂ(d)
then 4 is called ano-clone over E,

A oovering space C with s one-element covering tamily
C1 = {Co} may be considered as the set C, and the covering
poset category defined by all those covering spaces may be
considered as the poset category Set, = {Ob Set,=>. By easy
verifioation we obtain

(2.4) Bvery algebra A defines a cloning closure operator
al(A) such that al(A)g = Ay al(A)1 = Set, and Al(A) (McM')(2Z)
is the set SgAM (Z)ll, where AY is the l ~-power algebra
of A. The operator al(A) admits only one selection o with
o(n) = Ag.

An algebra A" with Ay = Ay 1s a olone over al(A) if and
only if for all n A1 is a subuniverss of F (A) and
mr c A n for all n # 0. Hence A is an algebraic olone 1if
and only if A 18 a clone over al(A).

4 oloning closure operator E preserves an algebra A pro=-
vided Ey = A, and for eaoch morphism c<c’ in E, if Z is 8 sub-
universe of the algebra A O, then E,(C<C )(Z) is a subuni-
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10 Jo Stominski

verse of Aco. Obviously al(A) preserves A. Now we introduce
the interpolational cloning closure operators.

(2.5) Definition. An interpolational operator
is a triple I = (IO,I1,12> such that I, is a non-empty set,
I1 is the covering poset category Cov, and 12 is a quasi-func~
tor ﬁggm I10p to Set such that for all objects C IZ(C) =
= 2IQ and for every morphism C<C' in Cov, and Z¢€ Iz(c'),
I,(€<C")(2) is the set of all functions f:Cy— I, such that
for each Xe C1 there is a function he Z with £|X = h|X.

Now we prove

(26) Theorem.,. For every non-empty set Y there
1s only one interpolational operator I with I, = Y and it is
denoted by I(Y). Moreover, every interpolational operator I
is a cloning closure operator preserving all algebras A with
Ay = Ige

Proof. Tpe mapplings 12 are uniquely determined
by IO. From the det&nition (2.5) it follows that 12 is suech
a quasi~-functor that it is a clejpning closure operator. Let 4
bg,any algebra with Ay = I0 and let Z be a subuniverse of
(0]

4 "o For all n snd all fe A1,n and all ©qsppsesersPp €2y =

= IZ(C:EC')(Z), p=1 °(¢1,¢2,....¢n)e Z, since for every
Xe €y by (2.5) we have @|X = :'.x(gp1lx,§02|x....,gon|1) =

c
= £8(h | X,By X, euyhy(X) = £ Olhy,hp,eea,hy) [X, where hye 2
it
c
and f- (h1,h2,...,hn)e Z, beocause 2 is a subuniverse of A 0,

Hence Z1 is a subuniverse of ACO
algebra A,

A covering space C' is called an enrichment of a ocovering
space C if Cy = C, and C,SC; and then it is written C b4 C.
The covering poset category defined by all open covering
spaces is denoted by 0Cov. Now we give a definition of a

localizational operator,

and thus I preserves the
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(2.7) Definition. A localizational operator
is a triple L =<LO,L1,L2> such that L(J is a non-smpty set,
L1 is the covering posat category OCov, and 1.2 is a quasi=-
~functor frgm L, °P {5 Set suck that for all objects C in L
0
LZ(C) = 2L and for every morphism C<C’ in L, and Z¢€ LZ(C')
we have

Ly(c<c')(2) =U{12(c”|c0s c’)(z) + ¢” ;—Fc},

where I is the unique interpolational operator with 1y = Lye
{2.8) Theorem, For every non-smpty set Y there
ie only one localizational operator L with L) = Y and it is
denoted by L(Y). Moreover, svery looalizational operator L
is a cloning closure operator preserving all algebras A
with 4, = L.
Proof., The mappings L2 are uniquely determined by
L, and by tixed category L,. By (2.6) and (2.7) L is a cloning
closure operator. Let A be any algebre with Ao = Lye Let us
conaider thecset Zy = L2(C<C J)(Z), where Z is a \subuniverse

of algebra 4 U, It is sufficient to prove that =

= fco(<p1,_¢2,...,9zn)ez for all n,fe A1 n 8nd @, ,902,...,pne Zy
Since goiez there ars Ci 4 C such that 9JieI (C |C C;)(Z).
Hence for pe C[) there ars xgp’e €4S Cy with pexgp’ and

hye 2 with g, [1{P) = b, [¥{P), where ¥{P) - x{P)n ¢, 1-1,u..,n.
Since C' 1s open there is U(p)ecfI with peU(p'c x(‘p)nx(p’n

N ues X(p’. Thus tor.Y(P) » ylPln Cy We have @, IY(p) :

= h |Y(p) for 1 = 1,...,n. Honoe we obtain gJIY(p)

y(p)

p)
IY( (¢1IY(p ,...,¢n|Y(p)) = f (h1|Y(p ""'hnlY(p)) =

c C
= f 0(h1,...,hn)lY(p) = le(p,’ Where h = f o(h.l,...,hn)ez. N
Let C” pe the covering space such that C;' = C(') and CT =
= {U(plzpe cé,}. Then C*H—C' and g« I,(C%[cy= c*)(z) and
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12 Je Skomindski

thus ¢<;Z1. Herce 1 preserves A and this tinishes our proof
of Thecrem (2.8},

Let E and E’ be any cloning closure operators. E' is said

i B! = &, 5 B o
to be an enrichment of E provided EO =Ino, E1 = By and Leéén2
C

or for every morphism C<C’ and Z By, 0 we have E?(csc’;(z)g
SEé(Csc')(Z). If E' is ar enrichment of E, then we write
E<, E'. The poset category {CLO,< .>, where CLO is the class
of all cloning closure operators, will be denoted by CLO,
and called enrichmental poset category of cloning closure
operators,

3. The clonings system of algsbras

—= A cloning sysiem of algebras is each functor ¢:Enr{AL)-—
CLOr such that:

(1) for every algebra A Q(A) is a cloning closure ope~-
rator which preserves the algebra &, g

{2) for ell algebras 4 and A" Q(A); = Q(A')1.

The covering poset category G¥ = Q(4), from (2) is sald
to be the covering poset category of a cloning system Q of
algebras, A selection over a cloning system Q of algsbras
is a mapping 7 that relates to each algebra A a selection
7(A) over the cloning elosura operator Q(A). A selection
of algsbras is a mapping ¥ that relates to each non-smpty
set X an algsbra W(X) with W(X)0 = X. By (2.3} we obtain:

(3.1) For each oloning systsm Q of algebras, each selso~-
tion g over Q and for every selection W of algebras the
mapping H that relates to e¢very algebra A an algebra H(A) =

Z(W(Ao)) .
= Q(w(ay)) (A) is an enrichamental theory of algebras,
By easy verification we have the nsxt faot,
(3.2) For each oloning system Q of algabras, eaoh seleo~-
tion ¥ over-Q and every enrichmental endofunctor I of alge-
bras the mapping m(Q,y,H) thzt relates to each algebra A

an algebra

(Q,7,H) (4) = o(m) 7 8)((a))

is an enrichmantal endofunctor of algebras,

- 22 -



Comparisons of algehras 13

The sndofunctor m(g,y,H) for H = id {id{A) = A} will be
briafly denotsd by m{¢,7). By (3.2) and {2.3) we obtain the
following fact.

(3.3} If for a cloning system Q of algebras and for s se-
lection 7 ovar Q we have Q{4) = Q(A') and ria) = 7(4") provid-
ed A, = Ab, then n(¢,7) is an enrichmental thaory of algsdbras,

" Let us consider the applications of {3.3),

Example 1e To every algebra A we relats the
interpolational operator J{4) = I with I0 = Aye By (2.6}

J is a cloning systsm of algebras and by (3.3) m(J,cw), whare
w 1is a mapping that relates to every non-empty set X a selec-
tion w(X) over I X) and Cy is such a selection over J that
ow(A) = w(Ao) for all A, is an enrichmental theory of algebras.

Example 2. To svery algebra A we relate the lo-
calizational operator 1(A) = L with L, = A,. By (2.8) the
mapping 1 is a clohing system of algebras and hy (3.3)

m(1, Cy }, where v is a mapping that relates to every non-empty
get X a selection v(X) over L X and Cy is suoh a selection
over 1 that c (A) = v(4,) for all A, is an enrichmental theory
of algebras.

The Theorem (2.4) determines the algebraic cloning system
al of algebras which does not fulfil the assumptions of (3.3).

Sinos a cloning system Q of algebras is a functor from
Enr(AL) %o CLO, therefore if A<, A', then Q(A)< , Q(A") and
thus every invariant space {C,Z) over Q(A’) is an invariant
space over Q(A) because ZEQ(A)C(Z)_C_Q(A')C(Z) =2 or
Q(4),(2) = 2, Hence we have:

{3.4) If Q 18 a cloning system of algebras and for alge=-
bras A and A’ we have A<, A’, then the oategory Sp(Q(a’))
of all invariant spaces over Q(A’) is a full subcategory
of the category Sp{Q(a)).

If Q 18 a cloning system of algebras and V is a full
subcategory of the poset category Q™ closed under the sub-
space operator 5, then V defines a cloning system Q' = Q|V
of algebras such that for every algebra A we have Q'(A) =
= Q(A)|Ve Then Q' is ocalled a subsystem of Q induced by V.
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Sp{Q’(4)) is the full subcategory of Sp(Q(A)) defined by all
invariant spaces {C,Z) with C in V, BEvery cloning system &
of algebras defines a comparison = Dbetween algebras by the

Q
formula:

A =4 if and only if A, = A; and Sp(G(A)) = Sp(a(a’)).

el

If the comparison = has an enrichmental hull, then we say

£

that the enrichmental hull H of E? is an enrichmental hull

ot Q and we write H = Q, Hence for an enrickmental theory H
of algabras we have H = Q if and only if for all algebras A
and A A 3 & iff H(A) = H(4' ).
If Q' is a subsysten of a cloning system ¢ of algebras
and A gtN , then also A = 4’ , Every cloning system Q of alge-
bras such ‘that Q(A) = Q(A") provided A, = Aé has as an enrich-
mental hull the greatest enrichmental thesory cm of algebras,
Thus J = 1 = cm by the examples 1 and 2, To determine the
enrichmental hulls of the algebraic cloning system al of alge~
bras and its subsystems let us consider the example 3 from
the § 1. Bvery full subcategory V of the poset category
al® = Set8 closed under the subspace opsrator S defines an
enrichmental theory Cs(v of algebras whioh relates %o sach
algebra A the algebra A = ( (4) such that Ao = A, and
for all n, A; is the set of all functions f: AO — 4,
having the property (k) for all sets M in V (ses § 1, exam-
ple 3).
(3.5) Theoreme. The enriohmental theories Cs
and Cs(v) of algebras are the enriochmental hulls of the cloning
systems al and al|V of algebras, whers V is any full subcate-
gory of Set with §(V) = Vv, Morsover, for 8very algebra A we
have A 5 ola) = = Cs(4) and & J7y O(A) .17y cs'V (?\)ﬁ
Proof., From the definitions of Cs and Cs it
follows that Sp(al{a)) =U { {M}xSu(Cs(A)M) :t MeOb Set} and
splallv(a)) = U { {u} su(cs!V)(a)¥) : secob V} for every
algebra A, Hence if Cs(A) = Cs(A’), then Sp(al{a)) = Sp(al(a’))
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or A= 4, If A = 4, then from the definitions of = and
al al al

Cs it follows that Cs{A) = Cs(A’). Thus al = Cs. In analogical
way 1s proved that éiTV = Cs V). The rest is obvious.

From (3.5) for V = 8(1), where 1 = {¢} we obtain theorem
of J. Schmidt [10] mentioned in § 1.

Example 3. Let A be the algebra of all integers
with the operations + and ~-. Morsover, lst A" be the enrich-
ment of A by adding the absolute value Ifl. Then A iﬁ 4 and

OlA) # 0(4"), but Ce(A) = Cs(a’).
(3.6) If 0(A) = 0(4’), then A = A’ and thus Cs(4) =
= cs(a’'),
Proof. By (3.5 A= 0(a) = 0(4") = A" and thus

a
ce{A) = Cs(a’).

Let H and S be c¢losed enrichmental endofunctors of alge-~
bras with H< S (i.e. H(A)1'nf_:._S(A)1’n for gll A and n). I£Q
is any cloning system of algebras, then an n-affine space
over an algebra & undsr (Q, H ,S) is an inveriant space {C,Z>
over Q(A) such that C, = Ao » 228(4), ,n 8nd Z = Q(A) (H(A)1 0
An slgebra A is n-affine under ((,H, S) if there ig'a n-affl-
ne space over A under (Q,H,S). An algebra A is affine under
(Q,H,S) if A is n-affine under (Q,H,S) for all n, The n-affi-
nity or affinity under (Q,H,cm) is called n-completion or
completion under (Q,H). From the definitions it followa

(3.7) Bvery algebra A is affine under (Q,H,m(Q,y,H)),
where 3 is any selection over Q.

An algebra A with prnQA.]’n for all n ¥ 0 is said to be
a clone over a cloning system Q of algebras if there is a se-
lection 7 over Q such that A = m{Q,7)(A). If A is a clone
over Q and A = m(Q,7|(4), then A is a y-clone over Q, An alge-
bra A is an algebraic clone if and only if 4 is a clone
over al,

-

4, Interpolation-algebraic and localization-algebraic
cloning systems of algebras

Let B and E’ be two cloning closurs operators such that
By = 86 and B; = Set . We say that E’' preserves E provided
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’

, c
for every morphism C<C in Is‘1 and for every Z <&, O ®hich
is B -closed (i.e. E./(2) = 2) the set B,(C<C')(2) is
C0 C0 2

B, -closed. Hence E’ preserves an algebra & if and only if B’

preserves al(A).

(441) Theorem. Let B and 3’ be two cloning clo~
sure operators such that Eo = Eé and E1 = Setg. If B’ pre-
serves B, then a triple E” = <E6,E:,Eg>'such that By = By,

H ’ "

E1 = E1 and the map E2 is defined by the following formula
” ] ’ ’
By(C<C')(2) = B (C<C )(EC(')(Z))

is a cloning closure operator whioa preserves E. Morsover
if {C,Z) is an object in Sp(E”), then {Cys2> 18 an objeot
in Sp(E) and in this way a functor P:Sp(E”) —Sp(E) is ob-
tained,

Proot, Since B' preserves E the mapping Eg is
a quasi-functor. Hence by easy verification we prove that B”
is a cloning closure operator which preserves K., The rest
is obvious,

The cloning closure operator E” given by (4.1) is denoted
by E'a E and called a composition of B and E'. Now let us oon-
sider the applications of Theorem (4.1). By Theorems (?.6)

A A
and (2.8) the oloning closure operators I 0" ana 1 ¢ pre-
serve al(A) and thus by (4.1) the formulas
(4g) (4g)
Int(a) = I a8l(A) and Loe(A) = L o al(a)

define the cloning olosurs operators preserving the algebra A
and thus we obtain the interpolation-algebraic cloning sys-
tem Int and the localization-~algebraio cloning system Loo

of algebras. Hence Int* = Cov, and Loo™ = OCov,. We prove
that the systems Int and Loo and thelr subsystems have the
enrichmental hulls, For this for each algabra A we define

the algebras 4’ = Cis{A) and A” = C1s(A). {' or A" is an
algebra such that Ay = Ay = Ay and for each natural number n
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’

an operation f:Aon-—a-AO belongs %o Ay . or Ay p 1f and only
? ]

if for sach covering space or for each open covering space C

the following ocondition holdss

(n) if Z is a subuniverse of the algebra A
(a,) {ay) = on = o
I, ~ -closed or Ly ~ ~closed, then £(z2%)c. 2, where £ « £ ,

The mappings Cis and Cls ars enrichmental theories of
algebras, Let V be any full subcategory of Cov, or OCov,
olosed under the subspace operator s. In an analogical way
for any slgebra 4 we define the algebras Cis(v)(A) and
Cls(v)(A) by using (u) only for covering spaces C in V. The
mappings Cis and Cls v are also enrichmental theories of
algebras, From definitions we have:

(4.2) If Q 18 Int or Loo and A<, A’ and moreover {C,2>
is an object in Sp(Q(A)), then <C,Z» is an object in
Sp(Q(4")) if and only 1£<C,,2)> is an object in Sp(al(a’)).

(4.3) Theorem, The enrichmental theories Cis,
c1s, cisV) and c18{™ of algebras are the enrichmental hulls
of the cloning systems Int, Loc, Int|[V and Loo|W of algebras,
where V and W are any full subcategories of Covs and OCovB
closed under the subspace operator s. Moreover, for all al%e-

i),

C
0 and Z is

bras 4 we have A . 0(4) % Cis(a), A I?tw o(a) Intlv Ci8

A Siw 00A) S5y cas ™ (a) ana 4 25 o(a) £ cis(a),

CO CO
Proof. Let us denote ?y ?iuc(A ) or Sluc(A )
A A
the set of all IC 0 ~closed or LC 0 ~closed subuniverses of
c c
the algebra A O, We put ti(C) = {C} x Siug(a ) and t1(C) =
C

{c}xs1uy(a ). Then we have Sp(Int(a)) =U {ti(c) : ce
€ Ob Covs}, Sp(Int|V(4)) = U{ti(C) : CeOb V), Sp(Loc(a)) =
U-{tl(c) : Ce Ob 0Cov, } end Sp(Loc|w(a)) = U {tl(c; : C e ObW),
Hence by the definitlions of theories Cis, Cis(v’, Cls and
Cls(W) we obtain the first part of Theorem {(4.3). The rest
is obvious. This finishs the proof of Theorem (4.3},

If & is a selection over a cloning closure operztor E,
then we say that a covering space Cx -admits a set ZS;EU 0
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provided for all n, all ¢1,502,...,gonez the following oon-
dition holds:
(ad) for each X¢ C, there is Yeo((n)1 such that
A

KPyrPprecesPp) (X)S Y. Since § © <, Int(4) the selections

over I %o and Int(4A)} are the same.

{4.4) Theorem. Let H be an enrichmentsl endo=-
functor of algebras closed under an algebra A. If « is a se=
lection over Int(a), {C,Z2> is an inveriant space over Int(4)

such that (CO,Z> is an invariant space over al(H{A)) and
the covering space C & -admits 2, then {C,Z) is an invariant
space over Int(A’), where A’ = Int(A)(°‘)(H(A)).

Proof. Since H is closed under A therefore A’ =
= I(“)(H(A)), where I is the unique interpolational operator

. 7
with I, = A,. Hence for all n, A1,n = Ia(n)(H(“1,n) and thus

for every f € A, and every Yex (n), there is h(Y’eH(A)
1,n 1 1,n

with f|Y = h(ml'!. By (4.2) it is sufficient to prove that
{Cps2> is an objecg in Sp(al(A’)). For this let us consider

any function.p = f 0(¢1 sPpseessPp)s Where fe A:l,n and
PysPpseee 9@y € Lo The pair {C,2> is an object in Sp(I). Hence
el iff for every XeC, there is ye Z with PlX =y|X. Leg
X€ Cye Sinoe Co-admits Z there is, by (ad), Ye 0((n)1 with
(¢1,¢2,...,¢n>(X)QY. Thus ¢|X = fx(¢1lx,¢2|X,...,pn|X) =
=y| X with y = h(Y)(¢1,¢2,...,;on)e Z, becauss (CO,Z> is in
Sp(al(H(4)). Hence pe¢ Z or {Cy,2> is an object in Sp(al(A’)).
Thie finishs our proof of Theorem (4.4).

Moreover, let us remark that &' = m(Int,y,H)(A), where A’
is the algebra in theorem (4.4) and 7 is any selection over
Int with 7(4) = o,

(45) T heorem. Let H be an enrichmental sendo=-
functor of algebras closed under an algebra A such that H(A)
is an algebraical clone. Moreover let o be such a selec¢tion
over Init(A) that for each n the covering :tvaade & (h) & -admits
the set H(A)1’n. Then the algebra
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y = Int(A;‘“’(H(A))

is @ clone over Int, i.e. A’ 1is 7-clone over Int, where 7 is
any selection over Int with 7(4’') =

Proof., Foralln,A' =

1,n a(n;(H(A)1 o)+ Hence

the peir{«(n), A1 n> fulfils the suppositions of Theorem (4.4).
Indeed o (n) o ~admits A1 p» because o (n) o -admits H(A) 1,n*
But H(A) is an algebraioal clone and thus H(A) p 18 a sub-
universe of F (H(4)), Hence, by (2.6), A 1 13 a subuniverse
of F (H(A)) or(o<(n)0,A1 n> is an object in Sp(al(H(A))).
Obviously(a(n) A1 n> is an object in Sp(Int(4)). Hence, by
Theorem (4.4}, (q(n) A1 >is an object in Sp(Int(a’)) for
all n and thus &' = Int(A )(°‘)(A ) or A" 18 a 7-clone for
any seleetion 7 over Int with 3{(A’) =o. o is a seleotion
over Int(A’) because Int(a’), = A, = Aye This finishs the
proof of Theorem (4.5).

Let ##« be any infinite ?ardinal number, Let us denote
by o 4 the seleotion over I 40) guch that for all n o (n),
18 the set of all subsets X of Ao with card(xi)<4ﬂn. The
covering space o, (n) o,~aduite every set ZQAOAO « Moreover
every covering space C o ~admits any set Zc AOCO. Hence by
theorem (4.5) we obtain

(406) Theorem,., For every infinite cardinal
number # and for each enrichmental endofunotor H of algsbras
closed under an algebra A such that H(A) is an algebraiocal
clone the algebra

, {oux )
A" = Int(A) H(A)

is a clone over Int, i.e. A’ 1s a 3-clone over Int for any
selection 2 over Int with 7{A’) =ou.
For a connexion to the last part of § 3 we give a remark.
Remar k. The determination of a characterization
of algebras A being n-affine or affine under a givem triple
{Q,H,S) is a open problem. Some partial solutions of this
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20 J. Stominski

problem for special cases: Q is al or Int|Fin (where Fin is
the full subcategory of Covg defined by all C such that C1
is the set of all finite subsets of Co) and {H,S) e{(p,Cc),
(p,or), (o,cm)} are given in papers [1,2,4,6,7].

5. The smooth cloning system of topological algebras

A topological slgebrs is a pair A = (AO,A1> such that

= <A00,A01> is a topological space and A1 is a function
that relates to each natural number n a set A1 n of n-ary
continuous operations f: AOO 00 over the topological
space 4, (i.e. f 1is a morphism in the category Top from
the product space Aon to Ao).

Every topological algebra A determines an algebra U(4)
such that U(A)0 = AOO and U(A)1 = A;+ A morphism for a topo-
logical algebra A to a topological algebra A' is such a
morphism h = (ho,h > from U(A) to U(4A') in AL that h, is
a morphism in Top from AO to Ao. Hence we obtain a category
TAL of topological algebras such that U is a fqrgetful func=-
tor from TAL to AL. Puting for topological algebras A and A
A< A if and only if 4, -Ao and A1 ncA for all n we
have a poset oategory Bnr(TAL) = { 0b TAL,\, >wmioh may be
considered as a subcategory of TAL. The endofunctors of
Enr(TAL) of the forms H such that A<, H(A) for all A are
called enrichmental endofunctors of topological algebras.

The monads of Enr(TAL) i.e. the enrichmental sndofunctors H

of topological algebras with H® = H are said to be the enrich-
mental theories of topological algebras. For instance we have
the. enrichmental theories of topological algebras O and p

such that 0(A) and p(A) are the topological algebras with
O(A)o = Ay O(A)1 = O(U(A))1. P(AJO = A, and D(A)1 = pr(A))1
for all topologlcal algebras A,

A clonihg system of topological algebras is a funotor Q
from the category Enr(TAL) to the category CLO, such that:

(1) for all A Q(A) preserves U(A) ,

(2) for all A and A’ Q(A), =Q(a’),,
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(3) for all A, all selsotions « over Q(A) and all n we
have if Z is a set of continuous n-ary operations over AO,
then the set Q(A)a(n)(Z) is also a set of continuous n-ary
operations over the topological spaoce Aye

Hence if Q is a cloning system of topological algsbras
and o 13 a selection over Q(A), then Q(a) *} determines a mo-
nad of the category EnrAO(TAL) whica is the full subcategory
of Enr{TAL) defined by all topological algebras A’ with Ay= Ag.

"

For any topological algebra 4’ with Aj = Ay we have 4" =
(a) ! no_ 1% _ ’
= Q{A) {a") if Ay = A, and A1,n = Q(A)a(n)(A1’n) fOﬁaall n.
A topological algebra A is a clone over Q if A = Q(A)( )(A)I
for a selection o over Q(4) and prns;A1 p for all n £ O
| 4
A oloning system Q of topological algebras defines a

comparison Ei of topological algebras such that

A% A" if and only if 4, = A, and Sp(Q(A)) = Sp(Q(a’)).

If %? is a kernsl of an enrichmental theory H of topological

algebras, then H is called an enrichmental hull of Q.

For a topologlcal algebra A, a set M and a set Z!EAOO
let us denote by inA(Z) the least topological space (with
respeot to the enrichmental relation I—;) C with Co = M suca
that every mapping feZ2 1s a morphism in Top from C fo Ay
Then we have the following facts:

M

(501) inA(Z) = inA(SSU(A)n(Z))O
(5.2) in,(z1¥) = inA(Z)IM' = in,(2,), where M S M;
Zq = Lz(inA(Z)lM's in,(2))(2)

and L is the localizational operator with Ly = Agge
Using (5.1) and {5.2) we prove the next theorsm.
{(5.3)] Theorem. We have a cloning system

D: Enr(TAL)—-CLOr
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of topological algebras that relates to a itopological alge=-
bra A a ¢loning closure operator D(A) such that D(A)o = Aygs
D(A)1 = Set, and

D(A) (M S M)(Z) = Lp(iny(2)]M'< 1ny(2)(Sgy(y)n(2))

where L is the localizational operator with Lo = 40°

Let us observe that an invariant space over D(A) is a pair
Q4,2 such that 2< Ay M, the pair (in,(2),2) is an invarient
space over Loo(U(A)) and {H,2) is an invariant space over
al{U(4)). Hence it follows that Sp(D{A)) is a full coreflective
subcategory of Sp(al(U{4A))). Moreover, we have the following
faot:

(5.4) The mapping

{M,2)> +=in,(2)

defines a functoexr i_nA:Sp(D(A)) —= Top having a left adjoint.
The unit and oounit of this adjunotion are pointwise bi~
morphisms, :

Proof., If f:(M,2>—=<M ,2> is a morphism in
Sp(D(4)), then £ is a morphism in Top from in,(Z) to im,(2’)
since, for all h in 2', hofeZ and thus hof is a conti-
nuous mapping from inA(Z) to Ao Hence iEA is a functor., For
each topologlcal space C the pair {C,,2), where Z is the set
of all morphisms in Top from C to Ay, is an objec¥ in
Bp(D(A)). Puting F¥C) = {CyyZ> we obtain a left adjoint
functor to iﬁk. The remain part is obvious,

By {5.4) every morphism in Sp(D(4)) is continuous and any
isomorphism in Sp(D(A})) is an homeomorphism, Therefors the
morphisme and isomorphisms. in Sp(D(A)) are called smeoth
mappings and diffeomorphisms over the topological algebra 4
and D 1s said to be a smooth cloning system of topologigal
algebras,

If A is a topological algebra and M a set, then a sub-
universe - Z of U(A)M is said to be olosed under localization
provided Z = LinA(Z)(Z)’ where L is the localizatiohal ope~-
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rator with Ly = Ay,e The set of all subuniverses of U(A)M
closed under the localization is denoted by steu(u(a)¥) ang
the product { }x Slcu(U(A) } by tA(M). With each topological
algebra A we relate a topological algebra A' = Cts({A) such
that A = A, and, for all n, A1 n is the set of all continuous
n-ary operations f: AOO —= Ay over Ay having the property

that for all set M holds (1lc):

(lc) if Z is a subuniverse of U(A)M clused under the lo=-
caligation, then fM(Zn)Q Z. Hence Cts is an enrichmental
theory of topological algebras. For every full subcatsgory V
of SetB closed(g?der the operator ‘8 we obtain an enrichmen-
tal theory Cts of topological algebras by using the condi-
tion (lc) only for M in V., Moreover, we have a cloning system
Q = D|V of topological algebras such that Q{A) = D(A}|V for
all topological algebras A. Let us observe that Sp(D(A)) =
= U {t,(0):de 0b Set, } and Sp(D|V(a)) = U {t,(m):Me b V],

Henoe and from the definitions of Ct8 and Cts!V! 1t follows
that Cts and Cta(v) are the enrichmental hulle of D and D|V
and thus we have proved the next theoream,

{55) Theorem. The enrichmentsl theories Cts
and Cts(v) are the enrichmental hulls of the cloning systems D
and D/V of topological algebras., Morsover, for each topo=-
logical algebra A we have: .A B'O(A) = cts(A) and
a5 ola) Sy cts(V)(a),

Now we prove

(56) Theorem. Let H be an enriohmental endo-
funoctor of algebras'glosed under U(A), where A is a tepologi-
cal algebra. Moreover, let {M,Z) be an objeot in Sp(D(4))
and in Sp(al(H(U(A)))). Then we have:

I. If X is a open subset in the product space Aon and
Pq9Ppresesp, BT suoh functions 1n Z that r =
=( 501,gp2,...,gon> :M-—=X, then hofe Z for all heL2(Aon|X <

< Aon(H(U(A))1 n)s» where L is the localizational operator
’
with BO = AOO'
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I1I. The pair (M,Z) is a object in Sp{al(4’')), where

, (o) (o, )
A" = Loo{U(A}) ° (H(U(4))) =L ° (&(U(a)))

and «, is a selection over Loe(4) and thus over L such that
o<A(n) = Aon for all n. "
Proof., LetH, =HU(A)), . there is C o 4"
such that he I2(C*|X$C*)(Hn). Let pe M, Then g = f(p)e X
and there is open subset x(P’ in Aon such that qe X(p’e C.T

and thus Y(P) = xnx(P) belongs to C*I X, and it is also open
in Aon. Henge there is d(p) in H, such that hIY(p) = d(p”Y(p).

Since f::i.nA(Z)—--AO':l is a morphism in Top the set X',g P} .
= f'1(Y(p)) is open in inA(Z). Thus we have obtained s cover-
ing space C 7 In,(Z) with C, = M and C, = {xgp’:pe M} such

that ho flx(P’ ° flx(P’ for all pe M, whare a{P) . £e 2 beoause

{M,Z> is an object in Sp(al(H(U(4)))). Hence hefe IC(Z) and
thus hofelL, (Z)(Z) = % because {M,2)> is an object in
) .

Sp(D(A)). This finishs the proof of part I. The part II
folllows from the part I for X = Aoon.

(5¢7) Theorem. LetH be an enrichmental endo-
funetor of algebras closed under*U(4), where A is a topolo=-
gical algebra, such that H(U(A)) is an algebraiocal olone with
continuous fundamental operations over the tqpologidal gpaoe
Ao. Then the algebra A' from.5.6.II is a clone over Loc, i.s.
A is z-olone over Loc for any selection y over Loo such that
78’ ) = &+ Moreover, the topological algsbra A" suoh that

"

n ’ .
AO = AO and A1 = A.‘ is a clone over D,
Proof. Let A" =H(U(A)) and let ¥ = Ay,". Then
] * ”» -, »
A1,n = I‘Aon(A1,n)' Since A" is an algebraical clone A1,n is

M
a subuniverse of 4% and thus, by (2.8), A;,n is ' a subuni-
verse of A*" ob(M,Af| ,n-> is an objeet in Sp(al(4®)). But
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A1 ,n is a set of continuous n-ary operations over A, and thus
Lin (A )(A nl = A1 n or <M, A >i£ an object in Sp(D(A)).

Henoo, by 5.6.1I, {M, A >is an obgeot in Sp(al(a’)) and
by (4.2), the pair(Ao ,A n” 18 an object in Sp(Loc(4a’))

for all n or A = Loc(4’) QA (a'), 1.6, A’ iB & clona over
Loc. Moreover, by the above considerations A" = p(a”)(® (A"),
where o is the unique selection over D(A”) .and o (n) = AOO s
or A" is a olone over D.

Let us observe that for instance the enrichmental theo~
ries O and p of algebras fulfil the suppositions concerning
H of the theorems (4.6), (5.6) and (5.7) for all algebras or
topological algebras A.
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