Valeriu Popa

SOME FIXED POINT THEOREMS OF EXPANSION MAPPINGS

In a recent paper [3] some fixed point theorems of expansion mappings are proved. In this note using a combination of methods used in [1]-[3] other fixed point theorems of expansion mappings are proved.

The orem 1. Let (X,d) be a complete metric space and $f: (X,d) \longrightarrow (X,d)$ a surjective mapping. If there exist non-negative reals a,b,c with a > 0 or b > 0 and a+b+c > 1 such that

(1)
$$d^2(fx,fy) \ge ad(x,fx)d(x,y)+bd(y,fy)d(x,y)+cd(x,fx)d(y,fy)$$

for each x,y in X with $x \neq y$, then f has a fixed point.

Proof. Let $x_0 \in X$. Since f is surjective, there exists an element x_1 satisfying $x_1 \in f^{-1}(x_0)$. In the same way we can take $x_n \in f^{-1}(x_{n-1})$, $n=2,3,\ldots$. If $x_m = x_{m-1}$ for some m, then x_m is a fixed point of f. Without loss of generality, we can suppose $x_{n-1} \neq x_n$ for every n.

If b > 0 then from (1)

$$d^{2}(x_{n-1},x_{n}) = d^{2}(fx_{n},fx_{n+1}) \ge ad(x_{n},fx_{n})d(x_{n},x_{n+1}) + bd(x_{n+1},fx_{n+1})d(x_{n},x_{n+1}) + cd(x_{n},fx_{n})d(x_{n+1},fx_{n+1}) =$$

=
$$ad(x_n,x_{n-1})d(x_n,x_{n+1}) + bd^2(x_{n+1},x_n) + cd(x_n,x_{n-1})d(x_{n+1},x_n)$$

$$\mathrm{bd}^2(\mathbf{x}_{n+1},\mathbf{x}_n) + (\mathrm{a+c})\mathrm{d}(\mathbf{x}_{n+1},\mathbf{x}_n)\mathrm{d}(\mathbf{x}_n,\mathbf{x}_{n-1}) - \mathrm{d}^2(\mathbf{x}_{n-1},\mathbf{x}_n) < 0$$

and $bt^2 + (a+c)t-1 \le 0$, where $t = d(x_{n+1},x_n)/d(x_n,x_{n-1})$.

Let g; $[0,\infty) \longrightarrow \mathbb{R}$ be the function $g(t) = bt^2 + (a+c)t-1$. Then g(0) = -1 and g(1) = a+b+c+1 > 0 from the hypothesis. Let $k \in (0,1)$ be the root of the equation g(t) = 0, then $g(t) \le 0$ for t < k and thus

$$d(x_{n+1},x_n) \in kd(x_n,x_{n-1}) \in ... \in k^n d(x_1,x_0).$$

Then by a routine calculation one can show that $\{x_n\}$ is a Cauchy sequence and since X is complete we have $\lim x_n = x$ for some $x \in X$. Let $y \in f^{-1}(x)$. Then we have

$$d^{2}(x_{n},x) = d^{2}(fx_{n+1},fy) \ge ad(x_{n+1},fx_{n+1})d(x_{n+1},y) +$$

+
$$bd(y,fy)d(x_{n+1},y) + cd(x_{n+1},fx_{n+1})d(y,fy) =$$

= ad(
$$x_{n+1}, x_n$$
)d(x_{n+1}, y) + bd(y, x)d(x_{n+1}, y) + cd(x_{n+1}, x_n)d(x, y)

and on letting n tend to infinity we have $0 \ge bd^2(x,y)$ which implies y = x. Since x = f(y), then x = f(x). So f has a fixed point.

The theorem may be proved in an analogous way if a > 0.

Remark. A fixed point of f is not unique in general. The identity mapping satisfies the condition of Theorem 1.

Theorem 2. Let (X,d) be a complete metric space and $f: (X,d) \longrightarrow (X,d)$ a surjective mapping. If there exist non-negative reals a,b,c with a+b+c > 2 such that

(2)
$$d(fx,fy) \ge \frac{ad(x,fx)d(x,y)+bd(y,fy)d(x,y)+cd(x,fx)d(x,fy)}{d(x,fx)+d(y,fy)}$$

for each $x \neq y$ in X for which $d(x,fx)+d(y,fy) \neq 0$, then f has a fixed point.

Proof. It is similar to the proof of Theorem 1.

Theorem 3. Let (X,d) be a complete metric space and $f:(X,d) \longrightarrow (X,d)$ a surjective continuous mappings. If there exists a real constant k > 1 such that

$$d^{2}(fx,fy) \geq$$

 \Rightarrow k min{d(x,fx)d(x,y);d(y,fy)d(x,y);d(x,fx)d(y,fy)}

for any x,y in X, then f has a fixed point.

Proof. As in Theorem 1, there is a sequence $\{x_n\}$ with $x_{n-1} \neq x_n$ and $x_{n-1} = f(x_n)$. This implies

$$d^{2}(x_{n-1},x_{n}) = d^{2}(fx_{n},fx_{n+1}) \ge k \min\{d(x_{n},fx_{n})d(x_{n},x_{n+1}); d(x_{n},fx_{n})d(x_{n},x_{n+1})\}$$

$$d(x_{n+1},fx_{n+1})d(x_{n},x_{n+1}); d(x_{n},fx_{n})d(x_{n+1},fx_{n+1})\} =$$

$$= k \min \left\{ d(x_n, x_{n-1}) d(x_n, x_{n+1}); d^2(x_{n+1}, x_n); d(x_n, x_{n-1}) d(x_n, x_{n+1}) \right\} = \\ = k d(x_n, x_{n+1}) \min \left\{ d(x_n, x_{n+1}); d(x_n, x_{n-1}) \right\}.$$

We have either

$$d^{2}(x_{n-1},x_{n}) \ge kd(x_{n+1},x_{n})d(x_{n-1},x_{n})$$

which implies

$$d(x_{n-1},x_n) \ge kd(x_{n+1},x_n) \ge \sqrt{k} d(x_{n+1},x_n)$$

or

$$d^{2}(x_{n-1},x_{n}) \ge kd^{2}(x_{n},x_{n+1})$$

which implies

$$d(x_{n-1},x_n) \ge \sqrt{k} d(x_n,x_{n+1})$$
.

Therefore

$$d(x_{n+1},x_n) \leqslant \frac{1}{\sqrt{k}} d(x_n,x_{n-1}) \leqslant \dots \leqslant \left(\frac{1}{\sqrt{k}}\right)^n d(x_1,x_0).$$

It follows that $\{x_n\}$ is a Cauchy sequence and thus $\{x_n\}$ converges to a point $x \in X$. By the continuity of f, $f(x_n)$ =

= x_{n-1} \rightarrow x for $n \rightarrow \infty$. Hence f(x) = x, which means that x is a fixed point of f.

C or ollary. Let (X,d) be a complete metric space and $f:(X,d) \longrightarrow (X,d)$ a surjective continuous mappings. If there exists a real constant c > 1 such that

(4)
$$d^{2}(fx,fy) \ge cd(x,fx)d(y,fy)$$

for any x,y in X, then f has a fixed point.

REFERENCES

- [1] B. Fisher: Common fixed points and constant mappings satisfying a rational inequality, Math. Sem. Notes, 6 (1978) 29-35.
- [2] B. Fisher: Theorems on mappings satisfying a rational inequality, Comment. Math. Univ. Carolinae, 19 (1978) 37-44.
- [3] Z.Z. Wang, B.Y. Li, S.M. Gao, K. Isé-ki: Some fixed point theorems of expansion mappings, Math. Japon. 4 (1984) 631-636.

HIGHER EDUCATION INSTITUTE, 5000 BACAU, ROMANIA Received May 16, 1985.