Vol. XIX No 2

Jacek Jakubowski

REMARK ON MULTIPLICATIVE SYSTEMS OF FUNCTIONS

Let us start from the following definition.

Definition. A sequence (X_i) of random variables is called a multiplicative system (MS system), if $X_{i_1} X_{i_2} \cdots X_{i_n} = 0$ for every sequence of different indices. If, moreover, $X_{i_0}^2 X_{i_1} \cdots X_{i_n} = 0$ for every sequence of different indices, (X_i) is called a strongly multiplicative system (SMS system).

The multiplicative systems contain a wide class of random variables, for example a sequence of bounded martingale direferences is a MS system, a sequence of independent random variables in \mathbf{L}^2 with the expected value equal to zero is a SMS system.

In this note we shall use the notation $X = (X_i)_{i=1}^{\infty}$, $Y = (Y_i)_{i=1}^{\infty}$. P (resp. Q, P_n, Q_n) will denote the distribution of the sequence $(X_i)_{i=1}^{\infty}$ [resp. $(Y_i)_{i=1}^{\infty}$, $(X_i)_{i=1}^{n}$, $(Y_i)_{i=1}^{n}$].

Theorem. Let X be a MS system and Y be a bounded SMS system, a.e. for every n $|Y_n(\omega)| \le K_n$ for some $K_n > 0$ and

all ω . If $\sup |X_i| \le \frac{D^2 Y_1}{\sup |Y_i|}$ for $i=1,2,\ldots$ (when $\sup |Y_i|=0$ we assume that $\sup |X_i|=0$), then there exist a probability space (Ω, \mathcal{M}, M) , a 6-algebra $\mathcal{N} \subset \mathcal{M}$ and a random vector Y' equidistributed with the random vector Y such that the random vectors X and X and X are equidistributed.

This result is a generalization of the result from paper [2], which was obtained for finite sequences. Another generalizations are given in [3]. The theorem explains the structure of MS systems, which contain infinitely many bounded functions, for example an infinite lacunary trigonometric system can be represented as a conditional expectation of Rademacher system with respect to some 6-algebra. Using the previous result [2] we can obtain such representation only for finite systems.

Lemma. Under the assumptions of the theorem for every continuous convex function $f\colon \mathbb{R}^\infty$ R, where topology on \mathbb{R}^∞ is generated by metric $\rho(x,y) = \sum_{i=1}^\infty \frac{1}{2^n} |x_n - y_n|$, there holds $\mathrm{Ef}(X) \leqslant \mathrm{Ef}(Y)$.

Proof. Without loss of generality we may assume that Y_n , $n=1,2,\ldots$, are uniformly bounded by one. In the opposite case let $K_m>0$ denote a bound for Y_m . We may consider sequences $X_n'=\frac{1}{K_n}X_n$, $Y_n'=\frac{1}{K_n}Y_n$, $n=1,2,\ldots$, for which the assumptions of this lemma are fulfilled and if the lemma is true for the sequences (X_n') , (Y_n') , then it is also true for the sequences (X_n) and (Y_n) . So we take this additional assumption that Y_n are uniformly bounded by one. Taking $I=[-1,1]^\infty$ with the metric $\varphi(x,y)=\sum_{n=1}^\infty\frac{1}{2^n}|x_n-y_n|$ we obtain the compact, metric space in which the random vectors X and Y take

with the metric $\varphi(x,y)=\sum_{n=1}^{\infty}\frac{1}{2^n}|x_n-y_n|$ we obtain the compact, metric space in which the random vectors X and Y take their values. For a fixed arbitrary convex, continuous function f: I — R we define a sequence $(f_m)_{m=1}^{\infty}$ of convex continuous functions, $f_m\colon I \to R$, by formula $f_m(x_1,x_2,\dots)=f(x_1,x_2,\dots,x_m,0,0,\dots)$. The sequence (f_m) is uniformly convergent to f. Let us fix arbitrary $\epsilon>0$. Since f is uniformly continuous there exists $\delta>0$ such that for every x,y satisfying $\varphi(x,y)<\delta$ there holds $|f(x)-f(y)|<\epsilon$. If we take N such that $\sum_{k=N}^{\infty}2\frac{1}{2^k}<\delta$, then for every n>N and every $x\in I$ there holds $\varphi(x,h_n(x))<\delta$, where $h_n(x)=(x_1,x_2,\dots,x_n,0,0,\dots)$. So we have for n>N and every $x\in I$ $|f(x)-f_n(x)|<\epsilon$. This means that the sequence (f_m) is uniformly convergent to f and as a consequence we get

(1)
$$\int_{T} f_{m} dP \xrightarrow{m \to \infty} \int_{T} f dP, \quad \int_{T} f_{m} dQ \xrightarrow{m \to \infty} \int_{T} f dQ.$$

By Corollary 1 of [2] we obtain $\int_{\mathbb{R}^m} g dP_m \le \int_{\mathbb{R}^m} g dQ_m$ for every convex, continuous function $g \colon \mathbb{R}^m \longrightarrow \mathbb{R}$. This implies $Ef(X_1, X_2, \dots, X_m, 0, 0, \dots) \le Ef(Y_1, Y_2, \dots, Y_n, 0, 0, \dots)$. Hence, for $n \ge m$,

$$\int_{I} f_{m} dP = \int_{I} f_{m} dP_{n} \leq \int_{I} f_{m} dQ_{n} = \int_{I} f_{m} dQ.$$

This gives

$$\int_{T} f_{m} dP \leq \int_{T} f_{m} dQ.$$

If we take m which tends to infinity, then, by (1), we receive from (2) the desired result $\int_{I}^{\infty} f dP \leq \int_{I}^{\infty} f dQ$. The lemma is proved.

Now the theorem follows from Edgar's result (Theorem 2.2 of [1]), which asserts that the theorem and the lemma are equivalent.

REFERENCES

- [1] G.A. Edgar: On the Random-Nikodym property and martingale convergence, Proceedings of Conference on Vector Space Measures and Applications, Vol. II, Dublin, 1977, Lecture Notes in Math. 645 (1978) 62-76.
- [2] J. Jakubowski, S. Kwapień: On multiplicative system of functions, Bull. Acad. Polon. 27 (1979) 689-694.

[3] J. Jakubowski: Structural theorems for multiplicative system of functions, to appear in Acta Math. Acad. Sci. Hung. 46/1-2 (1985).

INSTITUTE OF MATHEMATICS, WARSAW UNIVERSITY, PKIN, OO-901 WARSAW, POLAND Received January 24, 1985.