

J. Wolska-Bochenek, E. M. Chrzanowski

NONLINEAR COMPOUND PROBLEM
FOR ELLIPTIC SYSTEM IN THE PLANE1. Introduction

Let Γ_0 be a boundary of the Liapunov region D given on the plane C of the complex variable and let Γ be a contour inside D . Let us denote by D^+ the two connected domain bounded by Γ_0 and Γ , by D^- the inner region bounded by Γ and by \bar{D} the region $D^- \cup D^+ \cup \Gamma \cup \Gamma_0$. For positive direction on Γ and Γ_0 we admit that which leaves D^+ on the left. The origin of the coordinate system belongs to D^- .

Consider the following problem: Determine a function w satisfying in $D^+ \cup D^-$ the generalized Cauchy-Riemann system in the complex form

$$(1) \quad \partial_{\bar{z}} w = F(z, w) \quad , \quad *$$

whose limiting values satisfy the following boundary conditions

$$(2) \quad w^+ = G w^- + g(z, w^+, w^-) \quad \text{on } \Gamma ,$$

$$(3) \quad \operatorname{Re}(e^{i\tau} w) = \psi(z, w) \quad \text{on } \Gamma_0 ,$$

*) $\partial_{\bar{z}} = \partial_x + i\partial_y$, $w(z)$ and $F(z, w)$ stand for $w(z, \bar{z})$ and $F(z, \bar{z}, w, \bar{w})$ respectively.

and the side conditions

$$(4) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} w) \delta d\xi = k(w)$$

$$(5) \quad w(z_j) = a_j(w), \quad j=1,2,\dots, |\alpha_1 + \alpha_2|, \quad z_j \in D^+ \cup D^-.$$

The functions F , G , g , ψ , δ , τ and the functionals k , a_j are given, and

$$(6) \quad \alpha_1 = \operatorname{ind} G,$$

$$(7) \quad \alpha_2 = \operatorname{ind} e^{i\tau},$$

$\alpha_1 + \alpha_2$ being the index of the compound problem (1)-(5). The problem (1), (2), (3) for analytic functions was solved in the linear case by I.S.Rogozhina [9], and Lu Chien Ke [3] and in the case of the generalized Cauchy-Riemann equations in the papers [13], [15]. More general elliptic complex equations were treated by A. Mamourian [6], [7] and the nonlinear equations of the type $\partial_z w = F(z, w, \partial_z w)$ by Fang Ainoing [4]. A special case of compound problems for holomorphic functions in the unit disc was considered in [12]. The nonlinear equations (1) with nonlinear boundary conditions of type (2) or (3) were solved by W.Wendland [11], A.Begehr and G.Hsiao [2], W.Begehr and G.Hile [1] and others by a combination of an imbedding with Newton's method, whose origin is due to Wacker [10]. In the paper [14] this method is extended to the problem (1)-(5) in some simpler case of $G \equiv 1$.

2. A priori estimate and assumptions

Throughout the paper we admit that the contours Γ and Γ_0 and the index of the problem satisfy the following conditions:

I. $\Gamma, \Gamma_0 \in C^{1+\alpha}(\mathbb{C}), \quad 0 < \alpha < 1,$

II. The index of the problem i.e. $\alpha = \alpha_1 + \alpha_2$ is negative.

In this paper we shall use the same approach as in [14], and base on the following lemma.

Lemma. If:

1° a, b satisfy the inequalities $\|a\|_0, \|b\|_0 \leq K$ in D ,

2° $G, g \in C^\alpha(\Gamma)$, $\psi \in C^\alpha(\Gamma_0)$, $0 < \alpha \leq 1$,

3° $\delta \in C(\Gamma_0)$ and $\delta > 0$,

4° $e^{i\tau} \in C^{1+\alpha}(\Gamma_0)$ and τ is realvalued,

5° $k \in \mathbb{R}$, $a_j \in C$, $j=1, 2, \dots, |x_1+x_2|$,

conditions I, II being fulfilled, then there exist constants $\tilde{\tau}, \tilde{\tau}_1, \tilde{\tau}_2, \tilde{\tau}_3, \tilde{\tau}_4$, depending on $G, K, \Gamma, \Gamma_0, \tau, \delta$ such that the solution of the problem

$$(8) \quad \partial_{\bar{z}} w = 0, \quad \text{in } D^+ \cup D^-,$$

$$(9) \quad w^+ = G w^- + g, \quad \text{on } \Gamma,$$

$$(10) \quad \operatorname{Re}(e^{i\tau} w) = \psi, \quad \text{on } \Gamma_0,$$

$$(11) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} w) \delta d\xi = k,$$

$$(12) \quad w(z_j) = a_j, \quad z_j \in D^+ \cup D^-, \quad j=1, 2, \dots, |x_1+x_2|$$

satisfies in $D^+ \cup \Gamma$ and $D^- \cup \Gamma$ respectively the inequality

$$(13) \quad \|w\|_\alpha \leq \tilde{\tau}_1 \|\psi\|_\alpha + \tilde{\tau}_2 |k| + \tilde{\tau}_3 \sum_{j=1}^{x_1+x_2} |a_j| + \tilde{\tau}_3 \sum_{j=1}^{x_1+x_2} |V(z_j)| + \\ + \tilde{\tau}_4 \|g\|_\alpha + \tau \|\partial_{\bar{z}} w - aw - bw\|_0,$$

where $\|w\|_\alpha = \max \{\|w^+\|_\alpha, \|w^-\|_\alpha\}$ in $C^\alpha(D^+ \cup \Gamma) \cap C^\alpha(D^- \cup \Gamma)$ and V is denoted by (21)*.

*) We have denoted $\|f\|_0 = \sup_D |f|$, $\|f\|_\alpha = \|f\|_0 +$
 $+ \sup_{\substack{z, \tilde{z} \in D \\ z \neq \tilde{z}}} \frac{|f(\tilde{z}) - f(z)|}{|\tilde{z} - z|^\alpha}$.

Proof. Let $w = V + XU$, where the function V continuous to Γ_0 is the solution of the problem

$$(14) \quad \partial_z V = 0 \quad \text{in } D^+ \cup D^-,$$

$$(15) \quad V^+ = G V^- + g \quad \text{on } \Gamma,$$

and the function $U \in C^1(\bar{D})$ fulfills the conditions

$$(16) \quad \operatorname{Re}(e^{i\tau} X U) = \psi - \operatorname{Re}(e^{i\tau} V) \quad \text{on } \Gamma_0,$$

$$(17) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} X U) d\tau = k - \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} V) d\tau,$$

$$(18) \quad X U(z_j) = a_j - V(z_j), \quad z_j \in D^+ \cup D^-, \quad j=1, 2, \dots, |\alpha_1 + \alpha_2|.$$

The function X means the canonical solution of the homogeneous problem (14), (15), is of the form (cf. [5], [8]):

$$(19) \quad X(z) = \begin{cases} e^{\Gamma(z)} & \text{in } D^+ \\ z^{-\alpha_1} e^{\Gamma(z)} & \text{in } D^-, \end{cases}$$

and

$$(20) \quad \Gamma(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\ln [\tau^{\alpha_1} G(\tau)]}{\tau - z} d\tau.$$

Thus the solution of the problem (14), (15) is

$$(21) \quad V(z) = \frac{X(z)}{2\pi i} \int_{\Gamma} \frac{g(\tau)}{X^+(\tau)} \frac{d\tau}{\tau - z} + \Phi,$$

Φ being an arbitrary analytic function in \bar{D} . Without loss of generality we admit $\Phi \equiv 0$ [cf. [3], [13]].

The function V satisfies the inequality

$$(22) \quad \|V\|_{\alpha} \leq M_g \|g\|_{\alpha},$$

where the positive constant M_g depends on Γ and X .

Observe that the function X on the contour Γ_0 is of the form

$$X(z) = |X(z)| e^{it(z)},$$

where

$$t(z) = \arg e^{\Gamma(z)} + \arg z^{-\alpha_1}.$$

The function t is real-valued and

$$\operatorname{ind}[e^{i\tau} X] = \operatorname{ind}[|X| e^{i(\tau+t)}] = \alpha_1 + \alpha_2.$$

Conditions (16), (17) may be transformed as follows

$$(16') \quad \operatorname{Re}[e^{i(\tau+t)} U] = \frac{\psi}{|X|} - \frac{1}{|X|} \operatorname{Re}[e^{i\tau} V].$$

$$(17') \quad \frac{1}{|X|} \int_{\Gamma_0} \operatorname{Im}[e^{i(\tau+t)}] U \delta|X| d\xi = \frac{k}{|X|} - \frac{1}{|X|} \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} V) \delta d\xi,$$

the condition (18) remaining unchanged.

The problem (16'), (17) with condition (18) is equivalent to the problem discussed by H. Begehr and G. Hsiao in [1] and in view of their results we have for the function U

$$(23) \quad \|U\|_{\alpha} \leq \frac{\alpha_1}{m_X} \|\psi - \operatorname{Re}(e^{i\tau} V)\|_{\alpha} + \frac{\alpha_2}{m_X} \left| k - \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} V) \delta d\xi \right| + \\ + \frac{\alpha_3}{m_X} \sum_{j=1}^{\lfloor \alpha_1 + \alpha_2 \rfloor} |a_j - v(z_j)| + \gamma \|\partial_{\bar{z}} U - aU - b\bar{U}\|_0,$$

where $m_X < |X| < M_X$.

Observe that

$$(24) \quad \|\operatorname{Re}(e^{i\tau} V)\|_{\alpha} = \|\operatorname{Re}(e^{i\tau} V)\|_0 + \\ + \sup_{\substack{z \neq \tilde{z} \\ z, \tilde{z} \in D^+ \cup D^-}} \frac{|\operatorname{Re} e^{i\tau(z)} v(z) - e^{i\tau(\tilde{z})} v(\tilde{z})|}{|z - \tilde{z}|} \leq \\ \leq (1 + M_{\tau}) \|V\|_0 + \sup_{\substack{z \neq \tilde{z} \\ z, \tilde{z} \in D^+ \cup D^-}} \frac{|v(z) - v(\tilde{z})|}{|z - \tilde{z}|} \leq (1 + M_{\tau}) \|V\|_{\alpha}$$

the constant M_τ being of the form

$$(25) \quad M_\tau = \sup_{\substack{z \neq \tilde{z} \\ z, \tilde{z} \in D^+ \cup D^-}} \frac{|e^{i\tau(z)} - e^{i\tau(\tilde{z})}|}{|z - \tilde{z}|^\alpha}$$

and depends on the domain $D^+ \cup D^-$ and the function τ .

In the same way we get

$$(26) \quad \left| \int_{\Gamma_0} \operatorname{Im}(e^i V) \delta d\xi \right| \leq \hat{M}_\tau \|V\|_\alpha,$$

where the constant \hat{M}_τ depends on Γ_0 , τ and δ .

Denoting

$$(27) \quad \tilde{\gamma} = \frac{\tilde{\gamma}_1}{m_X} (1 + M_\tau) + \frac{\tilde{\gamma}_2}{m_X} \hat{M}_\tau$$

we obtain the inequality

$$(28) \quad \|U\|_\alpha \leq \frac{\tilde{\gamma}_1}{m_X} \|\psi\|_\alpha + \frac{\tilde{\gamma}_2}{m_X} |k| + \tilde{\gamma} M_g \|g\|_\alpha + \frac{\tilde{\gamma}_3}{m_X} \sum_{j=1}^{\alpha_1 + \alpha_2} |a_j| + \\ + \frac{\tilde{\gamma}_3}{m_X} \sum_{j=1}^{\alpha_1 + \alpha_2} |V(z_j)| + \tilde{\gamma} \|\partial_{\bar{z}} U - aU - b\bar{U}\|_0.$$

Let us evaluate the solution w of the problem (8)-(12).

$$(29) \quad \|w\|_\alpha = \|V + XU\|_\alpha \leq \|V\|_\alpha + \|XU\|_\alpha \leq \\ \leq \|g\|_\alpha \|g\|_\alpha + \frac{\tilde{\gamma}_1}{m_X} M_X \|\psi\|_\alpha + \frac{\tilde{\gamma}_2}{m_X} M_X |k| + \tilde{\gamma} M_g M_X \|g\|_\alpha + \\ + \frac{\tilde{\gamma}_3}{m_X} M_X \sum_{j=1}^{\alpha_1 + \alpha_2} |a_j| + \frac{\tilde{\gamma}_3}{m_X} M_X \sum_{j=1}^{\alpha_1 + \alpha_2} |V(z_j)| + \\ + \tilde{\gamma} \|\partial_{\bar{z}} XU - aXU - b\bar{XU}\|_0$$

$$(1 + \tilde{\gamma} M_g M_X) \|g\|_\alpha + \tilde{\gamma}_1 \|v\|_\alpha + \tilde{\gamma}_2 |k| + \tilde{\gamma}_3 \sum_{j=1}^{|\alpha_1 + \alpha_2|} |a_j| + \\ + \tilde{\gamma}_3 \sum_{j=1}^{|\alpha_1 + \alpha_2|} |v(z_j)| + \gamma \|\partial_z w - aw - bw + av + bv\|_0.$$

Thus we have

$$(30) \quad \|w\|_\alpha \leq \tilde{\gamma}_1 \|v\|_\alpha + \tilde{\gamma}_2 |k| + \tilde{\gamma}_3 \sum_{j=1}^{|\alpha_1 + \alpha_2|} |a_j| + \tilde{\gamma}_3 \sum_{j=1}^{|\alpha_1 + \alpha_2|} |v(z_j)| + \\ + \tilde{\gamma}_4 \|g\|_\alpha + \gamma \|\partial_z w - aw - bw\|_0,$$

where we have denoted

$$(31) \quad \tilde{\gamma}_1 = \frac{\tilde{\gamma}_1}{m_X} M_X, \quad \tilde{\gamma}_2 = \frac{\tilde{\gamma}_2}{m_X} M_X, \quad \tilde{\gamma}_3 = \frac{\tilde{\gamma}_3}{m_X} M_X, \quad \tilde{\gamma}_4 = (1 + \tilde{\gamma} M_X + 2K) M_g.$$

To solve the problem (1)-(5) we admit the assumptions I, II, and the following ones.

(i) $F \in C^\alpha(D)$ for each fixed $w \in C$. F is continuously differentiable up to the second order with respect to \bar{w} and w and these derivatives are bounded in $\bar{D} \in C$ by a constant K ,

(ii) ψ is real-valued and for each $w \in C^{1+\alpha}$ the function $\psi(z, w)$ is in $C^{1+\alpha}$, besides $\|\psi(z, \tilde{w}) - \psi(z, w)\|_\alpha \leq M_1 \|w - \tilde{w}\|_\alpha$, for all $w, \tilde{w} \in C$,

(iii) k is real-valued functional on $C^{1+\alpha}$ and $|k(w) - k(\tilde{w})| \leq M_2 \|w - \tilde{w}\|_\alpha$ for all $w, \tilde{w} \in C$,

(iv) the a_j 's are complex valued functionals on $C^{1+\alpha}(D^+ \cup D^-)$ such that

$$\sum_{j=1}^{|\alpha_1 + \alpha_2|} |a_j(w) - a_j(\tilde{w})| \leq M_3 \|w - \tilde{w}\|_\alpha \quad \text{for all } w, \tilde{w} \in C,$$

(v) for each w_1, w_2 in $C^\alpha(\Gamma)$ the function $g(z, w_1, w_2)$ is in $C^\alpha(\Gamma)$ as a function of z , moreover there exists a non-negative constant M_4 such that for all $w_1, w_2, \tilde{w}_1, \tilde{w}_2$ in C we have

$$\|g(z, w_1, w_2) - g(z, \tilde{w}_1, \tilde{w}_2)\|_\alpha \leq M_4 [\|w_1 - \tilde{w}_1\|_\alpha + \|w_2 - \tilde{w}_2\|_\alpha]$$

(vi) $\delta \in C(\Gamma_0)$, $\delta > 0$; $e^{i\tau} \in C^{1+\alpha}(\Gamma_0)$, τ is realvalued.

(vii) The constants M_1, M_2, M_3, M_4 are independent of w and \tilde{w} and have to be so small, that

$$\sum_{j=1}^4 \tilde{\gamma}_j M_j < 1,$$

where $\tilde{\gamma}_j$ are the constants appearing in the inequality (13).

3. The imbedding method

Consider for each $t \in [0, 1]$ the following problems:

$$(32) \quad \partial_{\bar{z}} w = tF(z, w) \quad \text{in } D^+ \cup D^-$$

$$(33) \quad Gw^- + tg(z, w^+, w^-) \quad \text{on } \Gamma,$$

$$(34) \quad \operatorname{Re}(e^{i\tau} w) = t\psi(z, w) \quad \text{on } \Gamma_0,$$

$$(35) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} w) \delta d\xi = tk(w)$$

$$(36) \quad w(z_j) = ta_j(w), \quad j=1, 2, \dots, |ze_1 + e_2|, \quad z_j \in D^+ \cup D^-$$

in which (1)-(5) is imbedded for $t=1$.

For $t=0$ the problem (32)-(36) is a linear one and corresponds to the homogeneous problem (1), (2), (3), whose solution is obtained in [3], [9] and is unique in view of conditions (4), (5).

Let us assume $w(z, t_0)$ to be a solution of the problem (31)-(36) for a given t_0 , $0 < t_0 < 1$ and let $w_{n+1}(z, t)$ be a solution of the following problem ($w_0(z, t) := w(z, t_0)$):

$$(37) \quad \partial_{\bar{z}} w_{n+1} = tF_w(z, w_n)(w_{n+1} - w_n) + tF_{\bar{w}}(z, w_n)(\bar{w}_{n+1} - \bar{w}_n) + tF(z, w_n) \quad \text{in } D^+ \cup D^-,$$

$$(38) \quad w_{n+1}^+ = Gw_{n+1}^- + tg(z, w_n^+, w_n^-) \quad \text{on } \Gamma,$$

$$(39) \quad \operatorname{Re}(e^{i\tau} w_{n+1}) = t\psi(z, w_n) \quad \text{on } \Gamma_0,$$

$$(40) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau} w_{n+1}) \delta d\xi = tk(w_n),$$

$$(41) \quad w_{n+1}(z_j, t) = t a_j(w_n), \quad j=1, 2, \dots, |\alpha_1 + \alpha_2|, \quad z_j \in D^+ \cup D^-.$$

For each $w_n \in C^{1+\alpha}(D^+ \cup D^-)$ this linear problem is uniquely solvable. Let us investigate the difference $w_{n+1} - w_n$:

$$(42) \quad \partial_z (w_{n+1} - w_n) = t \{ F_w(w_{n+1} - w_n) + F_{\bar{w}}(\bar{w}_{n+1} - \bar{w}_n) + \\ + \frac{1}{2} F_{(w,w)}(w_n - w_{n-1})^2 + F_{(w,\bar{w})}|w_n - w_{n-1}|^2 + \\ + \frac{1}{2} F_{(\bar{w},\bar{w})}(\bar{w}_n - \bar{w}_{n-1})^2 \},$$

$$(43) \quad w_{n+1}^+ - w_n^+ = G(w_{n+1}^- - w_n^-) + \operatorname{tg}(z, w_n^+, w_n^-) - \operatorname{tg}(z, w_{n-1}^+, w_{n-1}^-),$$

$$(44) \quad \operatorname{Re}[e^{i\tau}(w_{n+1} - w_n)] = t [\psi(z, w_n) - \psi(z, w_{n-1})],$$

$$(45) \quad \int_{\Gamma_0} \operatorname{Im}(e^{i\tau}(w_{n+1} - w_n)) \delta d\xi = tk(w_n) - tk(w_{n-1}),$$

$$(46) \quad w_{n+1}(z_j, t) - w_n(z_j, t) = t [a_j(w_n) - a_j(w_{n-1})].$$

The expression $F_{(w,w)}$ in (42) is defined by the mean value formula (cf. [11]),

$$(47) \quad F_{(w,w)} = \int_0^1 F_{(w,w)}(z, \tau w_n + (1-\tau)w_{n-1}, \tau \bar{w}_n + (1-\tau)\bar{w}_{n-1}) \tau d\tau$$

and the expressions $F_{(w,\bar{w})}$, $F_{(\bar{w},\bar{w})}$ are defined similarly.

Basing on the assumptions I, II and (i)-(vii) and the a priori estimate (13) we get

$$(48) \quad \|w_{n+1} - w_n\|_{\alpha} \leq t [\tilde{\gamma}_1 M_1 + \tilde{\gamma}_2 M_2 + \tilde{\gamma}_3 M_3 + \tilde{\gamma}_4 M_4 + 2K_0 \|w_n - w_{n-1}\|_{\alpha}] \\ \cdot \|w_n - w_{n-1}\|_{\alpha}.$$

The convergence of $\{w_{n+1} - w_n\}$ may be proved if the initial approximation satisfies

$$(49) \quad t \left[\sum_{j=1}^4 \tilde{\gamma}_j M_j + 2K\gamma \|w_1 - w_0\|_\alpha \right] < 1.$$

Thus the constants appearing in the suppositions i - vii must be sufficiently small.

For the difference $(w_1 - w_0)$ we obtain

$$(50) \quad \|w_1 - w_0\|_\alpha \leq (t - t_0) [\beta \|w_0\|_\alpha + \beta_0],$$

where we have denoted

$$(51) \quad \beta = \sum_{j=1}^4 \tilde{\gamma}_j M_j$$

$$\beta_0 = \gamma K + \tilde{\gamma}_1 \|\psi(z, w^x)\|_\alpha + \tilde{\gamma}_4 \|g(z, w^x)\|_\alpha + \tilde{\gamma}_3 \sum_{j=1}^{|\alpha_1 + \alpha_2|} |a_j(w^x)| +$$

$$+ \tilde{\gamma}_2 |k(w^x)|$$

and w^x is the solution of (32)-(36) for $t=0$.

In a similar way we get

$$(52) \quad \|w_0\|_\alpha \leq \frac{t_0 \beta_0}{1 - t_0 \beta}.$$

Substituting (52) in the inequality (50) we obtain

$$(53) \quad \|w_1 - w_0\|_\alpha \leq \frac{t - t_0}{1 - t_0 \beta} \beta_0.$$

The convergence of $\{w_n\}$ to w with respect to the α -norm can now be established from the inequality (48) in the same way as in [1], [2], [14]. Similarly one can prove that the function w satisfies the equation (1) and the conditions (2), (3). Proof of the uniqueness of the solution of the problem (1)-(5) is based on the transformation of the compound problem to the Hilbert one (cf. [3], [9], [13]) and on the fact that the

function Φ in the representation (21) has no influence on the final result.

REFERENCES

- [1] H. Begehr, G. Hille : Nonlinear Riemann boundary value problem for a nonlinear elliptic system in the plane, Math. Zeit. 179 (1982), 241-261.
- [2] H. Begehr, G. Hsiao : Nonlinear boundary value problem for a class of elliptic systems. Komplexe Analysis und ihre Anwendung auf Partielle Differentialgleichungen, Martin Luther Universität Halle-Wittenberg, Wissenschaftliche Beiträge (1980).
- [3] Lu Chien Ke : On compound boundary problems, Scientia Sinica, Ser.A, 14, No 11(1965), 1545-55.
- [4] Fang Ainnong : On integral operator and (non-linear mixed) boundary value problem, Scientia Sinica, Ser.A, 25, No 3 (1982), 225-236.
- [5] F.D. Gakhov : Boundary value problems. Pergamon Press (1966).
- [6] A. Mamourian : On the mixed boundary value problems for a first order elliptic equation in the plane, Bull. Ac. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 23, No 12 (1975), 1249-1254.
- [7] A. Mamourian : General transmission and boundary value problems for first order elliptic equations in multiply-connected plane domains. Demonstratio Math. 12, No 3 (1979), 785-802.
- [8] I.N. Muskhelishvili : Singular Integral Equations. Groningen (1953).
- [9] I.S. Rogozhina : The Hilbert problem for a piecewise analytic function (russ.). Kabardino Balk. Gos. Univ. Ucen. Zap. Ser. Fiz. Mat. 19 (1963), 259-263.

- [10] H. Wacker : Eine Lösungsmethode zur Behandlung nichtlinearer Randwertprobleme in Iterationsverfahren, Numerische Mathematik, Approximationstheorie, Vortragsauszüge von Tagungen Oberwolfach (1968, 1969) pp.245-257, Birkhäuser (1970).
- [11] W. Wendland : Elliptic system in the plane. London (1978).
- [12] L.v. Wolfersdorf, J. Wolska-Bochenek : A compound Riemann-Hilbert problem for holomorphic functions with nonlinear boundary condition. Demonstratio Math. 17 (1984).
- [13] J. Wolska-Bochenek : A compound nonlinear boundary value problem in the theory of pseudo-analytic functions. Demonstratio Math. 4 (1972), 105-117.
- [14] J. Wolska-Bochenek, L.v. Wolfersdorf : On some generalized compound problem for nonlinear elliptic system, Math. Zeit. (to appear).
- [15] G. Warowna-Dorau : A compound problem of Hilbert-Vekua type. (Submitted to Demonstratio Math.).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received December 3, 1984.