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Introduction

In papers [2] and [3] we sxamined a Goursat problem for
the Mangeron’s polyvibrating equation of order 2p (p»2) in
a Banach spacs, with the boundary conditions of the problem
given on 2p curves emanating from a common point, and found
its classical solutions. In paper [4] we have given without
proof some results concerning the existence and unigueness
of strong generalized solutions of the ssid Goursat problem.
The aim of this paper is to prove these results,

The paper consists of three sections. In Section 1 we
introduce some basic notions and formulate the assumptions.
In Section 2 we prove several lemmas, Section 3 is devoted
to the formulation and proof of the zain result of the paper
concerning the existence and uniqueness of strong generalized
solutions of the Goursat problem,

1, Let Q= {(x,y)eR2: O<x<h; 0y \<B}, where A and B
are finite positive numbers, and consider a system of 2p cur-
ves (p>2) given by the equations y = fi(x) and x = hi(y),res-
pectivaely (where f; 3<0,4> —+<0,B>and h;:<0,B>—+»<0,4>,
i=1,2,4e.40, are continuous functions), passing through the
origin 0 (0,0) of the ccordinates systexm and not intersectirsg
elsewhers.
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2 ' A, Borzymowski

Dencte by Y a Banach spadse with norm i*ll. The Goursat prob=-
lem {G) considered in [2] and [3] consists in finding a func-
tion usQ@ —» Y that is a solution of the equation

(1) tPu = a{x,3)

2
(where L = Egﬁi'and ¢c:Q - Y is a given coatinuous function)

in SZ*) and satisfies the boundary conditions

(2) u[x,fi(x)] = Mi(x) for =xe<0,A>
ulhy (3),5] = Ny(y) for ye<0,B>

(i=1,24044p), where My:<0,4> — Y and N,:<0,B> — Y are given
continuous functions. Zuch functions u will be called classi~-
cal solutions of the Goursat problem {(briefly: {c.s.) of the
(G)=problem),

Now, we introduce the following definition of a generalized
solution (briefly: a{g.s.) of the (G)-problem).

Definition Te A function u:Q —» Y is called
a (ge8.) of the (G)-problem if and only if there exists a se~-
guence {um} of functione u :Q =Y (m=m°, my+lye0., where m,
is a positive integer) having the follcwing properties:

1°, Each of the functions uy is a (c.8.) of the correspond-
ing Goursat problem (Gm) that is formulated analogously as the
(G)-problem above with the replacement of f;, h;, ¢, My and Ny
by 50 byps g Myp 8nd Ny, respectively _(i=1,2,...,p), where
fim:<0,A> - <0,B>, him:<0,B> —» <0,A>, ept @ —+Y, Mim:<0,A>—>Y
and Nim:<0,B> -+ Y are continuous functions satisfying the re-

lations **)

op = c¢ind;y £, =® L5, =% by M, =% M5 Nyp == Ny

(i=1,2,on.’p) when m -+ oo,

*) That is, possesses continuous derivatives DBu (where

|
DB=———B$—E—EE i 1Bl = Py+Pos 0 <Py, Ppsp) in Q and satisfies
dax

ay
(1) at each point (x,y)eQ.

*%) I = I(Q) is the spacs of Lebesgue-integrable functions,
and the symbol —% denotes the uniform convergencs.
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Generalized solutions 3

2°, The relation e, =% u, when m — oo , holds good.

The purpose of this paper is to examine the generalized
solutions of the (G)=-problem.

We make the following assumptions,

I. The functions fix<0,A> +<0,B> and hi:<0,B>-*-<0,A>
(1i=1,2,00,p) are Holder-continuous (the exponent p € (0,1>)
and satigfy the following relations *)

£ (x £} h, (y} h
(5 B gl [T gl Ry

*

(x €(0,A>; 3 €(0,B>; i=1,2,404,p), where £ and h} are real
i i
numbers subject to the conditions

(4) min(f;,h*.;b 03
(5) O<f;smin(a. t—B) ; O<h;smin(a, %’) ,
where
~p/ae
(6, a8 = Toup o;

min (£}-f¥ > [p(1 =Te%e mi *_ ¥ N -1 x
(7)Zsisp 1-f1_4) > [p(1+¢)] p;QSi:p (Ry-h%_,) > [p(1+€)] B

with 2 ¢ (0,1), To € (0,1), € being.a real number such that

(8) ‘ 0<5<g~;/1p-1.
Moreover, fi and hi (i=1,2,4¢e4p) satisfy the conditions men-
tioned at the beginning of this Section.

II. The functions M, :<0,4> — Y and Ny3<0,B> = ¥ '
(1=1,2,44.,p) are Holder-continuous (the exponent P, ,e (0,%>)
and satisfy the inequalities

*) Evidently, as a consequence of (3), there exist the de-

N ’ ’ / LI ! - »*
rivatives fi(0+) and hi(0+), and fi(0+) = £; hi(0+) = hY
(i=1,2,oco,n)o
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4 A, Borzymowski

(9) |3, (x) || < kx2P; || W, (3)] < K5 2P,

where K is a positive constant,
III, The function c: Q —Y belongs to the space I.

2+ In this Section we prove several lemmas,
Lemmea 1, There is a number §, (o< 54 <min(4A,B,1))
such that the inequalities

f1(x)> 03 h1(y)> 03

(10) ogfp(x)smin(a, A'AE)X{O <hp(7)smin(a, %—)?3

fi(x)—fj(x)> [p(1+e)]-1fp(x); hi(y)-hj(y)>[p(1+g)] '1hp(y)

{(1si<igcpls

f;(1 - Eo)xsfi(x)sf;_H + €,)x;

(11)
b}(1 = e )y<hy(y) <By(1 + )y

(1=1,2,¢¢0,p) hold good for x e(0,51) and ye (0,61), respec=-
tively, £ being a real number subject to the inequalities

. aeo/2 1/8p-34-'aeo
(12) S 0<g <1 = |p° 8,

where g, = f;h;.

Proof. The proof, being similar but easier for the
remaining inequalities, will be given only for the last two of
inequalities (10),

Let us observe that (3) implies the inequalities

£ (x) £
sf;’+—A\3x

(v=1,j, where 1< Jj<1igp), whence and by (7) we have
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Generalized solutions 5

f.(x) f.(x) £ (x) . N 1w
ix - —j}— - [p(1+e)]-1 L £ - £y - [p(1+¢] 1fp +

- (f; + f; + [p(1+e)]-1f; )f?é::i.:l (fi - fi q) - [p(1+s)] '1f; +

- (2 + [p(1+s)] -1) %1‘ f;> 0

if 0<5, €69 = 8 {2 + [p1+e) 12" min (£} - £1_,) -
1% 5 2 p i=-1

2<1<p
- [pt1+e)] Mg
Thus, for x ¢(0,5,), where 0 <&, <min(4,8,1,87), the ine-
quality

fy(x) - £4(x)> [p(1+e)]'1f (x)
holds good, q.e.d. The proof of the inequality h,(y) - hy (y)>

> [p(1+s)]'1h (y) 1s analogous.
Now, let us consider the Bernstein polynomials

m
(13) £oa(x) = a7 30 (D) £, (& B)x¥(aex)Bk
and a
n .
(10 )« 53 (0 myls ) Kook
k=1

(1=1,240445p; meN) approximating uniformly the functions £
and hi in the intervals <0,A> and <0,B>, respectively.

Evidently, O < fim(x) B and O<hy, {y) < A. We shall provs
some lemmas concerning further properties of functions fim
and him‘

Lemma 2. The functions f,, and hy o {1=1,2,000,D;
meN) are of class CP. Their first-order derivatives attain
at the point 0 the following values

»* / m A L] ’ m B
(15) 25, = £5,00) = B 25 (3)3 bl = i (0) = §ny (D)
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6 A. Borzymowski

{i=1,2,40e,p; M eN}, There is a positive integer m, such that
f;m and h;.m satisfy the inequalities analogous to (4) - (7)
for all N3 m> m, and 1=1,2,e00,4pe

Proof. The first part of our thesis is evident,
Relations (15) are obtained immediately by differentiation of
(13) and (14). In order to verify the last part of the thesis
it is enough to use relations (15) and Lemma 1.

Remark 1. It follows from Lemma 2 that

~2p/a
= £* p* 32 . 0
8om *= fpmhpm <%o p

for m>m,, whence and by (8) we obtain the inequality
/1=p

1
p

(16) 0<€<(p Vgom) -1

(m>m )e Let us obaserve that by (5) and (8) we also have the

inequality :

(16 ) o<e< (pPyE,

Lemma 3. There are a positive number 62 (0<52<
< min(4,B,1)) and a positive integer m, such that the functions
fi, and hyp (i=1424004,p; meN) satisfy the inequalities (com-
pare with (10) and {(11))

)1/1-9 - 1.

£in(x)> 03 by (y)> 03

-p/ ' -p/%
0<f,(x)<p *o x; O<ho(y)<p ° 3
(17” "
£3p(x) = £yp(x) > [p(1+e)] 72 p(x)5 Byp(y) - hyp(3)>

> [p(14e)] ! hop(3)

(1sj<is<p);
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Generalized solutions

£301 = e )z £ (x) < £101 + £ )x;
(18)
by(1 - )y <hyp(3) <Bi(1 + € )y

(i=1,2,¢.4,p) for x¢ (0,52) and y ¢ (0,6,), respectively, and
m>m,. :
Proof. First of all we prove that

f;(1 - % - %)xsfim(x) < £} (1 +

Bl

(19)

Bi=
+
okd i
S—
d

W (-G - By chgla)eni 1+

(xe<0,4>; Je<0,B>, meWN; 1i=1,2,00049D)e
In fact, using inequality (3) and relation (13) we can
write

. m k m-k
£1p(x) <) { S @ -9
1 z /m\ (X xm'k
+ alw=1) 21 kk=1) () (F) (1 -%) +

whence, and by the well known equalities (scee [’5], p.150)

m
{20) X = % Z k (E) xK (1 - x)m"'k
k=1
and
m
(21) X2 = E(h—l:‘—)— kz k(k-1) (ﬁ) xk(1 - x)m'k,
=1
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8 A, Borzymowski

wg obtain

x),,

*» 1
fm(x) sfi (1 t gt

Ed]

In a similar way we get

f;.(" - % - %)xsfim(b
and hence the first of inequalities (19) is proved. The proof
of the seocond one is analogous,

We procesd to the proof of inequalities (17) and (18).

The first two of inequalities (17) are evidently true.
In order to- derive the third of the said inequalities, let
us observe that by (5) and (19) we have

-p/x, *1  x =Pl
0<fpm(X)S'J"°P X+fp(i+x')xs(1 +e)a~o s p X

(o< <-;,—° - 1) provided that m>ﬁ2; xe(0,62), where N s 52
is so0 large and 0 < 62<min(A,B-,'1) so small that %+ f 3

-p/ae
€8 °3,°P °, 4s a consequence we get the required inequa-

~p/fac

lity © <fpm(x)/s p °%. In a similar way we show that
~-p/ae

hpm(y) <p %.

Now, let us note that in virtue of (19) we have

(X) - 1y ol® - [p(1+e)]'1f > min (f;-f’i’_.])-[p(we)] '1f;+

- f;<2 + [pl1+e)] 1) (1 4 )=

(1<j<ic<p). Assuming that m>m2; xe (0,63 5), where m e N and
6* (0<6"<m1n(A B,1)) are chosen so that

(o (-tig) - [etive] g )

f\)l—l

f;(2+ pG+e] ™) (1 + F)x <
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Generalized solutions 9

(m> mé‘; xe (0,65)), we car assert that

£30(x) = £5p(x)> [pOr+a)] 7T £ (x).

The proof of the inequality him(y)-hjm(yh [p(1+e)] '1hpm(3)
is analogous.

It still remains to prove the inequalities (18). Using
{19), we have

f;.[1 - (5 + f’)]"‘fim‘x’\‘fib +(a+ %)]x’

h*i[1 - (& "%)]“him(y)sh;b +(a +%)]y'

and assuming that m> m;"; xe(0,65"), ye (0,55“), where m’é*ew’
and 6" (0<6;" < min(4,B,1)) are such that

mex (24 %) (3+3)] <<

(see (12)) for m> m;*; x e(0,85%)3 ye (0,_65"), we can conclude
that inequalities (18) hold good. Thus, Lemma 3 is valid if

m, = max(mz,ma,m *) and x¢ (0,6 AURK (0,62), where

5 € min(G 62’, 62‘“‘)‘.

Lemaa 4. For each number 60, satisfying the condi=-
tion O <6 <min{a, B +1), there are a positive integer m e and

positive numbers 36 and bg such that °

0 <5

(22) £ip(®) = (x) 85; hin(y) - hjm(y))z b

for 1¢j<igp, xe<6 s 4>, ye<5 ,B> and Jfam>m5.

Proof., Seteg, = 4 min inf (fi(x)-f _q{x)).
*kicp Xe<§,,4>
Evidently,

£,(x) - g, < £, (x) <£,(x) + ¢,
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10 A, Borzymowski

(V=14250004p) for xe<0,A> and m> m6 » ms being suffioiently
large, whende °

£ip(X) = Lyp(x) > £y(x) = £4(x) = 2¢,> a5 =

1 .
= 5 min inf (f,(x) - ¢ x
c 1<icp xe<§ 4> i 4-"1( N

(1<j<isp; m> m6 3 Xe<§, »4>) and the proof of the first of

inequalities (22) is asompleted, The proof of the second one is
analogous,

Lemma 5, There is a pesitive integer ) such that
no two of the curves of equations y = f, (x) and x = by nl¥)s
respectively, (1,3=1,2,¢++,p) intersect in 2\ {0} when m>m3.

Proof. Let us consider two ocurves given by the equa=-
tions y ',fim(x) and y = fjm(x)’, reapectively‘, where 1<j<igcp.
and meNe Using formula (13}, we have

m
£45(%) = £3p(x) = a7 1{21 [2(a E) -2y (a B)] (B)k(a-x) ™k

and as, by Assumption I, fi(A l—‘) - f:j (A ;—:)> O for k=1,2,¢00,m,

we obtain the inequality fim(x) > :t‘j (x) (xe(0,4>; mewN;
$J<igple A similar argument based on {14) shows that
him(y) > hdm(y) (7€ (0,4>3 meNs 1<j<ic<ple
In order to examine the case of two curves given by the
equations ¥y = fim(x) and x = h (y), reapectively; (where
<i, j<p), let us observe that basing on (19) we obtain the
ineq uelities

x - hypo £y,(x) > x - hj(2+ )y (x) > [1- (2+1) £ ha]
whence

2
1 * %
Byp  f3(x) < (2 + 1) £50%ex.
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Generalized solutions 11

Lot o ¢ (4f;n;,1) be arbitrarily fixed (by inequalities (5)
we have 4f;h;<1). It is easily seea thai (see (10))

o -Vf*n* :
(2 + ';—1) f;.th; s 8, for m>m. > £p , and hence we have

J
/ N
8 - 2 fphp

(24) hjm° fim(X) < eo'x

{m> 233 153=1,2,000,p5 X € (0O,4>). It follows from inequality
{24) that the ourves y = fim(x) and x = hjm(y) (m> my3
1,3=1,2,4e0,p) do not intersect for x ¢ (0,4>; y ¢ (C,B>, and
the proof is completed,

Let us intcroduce the Tollowing notation

-

z2» (x) =h of oz (x); 2B =
ki2s) kpgl " “kpg 4l “K{og.0) xs zk(zs-1)(X)
= f o 22» (x)
J Koga1®  K(pgu2)
{25)
B (3= ¢ °h o> i Ter -
k(26) kypm  Tkog g zk(zs-e)(y) ? (28_1)(3)
= h» 03 }
K(og—1)m k(zs-z)(y

for 82,3540}

22> (x) = h of pl_ = f
K(p) kom © Tl m(*)3 Zk(1)(x) kml%)

(25") .

~g’ _ o . ntu_g’
2> (3) = szm hk1m(7), zk(1)(y)

“(2) P (7

1

(xe<(0,4>; ye <0,E>; m eN), where I(r) = (k1,k2,...,kr) for
res, and k; (1=1,2,...) are positive integers not exceeding p.
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12 A. Borzymowski

The following lemma is velid.

Lemma 6., The sequences z%’ }, {5%’ }.
. 2n) {2n-1)
{;%— } and {3%» } tend to zero, when n - oo , uniformly
(2n) (2n-1)

with respect to x,y and m, on the sets <0,A> and <0,B>, res-
pectively.
Proof. Evidently, it is enough to consider {z%? )}
2n

and {E%? )}. The proof, being similar for the other sequence,
2n

will be given only for the sequence 20> .
k(on)

Let us assume that m>mg. By inequality (24) we have the
following estimate

(26) Ba  (x) <oBea
zk(zn) x) < °

and hence the considered sequence zl»
. k(2n)
(uniformly with respect to x and m), as required.

Lemma 7. For each £€>0 there is a positive integer
my such that the inequalities*)

} tends to gzero

(27) z%* (x) =~ zg=  (x)| <n¥; E%v

(2n) (2n)

(y) - 2=  (y)|<nE
2n) k(2n)

hold good for nef, N s m>m€’ Xe<0,4> and ye <0,B>, respec-
tively. .

Proof. In order to prove the first of relations

(27), let us observe that

2n=1
= -zp v B (x)-h, o3% - (x|,
zk(zn)(X) zkian)(X) < ;g% rnm(x)lzk(zn) x Kpn° 2K ppt)
*) " (X)yeuesZp (y) are defined by relations (25),
{2n) (2n=-1)

(25’) with the replacement of f,q and b, (?=1,24000,p3 MeN)
by i; and hv, respectively.
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Generalized solutions 13

where
v m
r (X)= h of oh O s0e °8 AR ST (X)-
nm Kon “¥ope1 T ¥ppep kym "3k, )
- h of oh © 4ee ©8 o 28 (x)
Kon “Eope1  Kopop ky bk(v-ﬂ
with
hk‘?m' v aven hk‘,’ v even
ngm = H Sko =
fk o* v odd fk s v 0dd;
9 9
and
28,y odd
k
n (v=1) 2 ()
g = ) x) = X,
}k(e 1) lup }”‘(o)
2L s v even
(v=1)

Basing on the relations fy =% fj3 hy =% hy (n =+,
1=1,2,000,p) and using the uniform continunity of the functions
f, and hy (1=1,2,¢004p), Wwe can assert that for each positive
number & there is a positive integer my such that r;m < €
(v=1,2400.,n), and hence

< nZ
rnm ne

(m> my; Xxe<0,A>; ye<0,B>) which was to be proved. The proof
of the second of relations (27) is analogous.

We proceed to the examination of the "truncated" Bernstein
polynomials

m
G M) a5 (E) aya K) Eaer®E
"k=2p

(xe<0,A>) and
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14 A, Borzymowski

m

(29) Np(v) = 37 30 () w (e ) v (B30
k=2p
(ye<0,B>), where i=1,2,¢..,p, N2 m > 2p.
Bvidently, Mim:<0,A> —- Y and Nim:<O,B> — ¥, i=1,250004D;
Moam3 2p.
The following lemmas are valid.
Lemma 8. The relatiors

(30) M, —2 M, on <0,4> N, —2N. oa <0,B>
im i im i

(m— oo ) hold good,
Proof. Using (28), we get

(31) ||My(x) - My (x)] <a™" Z (BYjuy (x) -y (2 E)

2p-1
2 (a-x) 0K 4 40 :Z (ﬁ)”Mi (A %) I x( a-x) 2K,
=0

-

Let us denote the terms on the right hand side of (31) by
1In(x) and e2m(x), respectively. ,

It is well known (see [5], p.150) that for each €,> 0
there is a positive integer mE such that e, (x) <= 2 when
m> mé* (xe<0.A>; i=1,2,ooogp)o

For the second term, °2m(x)’ we have (see (9))

m
\2p 2p
24 =0 /ay _k m=k _ 24

oon(x) <K (BgR) 7 47"« 20 () (4 - m"F - & (5B)

k=0
and hence

Ex

eon(X)< 7

when m> mé'* (where mé'.is a positive integer), xe<0,4>

and i=1,2,...,p.
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Generalized solutions 15

Upon joining the above-obtained-results, we can assert
thet My, = My on<0,a> when m—» oo, In g similar way we
show that Nim == Ni on <0,B> when m ~» oo « Thus the proof
of Lemma 8 is completed.

Lemma 9. The functions M, and Ny {see (28) and
(29)) are of class CP, There are p081tive constants C , and

(depending on m and v) such that the inequalities

(») 2p=v
201 € g
(32) )
| ®al3) | <oy
(xe<0,4>; ye<0,B>; i,7=1,2,004,p) are satisfied,
Proof. The first part of the thesie is evident

(M ip 8nd Nim are in fact of class C*), In order to prove the

first of inequalities (32), let us observe that
(9] n min(v,m-k)
v m k v o k! .
' (x) = a7 30 (R ugag) 2 () =9 TEyvar
k=2p a=(

R gfﬁgifz xk—9+a(A_x)m-k-a

(»=1,2,000,4p), whence and by (9) we obtain

| m min(v ,m=k)
[$2) (x)| < conet x2P-2420-m S7 (m) S S (E-
k=2p a=0

. (m;k) xk-2p+a(A_x)m-k-a

and as a consequence we get the first of inequalities (32),
as required. The proof of the second of the said inequalities
is analogous.

In the sequel (see the proof of Theorem 1 in Section -3)
we shall need estimates of Mim(x} and Nim(y) (1=1,2,0044p)
uniform with respect to m. We have the following lemma
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Lemnma 10, The inequalities

¥y, (3)] < K(2p)2P=1y2P

(xe<0,8>5 3e<0,B>} 1=1,2,44.,p) are valid.
Proof. According to (28) and (9), we havs

n k -k
[ (=] < KAZP w28 S (B) x2p (R (4 o x)"
k=2p

and hence, basing on the inegqualities

m-2p s [m( m-1 )oo . (m-2p+1 )] -1
)

*
and

k2P < (2p)2P"1 ¢+ k(ke1)... (k-2ps1)

(2p< k< m), we obtain
(34) || Mim(x)" < Ka2P(2p)2P=1. [m( m-1")...(m-2p+1)] -1,

m k m=k
- > k(k=1)..o(k-2041) (F) () (0 -%) -
k=2p=-1

In order to extimate the expression on the right hand side

of (34), we use equality (20) (with the replacement of m by
2p=-1

(m-2p+1)) and multiplying it by (f) , we obtain
n=2p+1 _
(35) (f)2p= (m-2p+1)'1. Z k(m-ipﬂ)(%)k*?p 1(1%)m-(k+2p-1).

k=0

*) k3 2p implies k < 2p(kei) £or i=1,2,ee0,2p=1.
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Generalized solutions 17

As the equality
(m~2£+1) s (k+1)...(k+2p-1)[m(m-1)...(m-2p+2)}'1 (k+2:-1)

(0< k <m=-2p+1) holds good, relation (35) takes the form

(%)

m=2p+1
= [m(m—1)...(m-2p+1)]'1 . ZE: kK(k+1)ooo(k+2p=1) *
k=0

2p

k+2p=1

n-(k+2p=1)
(k+2?—1') ) (f) i

(-2 ’
that is

m
2
(36) (f) . [m(m-1)...(m-2p+1)]'1 . :Z: k(k-1)eoo{k=2p+1) *

A IC N CHE

By (34) and (36), we have

2p _
|8, () | € KAZP(25)2P=1 (2)77 = K(2p)2P=1x2P

which completes the proof of the first of inequelities (33).
The proof of the second one is analogous.
Finally, let us consider the Bernstein polynomials

m
(37) oplx,3) = (4™ 57 (B)(D)e( 2, L) Samm
x,p=0

- yP(B-y)2-P

({xy,3)eQ; mew), whers & is a function of class C(Q) appro-
ximating in I the function <.
- Evidently, the functions ¢, :Q —= Y (m=1,2,,..) are conti-
nuous. It is also well known that ¢ — ¢ in £ when m =,
In the sequel (ses p.21) we shall need the functions '

Xy
(38) R (x,3) = [(p-1)1]"2 f {j [(x-2)(3-p)] p'1cm(§,rp)dr3} d¢,
o lo
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Sp being given by (37). It follows directly from the aforesaid
properties of ¢, (m=1,2,...) that

{(38') R, =® R in Q when n— oo

where R is given by a formula analogous to (38) with the re-
placement of S by ¢
As a result of the considerations performed in this Sec~
tion, we can formulate the following Corollary.
Corollary 1 (see Lemmas 2, 3, 5 and 9).

If m>m_, where Nam_» max(2p, max m;), then the functions
° ° 1€i¢3 *
fims Bips YWypo Nyp (3=1,2,400,p) and o, satisfy the assumptions

of papers [2] and [3] (see [3], Assumptions I-III).

)

3. Let us introduce the following notation”

p -1
(39) eplx) = [ (g0m) - £0x0)]
=1
e
p
(40) e;(x) =[] £ (x),
p=1
pér
(41) o (x) = S £, (x)ees ﬁp-a(’”

1ePy<Poene <Py _gep
(ﬁkfr for k=1,2,ooogp"a)

for O(=2,3,...,D-1 (When p?.});
(42) el(x) =1

(x € (0,A>; I'=1,2,..o,p);

*) Dhe functions @p and 8r are given by formulas analogous

to (39)-(42), with the replacement of f,, by h, and x by 7,
respectively.
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(43) olu(x) = (=1)Pu (x)eb(x)x®Y;
GP.(3) = (-118E,(3)80(5)5%"

(x e (0,4>; yc(0,B> 8,r,f=1,2,4009p)3

(44) &% » (x) = 6% (x) 623'2 o x) |
i) (n) vyl ¥ ﬂz v23-1%25.1 k(2;1-2)(
[&2
2
° [__] 23'3 o;k’ (x)
j=2 23-2 23-2 (23=3)

(x e (0,4>; o(n)-(01,...,0 )3 k(n)a(k1,...,k ) with 1 $ V4
ki P; 1'1 2,...,11)

[m
(45) (3) = 5. (3) g 23-2 0 .
"( )k( ) vk, Y f_] V25-1%23-1 zﬁ(e -2) 7!

[n+2]
. G, 23"3 T
[—l V24=2 2:1 2o %k (23 3)(

(y e(O,B>),where [a] denotes the greatest integer not exceed-
ing a3

P
(46)  V¥(x) = (-1 37w (x)eX(x MM (x) - R[x,2,(x)])

r=1
and
~ p
(41 V(3 = (-7 37 & (3183 (N,(5) - Rlby(3),5]) -
r=1
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We are going to prove the following theorem.-
Theorem 1, If Assumptions I-IIT are satisfied
then there is a (g.s.) of the (G)=problem given by the formula
p
(48)  ulx,3) = R(x,3) + > [3% Vg (x) + &y, (5]
a=1

((x,3)eQ), where ¢ and y, (x=1,2,.4.,p} are defined by
p

o p
(49) golx) = VHx) + > S S .

n=1 91,o'o,9n=1 k1’o¢o,kn=1

(x €(0,4>); ¢, (0) = 0 and
. . . p
(50) ygly) = VH3) + D ST S .
n=1 91,000’9n=1 k1,oo.,kn=1
~ v, n
o‘ﬂgb - (y)ﬁ n o1 ™ (y)
V() ¥(n) 7k(p)

(y ¢ (0,B>)5 y, (0) = 0, respectively, with

. 2 .n FV"n when n is even
(51) PR '
V'®  when n is odd;
J.n .ﬁ‘m when n is even .
(52) FR
' LV”n when n 1is oddj
'zE when n is even
(53) =1
(n) ’z’f when n is odd;
L “(n)
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E-k’( ) when n 1is even
~ n
(54) T =
(n) e .
z-k’ when n is odd.

(n)

If, moreover, there is a positive integer m; such that
for all & » m:>m6 the following conditions concerning the
(G })-problems are satisfied:

1°, The functions ¢, are equibounded;

2%, The functions Mim and N, (i=1,2,44.,p) are H5lder-con-
tinuous (uniformly with respect to m) and satisfy inequalitiss
of the form (9) with the same coefficisnt K;

3°. The functions fim and him {i=1,2,4e0,p) are Hilder-con-
tinuous (uniformly with respect to m), and have the proper-
ties expressed by Lemmas 2-T;

4°. The functions Pam 809 Vo (t=1,2,044,p) appearing in
the foramuls

P
(55) w,(x,y) = Ry(x,3) + > [3“‘1%‘,,,(::) + x°"1wam(y)]

for the (c.s.) of the (G, )-problems (see [3]) satisfy the ine-
Gualities

2 - ~
||<pam(x)" < const x Praty

6
(56) 2p-<x+"3'co

"m&m(y)” < const y

(x e(0,4>; ye{0,B>; '3“606 (0,1>), then the (g.s.) is uniqus.
Proof, Let us consider a sequence {u.m} of functions
given by (55), where R (x,y) is defined by (38) with ¢, 8iven
by (37)y ¢yp(x) and qzm(y) are the sums of the series (49)
and (50) [in which £55 hyy My, Ny (i=1,2,...,p) and c are
replaced by fim’ him’ Mim’ Nim and Cpr Tespectively {see (13),
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(14), (28), (29) and (37))*)] for x e (0,a5; y e (0,B>, while
?am(o) = \pam(O) := 0, Let {(Gm)} be the seguence of the Gour-
sat problems (see p.2) corresponding to the aforesaid functions
fim' him’ Mim’ Nim and Cpe Based on Corollary 1 and Lemmas 3
and 6 ebove, and on the Theorem in [3], we can essert that for
each .N’3m>mo the function uy is a (ce8e) of the (Gm)-—problem.
Moreover (see Section ?), Tim =B fys hyp =B hgy Ny = U5
Nip =Ny {(1=1,2,4404p) and o, —>c¢ in a when m —+oco . Thus,
according to Definition 1, in order to prove the existence
of a {(g.8.) of the (Gj-problem in the form (48) it is enough
to show that wy 2 uin Q when m —» o0 .

To this purpose let us observe that (see (48) and (55))

(57) Jugtx,y) - ulx,3)| <[ R (x,3) - R(x,3)] +

P
>3 [yot-1 leam®) =9y (x)] + x> Yom(¥) - wa(y)ﬂ]
=1

((x,5) ¢ (0,4>x(0,B>), where (see (49))

(58) pup(x)-a{x) ] ¢ D [E2%(x)+a2%x)] + [V¥%(x) V(=) |

S
(x ¢(0,4>) with
P p o
(59) 8%(x) = S S |ﬁ°—;£(“ B, )
v eesy V =1 k 200 k =1| n A n h
1) * n 1’ 1} n
V.0, m
. P n?*? . 5}_{‘ (x} Il
{n)
*) The relevant functions wy,, e;, o‘t% )-E( ,...,VCL and
V® will now be denoted by w;], ech‘m’ %-': )-l;(n),...,vam and vom
n

respectively.
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and

p p
(60)  8%M(x) = D >

\71,co.,‘3n=1 k1,.0.’kn=1

i vy .,n,m
-iﬂ‘-"i" - (x)i n*

l"’\ om ()_ngn’no-> ()'
Ir ék(n) X ék(n) X “c

the expression ﬁpam(y) - qb(y)ﬁ, {y ¢ {0,B>) being estimated
in a way analogous o {58) (see foraula {50))*). In further
reasoning we will assume that m>m_ = max(2p,m1,m2,m3) (see
Lemmas 2, 3 and 5).

1n the gxamination of 5; x) (see {59)) we distinguish
the following two cases (see (3], p.264): 1°, x¢{0,5), where
0 <5<min(8,,5.) is s sufficiently small positive number and 2°
xe <&,4> n>HQ, NQ being a positive integer so large that

o

tha relations ;%T ‘{x)e {0,8) and ;;3 )(x)e (0,6) hold good
“ting -
for n> No and xe<6,4> {mee Lemma 5 sbove and Lemma 4 in Eﬂ).
Lat n be a fixed positive number and 6 ¢ (O,min( Py, Byw) ).
We first consider the case 1°. Based on relations ({39) and
anslogous relations for og {see the feootnote on .22}, and
0%
using Lemmas 1 and 3, we have

z i it 8 .
(61) |u?(x)-ub(x)|s 2(p-1) [??gﬁp <8?§>lfﬂm(X)-fﬁ(x)l

o [p01+e)] P O[(1me) £x] PO < 2(p=1)0° [o(1+6)] PO

. [(1-50)'{5p.x11~p-e

(r=1,2,-ooyp).

*)

In the sequel we examine only ths expression appearing
on the right hand side of (58}, The argument for that estima-~
ting “me o=~ wa(y)ﬂ is analogous.

*x) Hers and in the sequel we assume that m> m?, where m
is & sufficiently large positive integer.

?
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In a similar way we get (see (40)~(42))
pect=8
(62) [o2B(x)-02(x)]| < 20p-1)6,° [(1e)Ex]  *(1-8])

(r,0=1,2,e0040), where Cy = pp"2 and 53 is the Kronecker delta.
Finally (see Lemma 7), the inequality
v=1

v=1
(63) (3kr,, =) - (o, 2) ® -

€2(v=1)*rey

9=1=8
. [max(é,%?r) (x), }E’(r) (x))]

(r=1’2’ooo; \7=1,2,'oc,p) is valid.
Using (43), (61)~{63), {53), Lemmas 1 and 3, and the ine-
gualities

. ' 4 . Lo -4 S
(64)  {1-¢,)"° 2z NG zg(zs)(m <(1-g,) ™" o) ¥

(xe(0,8); 8=1,2,00.) that immediately result from (25), (25'},
(11) and (18), we obtain (see relations (32) in [3])

<

<

| °2sm m ( ‘725
(65) IG o 27% x) -G oz {x)
Yos+1K2841  K(2s) Pos+1K2s41  Kog
R - x 1=9,.-6
sconst-s-qe'(1-€o) 4ps C*[p(1+e)]_p 1+8[(1-60)fng( )(x)] 28 .
2s

v, -1
. [z'f (x)] 28+1
(28)
(x e (0y8); 8=1,2,¢00), Where 1 € Vg9 ¥pg,11Kpgeq § P @nd const
is a positive constant not depending on s,

By a similar ergument we get

~? m o
(66) |G25:1 o2l (x) - G250 oip (x)| <
2s 28 (2s~1)

N const-s-r)e-( -
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. [(1'50)?19 z>

(x € (0’5)‘ 3‘1’2’000)0
In the sequel we will need the following inequality

6 i-1
(67) |j|:l8“a [i;]ra z | 8;-5; | gpﬂ =r“| |ay|

(#+8e N, <8}, whose proof is straightforward.

Basing on (59), (64)-{67) and inequalities (32) and (34)
in [3], and repeating the argument used in the proof of rela-
tion (35) in [3], we obtain the following estimates

(68) [ &3"(x)| < const nar;s-(1-e°)'4p’?f [pp(1+z=.)p'1 Vs_‘,']n

. [ p a,/2

3-4p-2¢ 1" _
8, (1_5 ) o] x2P=ct1=8 <

< const n? e[ P(14¢) P~ 11/@,(}‘]" .

%, /2 3-8p-2 e
] [ppgoo (1-e,) o] . 2p=at1-8
where const is a positive constant independent of n.

It follows from the choice of the parameters & and €,
(see pp.3, 4 and 6} that

_ L /2 3-8p=-2t
pP(1+¢)P 1\/30 <1 and ppgo (1-50) <

whence and by (68) we have

2.n, 8 _2p-a+1-8

(69) gconst n°g .0 ex

where 0O <q <1; x¢ (0,68),

In the case 2° (see Pe23) we use an argument similar to
that in the proof of relation (37) in [3] and we obtain an
inequality of the same type as (69). Thus, (69) holds good
for x ¢ {0,4>,
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In a gimilar wsy, based on the inequality

V_,h,m o ,n
“Fn B, (x) -F " . (x| <
oék(n) ° 5k(n)
~2n(2p-vy+1) 2p=2,+1-8
<constnn® (1-¢_) Y ) n
’ ° (51{(11) )
we gat
(70) "E‘gm(x)" < const n anG x2p-a+1-@

(xe (O'A>)o
Prom (58), (69), (T70), the inequality

(71) "Vam(x) _va(x) n < const r?e x2p~oc+1-e

(x € (0,4>) and the relations ¢, (0) = ""ocm(o) = 0, it follows
that

(72) "(pam(x)-tpa(x)" < const n® x2P=*+1-0  oonst n®

for xe <0,A>30=142y00e,p; M>m_.
By e similar argument we sliow that

(73) "lpam(Y)-Wa(y)" < const rze §2P-o+1-8  const o

for ye<0,B>; ®=1,2,e00,p3 m>m_,

Using (57), (38'), (72) and (73) we easily conclude that
for each positive number o there is a positive integer m,?
such that °

(74) sup [ug(x,3) = u(X.y)” < 0
when m>m_ . This completes the proof of the existence of

)

a (ges.} of the (G)-problem (see Definition 1).
In order to prove the unigueness of the (g.s.) (under the
additional assumptions 1°-4° formulated on p.21) it suffices

to show that if ({f.’?m}' {him}, {M?m}, {N?m}, {cm}) and {uﬂsl}
(9=1,2) satisfy the conditions of Definition 1 and the said
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assunptions 1°-4°, then the corresponding (g.s.) u® (8=1,2)
of the (G)-problem coincide in Q ., Let us obaserve that

(75) [u®(x,3) - a'(x,3)] < [u®(x,3) - uﬁ(x.viﬂ +
+ Jut(x,3) - wlix,z)] + [uB(x3) - wl(x,3)]

((x,5)e Q)ywhere for each p, > O the inequality

(76) “uz(x,y) - ug(ny)H + Hu1(x,y) - u;(x,y)ll< g?

7 /

7* r?*
positive integer. Furthermore, in virtue of the present assump-

tions and the Theorem in [3], we can assert that the functions
u: (8=1,2) are of the form (55) where Ry Pyp 800 W p
{a=1,2,...,p) are given by formulas (38), (49) and (50) with

< -
245 by, VO &3(n)f(n)""’5"(n) replaced by fim, him, voB,

((x,y)e Q) holds when m>m’ , m being a sufficiently large

308 . %% (8=1,2), res
see = pectively. Using an argument
mEn)* "y TR

similar to that applied in the proof of (74), we obtain the
following inequality

”ug(X,y) - u;(x,y)i < const {max < max [ sup “Mfm(x) +

1cigpi<0,A>
1 2 -1 2 1
- u! (x)], sup [NE (3) - N, (y) sup [£5 (x) - £! (x)
im L’ <0,B> ” im im ”’ <0,a> l im im "
S
2 -] anm 122 - nl 1
<8‘:§> [him(y) him(y)”, 84p |lRm(x,y) Rm(x,y)H>j
({x,y)eQ; 8¢(0,1)) and since the sequences {fim - flm},

2 1 2 1 2 1 .
{him - him}’ {Mim - Mim}' {Nim - Nim} {1=1,2,...,p) and

{Rg - R;} tend uniformly to zero when m —» oo , we can assert

that

(77) Hui(x,y) - u;(x,y)i <%§
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({x,5) eQ) ﬁrm>m$,erem
*

17

P is a sufficiently large
»*

positive integer,

From (75)=-(77) it follows that

sup [u®(x,3) = 0’ (x,3)] < o,

when m> max(m' ,m' ), which completes the proof of Theorem 1.
*

Px
Remark 2, It follows from the results obtained in

paper [3] (see [3], Theorem) that if Assumptions I-III of the
present paper are replaced by Assumptions I-III of paper [3],
then the (g.s.) of the (G)-problem given by formulas (49)-(54)
above is a (c¢c.s.) of this problem, '

(5]
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