

Mirosław Truszczyński

A GRAPH WITH MEAN DISTANCE BEING A GIVEN RATIONAL

A distance $d(x,y)$ of two vertices x and y of a connected graph G is the length of a shortest path joining x and y . A mean distance $\mu(G)$ of a connected graph G is defined as

$$\sum_{x,y \in V(G)} d(x,y)/n(n-1), \text{ where } n \text{ is the number of vertices of } G.$$

The following problem was stated by Plesnik in [1] (Remark 12, p.20): Given a rational $t \geq 1$, does there exist a graph G with $\mu(G) = t$? Our note gives a positive answer to this question.

Let $G_{k,p}$ ($k \geq p$) be a graph obtained from a cycle C_{2k+1} by adding edges between all pairs of vertices whose distance in C_{2k+1} is less than or equal to p . In particular, $G_{k,1} = C_{2k+1}$ and $G_{k,k} = K_{2k+1}$. One can easily check that

$$(1) \quad \mu(G_{k,p}) = (p+2p+...+[k/p]p + (k-[k/p]p)[k/p])/k.$$

Suppose that $t = a/b$ for relatively prime positive integers a and b , $a > b$, and let c be an integer such that

$$(2) \quad 2/(c+2) < b/a \leq 2/(c+1).$$

Since $a > b$, we have $c \geq 1$. Define

$$(3) \quad p = 2((c+1)b-a)$$

and

$$(4) \quad d = c(2a-(c+1)b).$$

It follows from (2) that $0 \leq d < p$. Finally put

$$(5) \quad k = cp + d.$$

(1), (3), (4) and (5) imply that

$$\mu(G_{k,p}) = a/b = t.$$

REFERENCES

[1] J. Pleśniak : On the sum of all distances in a graph or digraph, *J. Graph Theory* 8 (1984), 1-21.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received July 14, 1984.