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IDEALS IN FSJ(r)

1. Introduction

In the present paper we shall investigate the free special
quadratic Jordan algebras FSJ r). We shall give a Galois cor-
respondence hetween special ideals in FSJ T/ and ideals in
the associative algebra Q{x1,12,...,xr}. We prove that for

every quedratic idesl in FSJ(r) there sxists the smallest spe-
cial ideal containing it. We shall describe the guadratic
1deals in Fs3'1), in the case of char @ = 2.

In perticular we show that in this case every idesl 1is
generated by two elements and a quadratic ideal is prime if
and only if it is a prime ideal of d[x].

This paper is & part of my Thesis, presented to Department
of Mathematics, Informatics and Mechanics, Warsaw University
1979.

#e adopt the definitions and notations from [2].

Definition, A $-submodule I of a quadratic
Jordan algebra (JA, J i8 said to be an inner (outer) ideal
of J if for ae¢Il, bed, Ub(a) el (Ua(b)e I)e We say that I is
a gquadratic ideal of J if I is an innér and an outer ideal,

FPor every subset B¢ J, the smallest cuadratic ideal of J
which contains b is called the gquadratic ideal generated by B
and is denoted by (B)QJA’

Definition., 4 quadraetic Jordan algebra J is
said to be special if there exists an associative algebra 4
and a subalgebra J’ of A" such that J is isomorphic with J’,
otherwise J is said to be exceptional.
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2 Se Al-Talabani

Definition. LetOL-Q{1,...,x}beafree
asgociative algebra with 1 generated by XqseeeyX, OVEr the
field . The quadratic Jordan subalgebra of the algebra ot )
generated by 1,x1,...,xr is callad the free special Jordan
elgebra with free generators XyseeesXy and ‘is denoted by
rs3(T1,

Definition. A quadratic ideal I of an alge-
bra J is said to be a special idesl if the algebra J/I is
a special QJA. Otherwise, we call I an exceptional ideal.

Lemma 1. (see [2])s 4n ideal I of FSJ T} ig spe-
cial if and only if (I) nFSJ(r) = 1, where (I) is the ideal
generated by I of the associative algebra @{x1,...,xr}.

Theorenm 1, 4 quadratic ideal K of FSJ(” is spe=-
cial if and only if for all ae K we have xa ¢ K.

Proof. Evidently, if r = 1, then &[x] = ®{x} and
FSJ(” = @[x]+. Then by Lemma 1 the ideal K is special if and
only if (K) = K. Consequently if K is special in FSJ(” snd
if ae K, then xae K. If now for every ac K we have xac¢ K, then
for 1 >1 we have xia € X and from the egquality: a°+a1x+...)a =

= iZ ai(xia) ¢ K, we have that K is an ideal of ®[x], and
>0 .
hence a special ideal of FsJ{1),

Lenma 12. 1 £eFsa(1) - @[x]*, then (£)gga
+ £20[x] + fdi[ ]

Proof., Ifg,he f2<I>[x] + f@[xZ],»then Ug(h)
= 52h € f2<]>[x] » hence fZQ[x] + fQ[x2] is a quadratic ideal in
rsatl) containing f. Since £x?t o oxlext - v 4(f) and

x

£2xt - Uf(xi), i3> 0, and these elements generate the linear
space f2<1>[x] + ftb[xz], it follows that £20[x] + f@[x2] is
contained in every quadratic ideal of FSJ 1) Ghiech contains f,
Then (f)ozu = £ 29[x] + f@[x ].

Corollary. If feFSJ(”, then (£2) ¢ (£) JAC(f).

Example. Now we show that the guadratic ideals of
psall) 2 ox]* need not 'be determined by the non-zero polyno-
miels with the Bmallest degree which are contained in them,
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unlike to the idesls of ®[x]. In the ideals (x°)yj, of Fsall),

the polynomial x6 is of minimum degree among the non zero ele=-

ments of (xG)QJA. Moreover (x6)QJA = x20[x] + xsb[xz] c

cx® +'x8<b[x], and hence {x°) ¢ (xa)qJA. We remark also that

x! = x6x che + xstb[x] 9(x6)QJA’ hence (xs)QJA is not a spe=

cial ideal in FSJft),

Theorem 2. Every increasing sequencs of guadra-
tic ideals of Fs3(1} - ¢[x]* is finite.

Proofe. Let K1CK2cK3c ...clfrc eee be an increas-

ing sequenee of guadratic¢ ideals of FSJ(”, such that K1 £ 0,

Let f be the non-zero polynomial belonging to K1. From co=-

rollary of Lemma 2, we have (fz)g K,. Beocause FSJ(”/( 2)+
f

4o (Q[x]/(fg)f' is a finite-dimensional algebra, then by the

correspondence between the ideals of FSJ(”/( 2)+ and ideals
T

of s3') which contain (fg), it follows that the sequence
of ideals K.I cch... ig finite.

2. A Galois correspondence

Now let us consider the set A of all quadratic ideals of
FSJ(r), and the set B of all ideals of the associative algebra
@{x.l,xz,...,xr}. We now define the mappings o : & —= B, '
[f: B—= A by:

(1) a(K) = (K) where Kc4 and (K) is the ideal of ®{xy,s.s,x,}
generated by K.
(2} P = A nPsI‘T! when CteB.

From the definition of « and B we have: a(K) ¢ x(XK') if
KcX’' for every K, K' e 4,0, UV e B; and p{Ut) cPp (') if et
and moreover ap(K) 2 K, hence {=,P) is a Galois correspondence
(see [1]) and afa= a,Pap =f.

Leamna 3.- An ideal K of ESJ(r) is special if and
only if K e 3(B).
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Proof. Using the definition of o and p we can
write the lemma in the following way: the ideal K of FSJ(r)
is special if and only if K = pa(K). If K is of the form p (),
leB, then K = f(0h) = PaP() = Pa(K), and hence K is a special
ideal. Now, if K is a spscial ideal, then K = P (a(K)) and hence
a(K) e B,

Lemma 4. The ideal Ut of the algebra Q{x1,...,xr}
is of the form oK) for Ke A if and only if there is a set of
generators of Ut contained in FSJ(r).

Proof., IfO=ao(K), then from the definition of o
we have that OL= (K) and 0L is generated by the set KIQFSJ(r).
If L = ((af)fex) where a, ¢ FSJ(r), then define X = (BQ)QJA'
Since (K)cot = ((af)fe%) ¢(K) we have then «(K) = (K) =0,

Theorem 3. PForevery quadratic ideal K of FsJ(T!
there exists the smallest special ideal which contains it;
this is the ideal K = pPa(K) = (K)r\FSJ(r).

Proof. W have that the ideal I of FSJ(T) 1s special
if and only if Pa{I) = I, Consequently, since o and f pre-
serve inolusion, we have that if I is a specisl ideal which
contains K, then pa(K) < pPal(l) = I. We have Ba{fa(K)} =
= p(xpalK)) = pa(K), hence Pa(K) is a special ideal,

Corollary. For every homomorphism ¢ of PFSJ
on GJA, J, thers exists an homomorphism ¥ from FSJ'T/ on
a -special QJa, J1, and there exists a homomorphism p:J —» J1
such that ¥ = py. Moreover, for every commutative triangle:

(r)

rsgl®l 2 o

N /
AN
/o
\
N s ¥

L /
2
in which J2 is a2 special QJ4, there exists exactly one homo=-
morphism A ¢ J, — J, such that A¥ = ¥, Ap = p'.
Proof. Let Ker ¥ = K and K be the smallest special
iceal containing K and let J, = FSJ(I')/i and ¥: ps3lT) — g
8 natural nomomorphisms: :
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\ \\‘1’ P ,;//

The existence of pu follows from the theorem about isomorphism,
Because Ker V¥'s= (p'?)'1(0)2¢'1(0) = ker ¢, from the theorem
about isomorphism there exists A such that AY = ¥ end is
unique. Since Apg= ¥4 = ¥ = ¢p’ and ¢ is onto J, hence

Aa =p' . :

s« Bxceptional ideals in FSJ“)

We know that specisl ideals of FSJ{1) are ideals of o(x],
hence we shall consider only the exceptional ideals. For
char 9 # 2, every quadratic ideal of rsal1) 1 special, hence
we suppose from now on that char &= 2,

Let K be an exceptional ideal of FSI{1) and 1et K = psg{V
n (K) = (K). Then K is an ideal of ®[x], hence there exists
a polynomial f e &[x], such that K = (f).

Let G = {g;fg €K}, then we have the following statements:
1. G does not depend on the choice of f,

2. G is a subspace of the linear space $[x].
3. If ge G, he ®[x], then hzg € G,

Since for ge¢ G, gf e K, then hghf ¢ K, hence h‘?g € Ge
4, If ge G, he®[x], then tha? ¢ G, If ge¢ G, then gf e K, hence

(gf)h(gf) €K and consequently g2hfe G
5. (G) = (1) = ®[x]. If G # (1), then K = (K) = (£G) = £(G) #

£f =K

Lemma 5. IfO0#fed[x] and G is any set of poly-
nomials which satisfies g 1-5) then the set K = {fg,g eG} is
a quadratic ideal of FSJ and K = (f).

Proof. From (2) we obtain that K is a subspace.
If fge K, he @[x], then by (3) hfghe K and by (4) fghfge K,
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Hence K is a quadratic ideal., By the definition of K we have
K= (£6) = £(¢) = (£) by (5).
Lemma 6., If £,6,K are as above then (f)c G, (f)# G.
Proof. By (5) there exist k,ed[x], gy¢c Gy a eI,

such that 1 = 2kg.&me@u¢€&WGMW1- Eﬁi.
Then for he ®[x] we get from (4) that fh = Z:fhk2 2 o € G, hence

(£) € G. There are two cases: either (£} = G or (f)g G. Since
K is not an ideal of ®[x], and in the first case K = £G =
= f(£) =t(f ), the second case holds,

We now desoribe the linear space G, Let g be a polyno=-

mial of minimal degree in G. From (2) we get that 8x2n€ G,
n 0, If the set {8211’ n;O} is a base of G, then G = (g).
By (5), (G6) = ®[x], hence deg(g) = 0 which means that

= lin{1,x2,x4...} = 0 |x°]|, Prom (4) we have.that f¢G, xf eG,
and this means that also some polynomials of odd degrees be=-
long to G, which is not posible, thus {g,x2 g,...} is not
a base of G,

Let k Dbe a polynomial of smallest degree in G such that
deg(g) # deg(k)(mod 2)3 such a k exists since f,xfe¢ G. Now
we show that the set {g,k,ng,xzk,...} is a base of the linear
space G. Let Le G, then either deg(L) = deg(g)(mod 2) or
deg(L) = deg{k)(mod 2). Hence there exists m=m such that either
deg(L) = deg(gx2m) or deg(L) = deg(kxzm). Now we apply the
following sasy lemma,

Lemma 7. IfBis a linear space contained in &[x]
which contains only polynomials of degree Dy <Ny <eeey then
taking u set consisting of one polynomial of degree ny for
8very 1 = 1,2,.4., we got a base of B',

Hence the set {g,k,ng,x2k,...} is a base of G. Thus we
have proved the following theorem,

Theorem A4, If K is an sxceptional ideal of FSJ(1K
then X is generated by two elements.

The polynomials k and g considered above satisfy the
following conditions:
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(1) (Sok) = 1s.

This follows from (g,k) = (G) = @[] (1).
(2} There exist polynomials A(x ), p(x ), § (%2 Yy 1(x°) e
e & [x] such that f(x) g(x) A(x%) + k(x)p(x ) and xf(x) =
= g(x)8(x?) + k(x)r(x?).
This follows from above
(3) deg(f) > max(deg(g),deg(k)).

Clearly f = g(x)h(xz) + k(x)p(xe) and deg(g(x)l(x2)) #
# deg(k(x)p(xQ), hence dez(f) = max(deg(g(X)Z(xz).k(x),p(xz))z
» max(deg(g),deg(k)). Hence the following is true.

Lemma 8, Letf # 0, £fe¢&[x] and the polynomials
g,ke & [x] satisfy:

a) One of the numbers deg(g) and deg(k) is odd and the
other is even,

b) (g,k) = 1,

¢) £(x) = g{x)A(x°) + k(x)p(x?) and x£(x) = g(x)8(k°) +
+ k(x)e(x?), where A(x), p(x), 8(x), t(x)c &[x].

Then the set G = g(x)@[x2l + k(x)@[xz] satisfies (1-5).

Hence we have shown that quadratic ideals K of FSJ 1 such
that K = (£) are in the one-to-one correspondence with the
sets G satisfying the following conditions:

1) G is a d [xz]-module,

2) (f)c Ge d[x],

3) (&) = 9[x].

4., Prime quadratic ideals in FSJ(”

Definitione. An element a # 0 of a QJa, J, is
sald to be a zero divisor if thers exists O # be J, such that
Ua(b) =0 or Ub(a) = 0,

Definition, The quedratic ideal K of QJaA, J,
is said to be prime if and only if K # J and for a,beJ, if
a,b¢ K, then U (b) £K and Uy(a) ¢t K,

It is clear that K is prime if and only if the algebra J/K
has no zero divisors,
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Lemmsa 9. If X is a proper ideal of FSJ(1) and
K =K and K is a prime ideal of $[x], then K is a prime qua-
dratic ideal,

Proof. The result follows from the isomorphism
Fs3{ M)k » (@[x]/ )*, since ®[x] /4 is a field,

Theorem 5. IfK4is an ideal of FSJ{1) and ¥ is
_not a prime ideal in 3[x], then K is not prime,

Proof. IfK=ZK, then the theorem is true by Lem-
ma 9. Let K # K, then we know that K = (fg,fk)qJA for some
g,k e ®[x], where K = (f). Suppose K is a prime ideal and K is
not prime. Then the polynomial feG is reducivle, i.e.
£ = £,f,, deg(f,)> deg(f,) > 0. Since Uf1(f2 = 1222 = 12K,

it follows that f eK or fg ¢K, because K is a prime guadratic

ideal, Hence f|f, of f[fz, whers Kc K c(f), Since deg(fz) >0,
it is imposible that f|f,. Consequently f|f2, ice. £, 2]1‘
hence f,|f,.

Since deg(f1) 2 deg(fz), we can take f, = f,. We have.

Uf {g) = ffg = fg ¢K, and hence f ;¢ X or gcK, since X is

prlme. Since K c(f ) deg(f )> 0, we have £, ¢ K. Consequently
ge Kc(f) 1.0, flg. In the same way we show that f|k. Therefore
deg(f) ¢ min(deg(g),deg(k)) < max(deg(g),deg(k)) < deg(£f), a con=
tradiction, so that K is not a prime ideal.

Lemma 10, If K is an exceptional quadratic ideal
of Fs3'1) such that X # s3¢1) and X is a prime ideal, then K
is not prime.

Proof. LetK-= (f), then f 1is irreducible and KcK.
Let h e K\K. Since K = (f), there exists ue 7s3{1) such that
h = fu. Hence h? = £2u2 = £(£fu°) ¢ K, since fu® e (f) <G

If X is a prime ideal, then from the equality U, (1) =

= n%e K, we get that he X or 1¢ K, because K # FSJ(”, hence
1¢ K, and h ¢ K by the choice of h, thus X is not a prime
idesl.
It follows from Lemmas 9, 10 and Theorem 5 that:
Theorem 6. & quadratic ideal K of FsJ(1) is a pri-
me ideal if and only if K is a prime ideal im 3[x].
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