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C E N T R A L D E R I V A T I O N S O F L I E A L G E B R A S 

1. Preliminaries and notations 
Let L be a f inite-dimensional Lie algebra over a f i e l d F. 

A derivation of L i s a l inear mapping of L into i t s e l f such 
that 

for a l l 1 ,1 eL. We shal l employ the following notations: 
D(L): The derivation algebra of L, that i s , the Lie a lge-

bra of a l l the derivations of L. 
J(L): The ideal of D(L) consist ing of a l l the inner der i -

vations of L, that i s D(1) » [ q , l ] , where q i s an element 
of L. 

Out(L)i The set of a l l outer derivations of L, that i s , 
those not being inner, 

C(L)J The ideal of D(L) consist ing of a l l the central de-
r ivat ions of L , «that i s , such that D : L — * Z ( L ) , where Z ( L ) 

denotes the center of L. 
L* = The set of a l l the Lie algebra homomorphisms of L 

into the abelian Lie algebra F. 
P r o p o s i t i o n 1.1 . Let m « dim Z(L)> 0 , there 

i s a 1-1 correspondence between the*C(L) and L® given by 

( 1 ) D ( [ l , l ] ) X [D(1),I] + [ l ,D( l ) ] 

( 2 ) L® 9 ( A . J . . , A M ) T—• D = + 

urtiere z 1 ( . . . , z i s a basis of Z(L). 1 m 

.. • + «»«n,6 C(L) > 
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P r o o f . The mapping (2 } I s e v i d e n t l y i n f e c t i v e and 
w e l l d e f i n e d . To prove t h a t i t i s a l s o s u r j e c t i v e , c o n s i d e r 
an a r b i t r a r y c e n t r a l d e r i v a t i o n D. Then D ( l ) decomposes i n t o 
a ^ d J z ^ + o c 2 ( l ) z 2 + . . . + a m ( l ) z m , where o^ a re l i n e a r forms 
on L . 

. Then D ( [ l , l ] ) = a i ( [ l , l ] ) Z l + . . . + a m ( [ l , l ] ) z m . But 

D ( [ l , l ] } = [ D ( l ) , l ] + [ l , D { l ) ] = 0 , f o r every 1 , 1 e L , b e c a u s e 
D ( l ) , D ( i ) e Z ( I ) . 

I t f o l l o w s 

Of, ( [ 1 , 1 ] ) = [ 1 . 1 ] ) = 0 , 

because z , , z 2 » » * • » z m 3 7 8 l i n e a r l y independent . Thus cx^e L w . 
C o r o l l a r y 1 . 1 . The problem of d e t e r m i n a t i o n 

of the i d e a l C(L) r e d u c e s t o t h a t of and every c e n t r a l d e -
r i v a t i o n h a s the form d e f i n e d i n ( 2 ) . 

In t h i s note we s h a l l t r y t o determine the s p a c e L* f o r 
a l a r g e c l a s s of L i e a l g e b r a s and e s p e c i a l l y of l i n e a r L i e 
a l g e b r a s . 

2 . Genera l p r o p e r t i e s of L« 

Let L* be the dual s p a c e to L , and L 2 = [ L , L ] the d e r i v e d 
2 

i d e a l of L . E v i d e n t l y L* i s the a n n i h i l a t o r of L i n L . There-
2 2 f o r e dim L * = codim L = dim L - dim L . 

I f L i s a semisimpie L i e a l g e b r a , then L = [ L , L ] which 
i m p l i e s L« = {0 } and a l s o C(L) = { 0 } . 

Let L = S + R be the L e v i d e c o m p o s i t i o n of L i n t o the semi-
d i r e c t sum of a semis impie s u b a l g e b r a S and the r a d i c a l R of L . 
S ince 6 = [ S , S ] c L 2 , we o b t a i n <x(l) = a ( l s ) + a ( l R ) , < x ( l s ) = 0 
because S i s s e m i s i m p i e , then we have 

(3 ) a {1 ) = a ( l R ) . 

P r o p o s i t i o n 2 . 1 . L * i s the' subspace of R * 
which a n n i h i l a t e s [ L , R j . 
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Derivations of Lie algebras 3 

P r o o f . R* is the dual space of the radioal R, hence 
L* c R* by (3). Now 

[L,L] = [S+R, S+R] = [S,S] + [S,R] + [R,R] = S + [L,R]. 

Let «eL^,a/ [ L ) Lj = <x/s + <*/[L)R]. <* 
simple Lie algebra. Then g] = 0» 

In particular if L is reductive then L = S + Z(L), that 
is, R = Z(L) and [L,R] = {o}. So we get 

P r o p o s i t i o n 2.2. For a reductive Lie alge-
bra L,L* is the whole dual space of the center Z(L) and 
C(L) ^ Bnd(Z(L)J. 

P r o o f . Prom Proposition 2.1, L* is the whole dual 
space of Z(L), because [L,R] = {o} implies L* = R* = Z(L)*. 
Therefore D may be non zero only on Z(L). On the other hand 
every linear mapping h : Z{L) — • Z(L) defines a central deri-
vation by: D/g = 0, ^ ( L ) = 

Consider the Killing form on L 

K( 1,1) = tr(ad1 o adj). 

For 1 = 1 Q fixed a = K(-, 1 Q) is a linear form on L and 
a( [l»lQ]) 5 0 if and only if 1 Q belongs to the radical of L. 
(The radical is the orthogonal complement of [L,L] relative 
to the Killing form, see ( [l], p.73). Thus we have the mapping 

which in general is not surjective. For instance in the case 
of a nilpotent Lie algebra L, the Killing form K = 0, ( [2], 
p. 151) but dim L*> 0. 

3. The case of linear Lie algebra 
Let L cgl(n) be a Lie algebra of n «n matrices over a 

field F of characteristic 0. Assume that L is irreducible or 
completely reducible as a set of linear transformations of R n. 
V<e may employ the following well known theorem: 

/g = Ü because S is semi-
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A Lie algebra of linear transformations of a finite dimen-
sional vector space over a field of characteristic 0 is comple-
tely reducible iff: 

i) L = S + Z, where S is a semisimple ideal, Z the center 
of L, 

ii) The elements of Z are semisimple { [l], p.81). 
Combining this with Proposition 2.2, we get 
P r o p o s i t i o n 3*1» Let L be a completely re-

ducible linear Lie algebra. Then C(L) is isomorphic with the 
space of all the linear endomorphism of Z, and for every 
DeC(L), we have D(l) = h(lz), where lz is the Z-component 
of L, and h is a linear mapping Z •—• Z. 

If F is algebraically closed and L is irreducible then 
dim Z < 1, hence dim C(L) i 1. 

If F = R then dim Z(L)$ 2, hence dim C(L) < 4, see ( [l], 
p.66). 

Let K be the Killing form on the full linear Lie algebra 
gl(n), then 

K(x,y) = 2 [ntr{xy) - (trx)(try)] 
( [3], doctorate thesis), we put [c ,x] instead of x, then we 
have 
K([c,x],y) = 2 [ntr( [c,x]y) - (tr [c,x] )(try)] = 2ntr([c,x]y) 

since tr[c,x] = 0. On the other hand 

tr([c,x]y) = tr(cxy - xcy) = tr(cxy - cyx) = tr(c[x,y]). 
Therefore 

(4) K([c,x],y) = 2ntr(c[x,y]). 
Let cx e L„, a heing a linear mapping. We have 

ot(x) cjixij = tr(cx)» 
ij 
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Also every element cx of can be written in the form 

(5) a ( x ) = t r ( cx ) , 

where c is a constant matrix from g l ( n ) . 
In view of (4) « we obtain 
P r o p o s i t i o n 3.2. The element oc defined 

by (5) belongs to L* i f and only i f [c,L] is contained in the 
orthogonal complement of L in g l (n ) re lat ive to the Ki l l ing 
form K in g l ( n ) . Al l the elements of L* can be defined in 
this fomn. 

P r o o f . '.Ve have 

cc( [x ,y ] ) = tr (c [x,y] ) = ¿ K ( [ c , x ] , y ) 

and this is identically zero for x,y e L i f f , for VxeL , [c,x] 
i s in the orthogonal complement of L in g l (n ) re lat ive to the 
Ki l l ing form in g l (n ) . 

In particular, there follows 
C o r o l l a r y 3.1. I f L ° belongs to the centralizer 

of L in g l ( n ) , then cx given by (5) belongs to 
In fac t , we have [c,L] = 0. 
P r o p o s i t i o n 3.3. Let L be a solvable linear • 

Lie algebra over a f i e ld algebraically closed. We may assume 
that L consists of some upper triangular matrices (see [4], 
p.10). Then for any upper triangular matrix c the linear 
form a defined by (5) for x e L belongs to L*. 

P r o o f . L is solvable, hence every element of [L,L] 
has zeros on the main diagonal. Hence i f c is upper triangu-
lar matrix, then c [x,y] has also zeros on th6 main diagonal 
and consequently, 

t r ie [x ,y ] ) = 0 for a l l x,ye L. 

4. Outer central derivations 
L e m m a 4.1. I f an inner derivation D = adq is a cen-

tral derivation, then [q,L2 ] = Ü, that i s , q belongs to the 
2 centralizar of L in L. 
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t r 
1 ,1 e L 

o o f Prom the Jaoobi i d e n t i t y , i t follows that f o r 

[q, [1,1]] = [ [ q , l ] , l ] + [ l , [ q , l j ] , 

and we have ad e Z(L) f o r [q , l ] eZ(L) . Therefore r q , [ l , l ] l = 0 
[21 

q,L J = 0 . 
P r o p o s i t i o n 4 .1 . I f Z(L)4 L2 , then there 

ex is t outer cen t ra l der iva t ions of L. P r o o f , 
s ider the cen t ra l der iva t ion D = a 

Let zQ e Z(L) but zQ i if Take a t L and con-
Assume that D i s inner ; 

then D(l) = a ( l ) z 0 = [q,1] implies zQ e L , which i s in cont ra-
d ic t ion with the choice of z„. 0 2 

Since every inner der iva t ion i s L -valued, and every cen t r a l 
der iva t ion i s Z(L)-valued, there fol lows 

P r o p o s i t i o n 4.2 . I f Z(L) n L2 = {o} , then 
every non t r i v i a l cen t ra l der iva t ion i s an outer de r iva t ion . 

C o r o l l a r y 4 .1 . All non t r i v i a l c e n t r a l der iva-
t ions of a reductive but not semisimple Lie algebra are outer 
de r iva t ions . 

In f a c t , in t h i s case L = S + Z(L), S-semisimple, i t follows 
tha t L2 = [S,S] = S. but Z(L)nS = {o}, hence Z(L) n L2 «= {o}. 

R e m a r k . I f Z(L) c L 2 , then i t may occur tha t every 
cen t ra l der iva t ion i s inner . For instance take L to be the 
t r i angu la r matrix algebra 

L = a ,b ,c e F Then Lc Z(L) 

0 0 1 

dim Z(L) = 1. Take zn = ( 0 0 | e Z ( L ) . 

Since L* = {Aa + (jb}, then D(l) = a ( l ) z Q has the form 

0 0 1 
D(l) = (Aa + fib) [ 0 0 j = 

0 u 0 / 0 a o 

Also, D i s an inner de r iva t ion . 
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