

Saad Ibrahim Mahdi

CENTRAL DERIVATIONS OF LIE ALGEBRAS

1. Preliminaries and notations

Let L be a finite-dimensional Lie algebra over a field F . A derivation of L is a linear mapping of L into itself such that

$$(1) \quad D([l, \bar{l}]) = [D(l), \bar{l}] + [l, D(\bar{l})]$$

for all $l, \bar{l} \in L$. We shall employ the following notations:

$D(L)$: The derivation algebra of L , that is, the Lie algebra of all the derivations of L .

$J(L)$: The ideal of $D(L)$ consisting of all the inner derivations of L , that is $D(l) = [q, l]$, where q is an element of L .

$Out(L)$: The set of all outer derivations of L , that is, those not being inner.

$C(L)$: The ideal of $D(L)$ consisting of all the central derivations of L , that is, such that $D : L \rightarrow Z(L)$, where $Z(L)$ denotes the center of L .

L_* = The set of all the Lie algebra homomorphisms of L into the abelian Lie algebra F .

Proposition 1.1. Let $m = \dim Z(L) > 0$, there is a 1-1 correspondence between the $C(L)$ and L_*^m given by

$$(2) \quad L_*^m \ni (\alpha_1, \dots, \alpha_m) \mapsto D = \alpha_1 z_1 + \dots + \alpha_m z_m \in C(L),$$

where z_1, \dots, z_m is a basis of $Z(L)$.

P r o o f . The mapping (2) is evidently injective and well defined. To prove that it is also surjective, consider an arbitrary central derivation D . Then $D(l)$ decomposes into $\alpha_1(l)z_1 + \alpha_2(l)z_2 + \dots + \alpha_m(l)z_m$, where α_i are linear forms on L .

Then $D([l, \bar{l}]) = \alpha_1([l, \bar{l}])z_1 + \dots + \alpha_m([l, \bar{l}])z_m$. But $D([l, \bar{l}]) = [D(l), \bar{l}] + [l, D(\bar{l})] = 0$, for every $l, \bar{l} \in L$, because $D(l), D(\bar{l}) \in Z(L)$.

It follows

$$\alpha_1([l, \bar{l}]) = 0, \dots, \alpha_m([l, \bar{l}]) = 0,$$

because z_1, z_2, \dots, z_m are linearly independent. Thus $\alpha_i \in L_*$.

C o r o l l a r y 1.1. The problem of determination of the ideal $C(L)$ reduces to that of L_* , and every central derivation has the form defined in (2).

In this note we shall try to determine the space L_* for a large class of Lie algebras and especially of linear Lie algebras.

2. General properties of L_*

Let L^* be the dual space to L , and $L^2 = [L, L]$ the derived ideal of L . Evidently L_* is the annihilator of L^2 in L . Therefore $\dim L_* = \text{codim } L^2 = \dim L - \dim L^2$.

If L is a semisimple Lie algebra, then $L = [L, L]$ which implies $L_* = \{0\}$ and also $C(L) = \{0\}$.

Let $L = S + R$ be the Levi decomposition of L into the semi-direct sum of a semisimple subalgebra S and the radical R of L . Since $S = [S, S] \subset L^2$, we obtain $\alpha(l) = \alpha(l_S) + \alpha(l_R)$, $\alpha(l_S) = 0$ because S is semisimple, then we have

$$(3) \quad \alpha(l) = \alpha(l_R).$$

P r o p o s i t i o n 2.1. L_* is the subspace of R^* which annihilates $[L, R]$.

P r o o f. R^* is the dual space of the radical R , hence $L_* \subset R^*$ by (3). Now

$$[L, L] = [S+R, S+R] = [S, S] + [S, R] + [R, R] = S + [L, R].$$

Let $\alpha \in L_*$, $\alpha/[L, L] = \alpha/S + \alpha/[L, R]$, $\alpha/S = 0$ because S is semi-simple Lie algebra. Then $\alpha/[L, R] = 0$.

In particular if L is reductive then $L = S + Z(L)$, that is, $R = Z(L)$ and $[L, R] = \{0\}$. So we get

P r o p o s i t i o n 2.2. For a reductive Lie algebra L , L_* is the whole dual space of the center $Z(L)$ and $C(L) \cong \text{End}(Z(L))$.

P r o o f. From Proposition 2.1, L_* is the whole dual space of $Z(L)$, because $[L, R] = \{0\}$ implies $L_* = R^* = Z(L)^*$. Therefore D may be non zero only on $Z(L)$. On the other hand every linear mapping $h : Z(L) \rightarrow Z(L)$ defines a central derivation by: $D/S = 0$, $D_{Z(L)} = h$.

Consider the Killing form on L

$$K(l, \bar{l}) = \text{tr}(\text{ad}_l \circ \text{ad}_{\bar{l}}).$$

For $\bar{l} = l_0$ fixed $\alpha = K(-, l_0)$ is a linear form on L and $\alpha([l, l_0]) = 0$ if and only if l_0 belongs to the radical of L . (The radical is the orthogonal complement of $[L, L]$ relative to the Killing form, see ([1], p.73). Thus we have the mapping

$$R \mapsto L_*; l_0 \mapsto K(-, l_0),$$

which in general is not surjective. For instance in the case of a nilpotent Lie algebra L , the Killing form $K = 0$, ([2], p.151) but $\dim L_* > 0$.

3. The case of linear Lie algebra

Let $L \subset \text{gl}(n)$ be a Lie algebra of $n \times n$ matrices over a field F of characteristic 0. Assume that L is irreducible or completely reducible as a set of linear transformations of R^n . We may employ the following well known theorem:

A Lie algebra of linear transformations of a finite dimensional vector space over a field of characteristic 0 is completely reducible iff:

i) $L = S + Z$, where S is a semisimple ideal, Z the center of L ,

ii) The elements of Z are semisimple ([1], p.81).

Combining this with Proposition 2.2, we get

Proposition 3.1. Let L be a completely reducible linear Lie algebra. Then $C(L)$ is isomorphic with the space of all the linear endomorphisms of Z , and for every $D \in C(L)$, we have $D(1) = h(l_z)$, where l_z is the Z -component of L , and h is a linear mapping $Z \rightarrow Z$.

If F is algebraically closed and L is irreducible then $\dim Z \leq 1$, hence $\dim C(L) \leq 1$.

If $F = R$ then $\dim Z(L) \leq 2$, hence $\dim C(L) \leq 4$, see ([1], p.66).

Let K be the Killing form on the full linear Lie algebra $gl(n)$, then

$$K(x, y) = 2[ntr(xy) - (trx)(try)]$$

([3], doctorate thesis), we put $[c, x]$ instead of x , then we have

$$K([c, x], y) = 2[ntr([c, x]y) - (tr[c, x])(try)] = 2ntr([c, x]y)$$

since $tr[c, x] = 0$. On the other hand

$$tr([c, x]y) = tr(cxy - xcy) = tr(cxy - cyx) = tr(c[x, y]).$$

Therefore

$$(4) \quad K([c, x], y) = 2ntr(c[x, y]).$$

Let $\alpha \in L_*$, α being a linear mapping. We have

$$\alpha(x) = \sum_{ij} c_{ji} x_{ij} = tr(cx).$$

Also every element α of L_* can be written in the form

$$(5) \quad \alpha(x) = \text{tr}(cx),$$

where c is a constant matrix from $gl(n)$.

In view of (4), we obtain

Proposition 3.2. The element α defined by (5) belongs to L_* if and only if $[c, L]$ is contained in the orthogonal complement of L in $gl(n)$ relative to the Killing form K in $gl(n)$. All the elements of L_* can be defined in this form.

Proof. We have

$$\alpha([x, y]) = \text{tr}(c[x, y]) = \frac{1}{2n} K([c, x], y)$$

and this is identically zero for $x, y \in L$ iff, for $\forall x \in L$, $[c, x]$ is in the orthogonal complement of L in $gl(n)$ relative to the Killing form in $gl(n)$.

In particular, there follows

Corollary 3.1. If L^c belongs to the centralizer of L in $gl(n)$, then α given by (5) belongs to L_* .

In fact, we have $[c, L] = 0$.

Proposition 3.3. Let L be a solvable linear Lie algebra over a field algebraically closed. We may assume that L consists of some upper triangular matrices (see [4], p.10). Then for any upper triangular matrix c the linear form α defined by (5) for $x \in L$ belongs to L_* .

Proof. L is solvable, hence every element of $[L, L]$ has zeros on the main diagonal. Hence if c is upper triangular matrix, then $c[x, y]$ has also zeros on the main diagonal and consequently,

$$\text{tr}(c[x, y]) = 0 \quad \text{for all } x, y \in L.$$

4. Outer central derivations

Lemma 4.1. If an inner derivation $D = \text{ad}_q$ is a central derivation, then $[q, L^2] = 0$, that is, q belongs to the centralizer of L^2 in L .

Proof. From the Jacobi identity, it follows that for $l, \bar{l} \in L$

$$[q, [l, \bar{l}]] = [[q, l], \bar{l}] + [l, [q, \bar{l}]],$$

and we have $\text{ad}_q \in Z(L)$ for $[q, l] \in Z(L)$. Therefore $[q, [l, \bar{l}]] = 0$ whence $[q, L^2] = 0$.

Proposition 4.1. If $Z(L) \not\subset L^2$, then there exist outer central derivations of L .

Proof. Let $z_0 \in Z(L)$ but $z_0 \notin L^2$. Take $\alpha \in L_*$ and consider the central derivation $D = \alpha \cdot z_0$. Assume that D is inner; then $D(l) = \alpha(l)z_0 = [q, l]$ implies $z_0 \in L^2$, which is in contradiction with the choice of z_0 .

Since every inner derivation is L^2 -valued, and every central derivation is $Z(L)$ -valued, there follows

Proposition 4.2. If $Z(L) \cap L^2 = \{0\}$, then every non trivial central derivation is an outer derivation.

Corollary 4.1. All non trivial central derivations of a reductive but not semisimple Lie algebra are outer derivations.

In fact, in this case $L = S + Z(L)$, S -semisimple, it follows that $L^2 = [S, S] = S$ but $Z(L) \cap S = \{0\}$, hence $Z(L) \cap L^2 = \{0\}$.

Remark. If $Z(L) \subset L^2$, then it may occur that every central derivation is inner. For instance take L to be the triangular matrix algebra

$$L = \left\{ \begin{pmatrix} 0 & a & c \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix}, a, b, c \in F \right\}. \text{ Then } L^2 = Z(L) = \left\{ \begin{pmatrix} 0 & 0 & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\},$$

$$\dim Z(L) = 1. \text{ Take } z_0 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in Z(L).$$

Since $L_* = \{\lambda a + \mu b\}$, then $D(l) = \alpha(l)z_0$ has the form

$$D(l) = (\lambda a + \mu b) \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \left[\begin{pmatrix} 0 & \mu & 0 \\ 0 & 0 & -\lambda \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & a & c \\ 0 & b & 0 \\ 0 & 0 & 0 \end{pmatrix} \right].$$

Also, D is an inner derivation.

REFERENCES

- [1] N. Jacobson : Lie algebras, Interscience Tracts, number 10. New York 1962.
- [2] Yutze Chow : General theory of Lie algebras, Gordon and Breach Science Publisher Inc, Copyright 1976 Volume one.
- [3] J.H. Bell : A doctoral thesis, Jagiellonian University 1976.
- [4] J.E. Humphreys : Introduction to Lie algebras and representation theory, Graduate Texts in Math. New York 1972.

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY,
30-059 KRAKÓW, POLAND

Received February 8, 1984.

