

Teresa Markiewicz, Lucyna Rempulska

ON THE APPLICATION OF THE LEGENDRE POLYNOMIALS
TO THE DIRICHLET PROBLEM FOR THE LAPLACE EQUATION

1. Let r, s, t be the spherical coordinates of points, $Q = \{(r, s, t) : 0 < r < 1, 0 \leq s \leq \pi, 0 \leq t \leq 2\pi\}$, $S = \{(r, s, t) : r=1, 0 \leq s \leq \pi, 0 \leq t \leq 2\pi\}$ and $\bar{Q} = Q + S$. Let R be the rectangle defined by $0 \leq s \leq \pi, 0 \leq t \leq 2\pi$.

Denote by $C^m(Q)$ (m is a non-negative integer, i.e. $m \in \mathbb{N}$) the class of all real-valued functions defined in Q and having the partial derivatives of the order $\leq m$ continuous in Q . Analogously will be interpreted the symbols $C^m(\bar{Q})$ and $C^\infty(Q)$.

The symbol $C^m(R)$ will denote the class of functions having the properties as above and such that $f(s+\pi, t+2\pi) = f(s, t)$.

Let Δ be the Laplace operator, i.e. $\Delta = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial s^2} + \frac{\cos s}{r^2 \sin s} \frac{\partial}{\partial s} + \frac{1}{r^2 \sin^2 s} \frac{\partial^2}{\partial t^2}$, and $\Delta^n u = \Delta(\Delta^{n-1} u)$ for $n = 2, 3, \dots$ and $u \in C^\infty(Q)$, ($\Delta^1 = \Delta$).

In this paper we shall give a solution of the Dirichlet problem for the equation $\Delta^n u(r, s, t) = 0$ in \bar{Q} . We shall construct the function u of the class $C^n(\bar{Q})$, $n \geq 1$, such that $\Delta^{n+1} u(r, s, t) = 0$ in Q , $u(r, s, t)|_S = f(s, t)$, where f is a fixed function of the class $C(R)$ ($C(R) = C^0(R)$), and $\frac{\partial^p u}{\partial r^p}|_S = 0$ for $p=1, \dots, n$.

The solution of Dirichlet's problem for $\Delta u(r, s, t) = 0$ in \bar{Q} was given in [3] (p.472).

The similar problem was considered in [2].

2. Using the mathematical induction, we can prove

L e m m a 1. If $u \in C^\infty(Q)$ and $n=1, 2, \dots$, then

$$\Delta^n \left(r \frac{\partial u}{\partial r} \right) = r \frac{\partial}{\partial r} \Delta^n u(r, s, t) + 2n \Delta^n u(r, s, t);$$

$$\Delta^n \left(r^3 \frac{\partial u}{\partial r} \right) = r \frac{\partial}{\partial r} \Delta^{n-1} (6u(r, s, t) + r^2 \Delta u(r, s, t) + 4r \frac{\partial u}{\partial r}) +$$

$$+ 2(n-1) \Delta^{n-1} (6u(r, s, t) + r^2 \Delta u(r, s, t) + 4r \frac{\partial u}{\partial r})$$

and

$$\Delta^n \left(r^2 \Delta u(r, s, t) \right) = r^2 \Delta^{n+1} u(r, s, t) + 4nr \frac{\partial}{\partial r} \Delta^n u(r, s, t) + \\ + (6n+4n(n-1)) \Delta^n u(r, s, t) \quad \text{for } (r, s, t) \in Q.$$

From Lemma 1 and by the linearity of the operator Δ^n we obtain

L e m m a 2. If $u \in C^{2n+2}(Q)$ ($n \geq 1$) and $\Delta^n u(r, s, t) = 0$ in Q , then the function v ,

$$(1) \quad v(r, s, t) = u(r, s, t) + \frac{r-r^3}{2(n+1)} \frac{\partial}{\partial r} u(r, s, t),$$

satisfies the equation $\Delta^{n+1} v(r, s, t) = 0$ in Q .

Moreover, the following result can be easily obtained.

L e m m a 3. If $u \in C^{n+2}(\bar{Q})$, $n \geq 1$, and $\frac{\partial^p u}{\partial r^p} \Big|_S = 0$ for

$p = 1, \dots, n$, then v defined by (1) satisfies the condition

$$\frac{\partial^p v}{\partial r^p} \Big|_S = 0, \quad \text{with } p = 1, \dots, n+1.$$

3. Let $a_{k,l}(f)$, $b_{k,l}(f)$, $c_{k,l}(f)$ and $d_{k,l}(f)$ be the coefficients of double trigonometric Fourier series of $f \in C(R)$.

L e m m a 4. (cf. [4], [5]). If $f \in C^{2n+2}(R)$ ($n > 0$), then, for every $p, q \in N$ and $p+q = 2n$, the series

$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} (k+1)^p (l+1)^q (|a_{k,l}(f)| + |b_{k,l}(f)| + |c_{k,l}(f)| + |d_{k,l}(f)|)$
is convergent*).

4. Let P_n be the Legendre polynomial

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \quad (n=0,1,\dots; x \in (-1,1)),$$

and let

$$P_{n,m}(x) = (1 - x^2)^{\frac{m}{2}} \frac{d^m}{dx^m} P_n(x)$$

for $x \in (-1,1)$, $n=1,2,\dots$ and $m=1,\dots,n$ ([3], p.453).

Denote by $A_{k,l}(f)$ and $B_{k,l}(f)$ the coefficients of the Fourier series of $f \in C(R)$ with the orthogonal system

$$P_{k,l}(\cos s) \begin{pmatrix} \cos lt \\ \sin lt \end{pmatrix} \quad ((s,t) \in R),$$

i.e.

$$A_{k,0}(f) = \frac{2k+1}{4\pi} \iint_R f(s,t) P_k(\cos s) \sin s \, ds \, dt,$$

$$A_{k,1}(f) = \frac{(2k+1)(k-1)!}{2\pi(k+1)!} \iint_R f(s,t) P_{k,1}(\cos s) \cos lt \sin s \, ds \, dt,$$

$$B_{k,1}(f) = \frac{(2k+1)(k-1)!}{2\pi(k+1)!} \iint_R f(s,t) P_{k,1}(\cos s) \sin lt \sin s \, ds \, dt,$$

([3], p.455). Let, as in [3],

* We shall say that a series $\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} y_{k,l}$ is convergent if there exists $\lim_{m,n \rightarrow \infty} \sum_{k=0}^m \sum_{l=0}^n y_{k,l} = \alpha$ and $|\alpha| < +\infty$.

$$Y_0(s, t; f) = A_{0,0}(f),$$

$$Y_k(s, t; f) = A_{k,0}(f)P_k(\cos s) +$$

$$+ \sum_{l=1}^k (A_{k,l}(f)\cos lt + B_{k,l}(f)\sin lt) P_{k,l}(\cos s)$$

for $k=1, 2, \dots$; $(s, t) \in R$ and $f \in C(R)$. In [3] (p.467) there was given a sufficient condition for the convergence to f of the Fourier series

$$(2) \quad \sum_{k=0}^{\infty} Y_k(s, t; f) \quad ((s, t) \in R).$$

It is clear that $P_n(\cos s)$ and $P_{n,m}(\cos s)$ are some trigonometric polynomials of the order n . The series (2) can be written in the form of double trigonometric Fourier series for the function f if it is absolutely convergent in R . Lemma 4 and the result given in [3] (p.467) imply the following lemmas:

Lemma 5. If $f \in C^2(R)$, then the series (2) is convergent to f uniformly. Moreover, this series is absolutely convergent for every $(s, t) \in R$.

Lemma 6. Suppose that $f \in C^{2n+2}(R)$ ($n \geq 1$), $p, q \in N$ and $p+q = 2n$. Then the series

$$\sum_{k=0}^{\infty} (k+1)^{2n} Y_k(s, t; f) \text{ and } \sum_{k=0}^{\infty} \frac{\partial^{2n}}{\partial s^p \partial t^q} Y_k(s, t; f)$$

are absolutely convergent for every $(s, t) \in R$.

From Lemmas 5, 6 and by the fundamental theorems on power series there follows:

Corollary 1. If $f \in C^{2n+2}(R)$ ($n \geq 0$), then $U_0(f)$, defined by formula

$$U_0(r, s, t; f) = \sum_{k=0}^{\infty} r^k Y_k(s, t; f),$$

is a function of the class $C^{2n}(\bar{Q})$. Moreover, $U_0(f) \in C^{\infty}(Q)$ and

$$(3) \quad U_0(1, s, t; f) = f(s, t) \quad ((s, t) \in R).$$

5. Let, as in [1]:

$$(4) \quad D^n(r^k) = \begin{cases} r^k & \text{if } n = 0, \\ D^{n-1}(r^k) + \frac{r - r^3}{2n} \frac{d}{dr} D^{n-1}(r^k) & \text{if } n = 1, 2, \dots \end{cases}$$

for $k = 0, 1, \dots$ and $r \in (0, 1)$.

By mathematical induction we can prove

L e m m a 7. If $n = 1, 2, \dots$, then

$$D^n(r^k) = r^k + \sum_{q=1}^n w_q(r; n) \frac{d^q}{dr^q} r^k \quad (k = 0, 1, \dots; r \in (0, 1)),$$

where w_q are some algebraic polynomials with coefficients depending on n only and such that

$$\left(\frac{d^p}{dr^p} w_q(r; n) \right)_{r=1} = \begin{cases} 0 & \text{if } p \neq q, \\ (-1)^p & \text{if } p = q \end{cases}$$

for $p = 0, 1, \dots, n$ and $q = 1, \dots, n$ (see [1]).

Arguing similarly as in [1], [2], we shall prove

T h e o r e m . Suppose that $f \in C^{2n+2}(R)$, $n \geq 0$, and $Y_k(f)$, $D^n(r^k)$ are defined as in (2) and (4). Then the function

$$(5) \quad U_n(f) = U_n(r, s, t; f) = \sum_{k=0}^{\infty} D^n(r^k) Y_k(s, t; f)$$

has the properties:

$$1^0 \quad U_n(f) \in C^n(\bar{Q}),$$

$$2^0 \quad \Delta^{n+1} U_n(r, s, t; f) = 0 \quad \text{for } (r, s, t) \in Q,$$

$$3^0 \quad U_n(r, s, t; f)|_S = f(s, t)$$

and, if $n \geq 1$,

$$4^0 \quad \frac{\partial^p}{\partial r^p} U_n(r, s, t; f)|_S = 0, \quad \text{for } p=1, \dots, n.$$

P r o o f. The conditions $1^0 - 3^0$ for $U_0(f)$ are given in [3] (p.455-472).

By Corollary 1, Lemma 7 and (4), (5), we obtain

$$(6) \quad U_m(r, s, t; f) = U_0(r, s, t; f) + \sum_{q=1}^m w_q(r; m) \frac{\partial^q}{\partial r^q} U_0(r, s, t; f)$$

for $(r, s, t) \in \bar{Q}$ and $1 \leq m \leq n$. Moreover,

$$(7) \quad U_m(r, s, t; f) = U_{m-1}(r, s, t; f) + \frac{r - r^3}{2n} \frac{\partial}{\partial r} U_{m-1}(r, s, t; f)$$

for $(r, s, t) \in \bar{Q}$ and $1 \leq m \leq n$.

Hence, by (6) and Corollary 1, we get

$$(8) \quad U_m(f) \in C^\infty(Q) \quad \text{and} \quad U_m(f) \in C^{2n-m}(\bar{Q})$$

for $0 \leq m \leq n$.

The condition 2^0 for $U_0(f)$, (7)-(8) and Lemma 2 imply 2^0 for $U_n(f)$. The condition 3^0 holds by (3)-(5).

If $n \geq 1$, then, by (7) and (8),

$$(9) \quad \frac{\partial}{\partial r} U_1(r, s, t; f)|_S = 0.$$

Applying (7)-(9) and Lemma 3, we obtain 4^0 for $U_n(f)$. Thus the proof is completed.

REFERENCES

- [1] Z. D o p i e r a ɼ a , L. R e m p u l s k a : On the summability of series by harmonic methods, Comment. Math. Prace Mat. 23, 2 (1983), 11-25.
- [2] T. M a r k i e w i c z , L. R e m p u l s k a : On the application of the Fourier-Legendre series for the Laplace type, Comment. Math. Prace Mat. (in print).
- [3] W.I. S m i r n o w : Matematyka wyższa, T.3 (2), Warszawa, 1967.
- [4] M.Φ. Т и м а н : Об абсолютной сходимости кратных рядов Фурье, Dokl. Akad. Nauk SSSR, 137 (1961), 1074-1077.
- [5] И.Е. Ж а к , М.Φ. Т и м а н : О суммировании двойных рядов, Mat. Sb., 35 (1954), 1, 21-56.

INSTITUTE OF MATHEMATICS, A.MICKIEWICZ UNIVERSITY,
60-769 POZNAŃ, POLAND;

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF POZNAŃ,
60-965 POZNAŃ, POLAND

Received February 3, 1984.

