

Bogdan Koszela

ON SOME CONDITION OF THE EQUALITY OF CLASSES
OF CONTINUOUS FUNCTIONS WITH DIFFERENT TOPOLOGIES

In last years several mathematicians of Łódź studied the classes $C(X, T)$ of real continuous functions with some set X and different topologies T ([5]). The first important result was obtained by Kocela ([3]):

Let (X, T_0) be a compact metrizable space and let T be a topology stronger than T_0 ($T \supset T_0$). Then the necessary and sufficient condition for $C(X, T_0) = C(X, T)$ is that every T -continuous function be bounded.

Moreover, in [3] it was proved that if X is an interval $\langle a, b \rangle$ with the natural topology T_0 , T is a topology stronger than T_0 and $C(\langle a, b \rangle, T_0) = C(\langle a, b \rangle, T)$, then the two conditions must be satisfied:

- (1) Every interval $\langle c, d \rangle \subset \langle a, b \rangle$ is T -connected
- (2) Every T -neighbourhood of an arbitrary point $x \in \langle a, b \rangle$ is a T_0 -dense set in some T_0 -neighbourhood of the point x .

It is natural to ask if these two conditions are sufficient for the equality $C(\langle a, b \rangle, T_0) = C(\langle a, b \rangle, T)$. The answer is negative ([7]). What is the structure of T -open sets for the condition $C(\langle a, b \rangle, T_0) = C(\langle a, b \rangle, T)$?

In [3] a condition is given, unfortunately, not very useful. It depends on the notion of a totally open set.

Now, let (X, T_0) be an arbitrary topological space and $T \supset T_0$. In [2] the conditions analogous to (1) and (2) were considered:

(I) Topology T does not restrict the class of T_0 -connected sets (it is easy to observe that (I) is the necessary condition of $C(\langle a, b \rangle, T_0) = C(\langle a, b \rangle, T)$, too).

(II) Every T -neighbourhood of an arbitrary point $x \in X$ is a T_0 -dense set in some T_0 -neighbourhood of the point x .

In [2] it was shown that (I) and (II) are not necessary conditions for the equality $C(X, T_0) = C(X, T)$. We shall show that for a T_1 -space (X, T_0) satisfying the first countability axiom

β_1
 β_2

(II) is the necessary condition of $C(X, T_0) = C(X, T)$.

We adopt the terminology of Engelking ([1]).

Theorem 1. Let (X, T_0) be a T_1 -space satisfying

β_1
 β_2

the first countability axiom and let $C(X, T_0) = C(X, T)$, where $T_0 \subset T$. Then every T -neighbourhood of an arbitrary point $x \in X$ is a T_0 -dense set in some T_0 -neighbourhood of the point x .

Proof. First, let us observe that the condition (II) is equivalent to the following implication

$$x \in U \in T \Rightarrow \bigvee_{U_0 \in T_0} x \in U_0 \subset \text{Cl}_{T_0} U,$$

where Cl_T denote the closure operator with respect to the topology T_0 . Suppose that it is not the case. This means that there exists $U \in T$ such that for some $x_0 \in U$ there is no $U_0 \in T_0$ with $x_0 \in U_0 \subset \text{Cl}_{T_0} U$. Let $\{B_k\}_{k=1}^\infty$ be a T_0 -base for X at the point x_0 such that

$$\text{Cl}_{T_0} B_{k+1} \subset B_k \in T_0 \quad \text{for every } k.$$

Then there is $G_1 \in T_0$ such that $G_1 \subset B_1$ and $G_1 \cap U = \emptyset$. Let $m = \min_{G_1 \notin \text{Cl}_{T_0} B_k} k$ and $V_1 = B_m$.

Let us choose $U_1 \in T_0$ such that $G_1 \setminus \text{Cl}_{T_0} V_1 \supset \text{Cl}_{T_0} U_1 \neq \emptyset$. Next, if V_n and U_n are defined, there is $G_{n+1} \in T_0$ such that $G_{n+1} \subset V_n$ and $G_{n+1} \cap U = \emptyset$. Let $m = \min_{G_{n+1} \notin \text{Cl}_{T_0} B_k} k$ and $V_{n+1} = B_m$. Let us choose

$U_{n+1} \in T_0$ such that $G_{n+1} \setminus \text{Cl}_{T_0} V_{n+1} \supset \text{Cl}_{T_0} U_{n+1} \neq \emptyset$.

Thus we can define inductively a sequence $\{U_n\}_{n=1}^{\infty}$ of T_0 -open sets. $\{U_n\}_{n=1}^{\infty}$ is a discrete family in the space $X \setminus \{x_0\}$ in the topology T_0 . Let $x_n \in U_n$. There exists a T_0 -continuous function $f_n: X \rightarrow \langle 0, 1 \rangle$ such that $f_n(x_n) = 1$ and $f_n(X \setminus U_n) = 0$. The formula

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$

defines a function f which is T_0 -continuous for every $x \neq x_0$, but is T_0 -discontinuous at x_0 . On the other hand f is T -continuous on X . Therefore $C(X, T_0) \neq C(X, T)$, which concludes the proof of the theorem.

In [2] it was proved that if $U \subset \text{Int}_T \text{Cl}_T U$ for every $U \in T$, then $C(X, T_0) = C(X, T)$, where $T \supset T_0$ and $\text{Int}_{T_0}, \text{Cl}_{T_0}$ denote the interior operator and the closure operator with respect to the topology T_0 , T respectively. On the other hand, if the condition (II) is satisfied then the inverse theorem is also true ([2]). From the above and Theorem 1 the following theorem follows.

Theorem 2. Let (X, T_0) be a $T_{\frac{1}{2}}$ -space with the first countability axiom. Then the necessary and sufficient condition for $C(X, T_0) = C(X, T)$, where $T \supset T_0$, is that $U \subset \text{Int}_{T_0} \text{Cl}_T U$ for every $U \in T$.

Corollary. Let T_0 be the natural topology and let $T \supset T_0$. Then $C(\langle a, b \rangle, T_0) = C(\langle a, b \rangle, T)$ if and only if $U \subset \text{Int}_{T_0} \text{Cl}_T U$ for every $U \in T$.

This corollary shows what is the structure of T -open sets satisfying the condition $C(\langle a, b, T_0 \rangle) = C(\langle a, b \rangle, T)$.

REFERENCES

- [1] R. Engelking : General topology. Warszawa 1977.
- [2] W. Grudziński : Topological extensions preserving of classes of continuous functions, Doctoral Thesis, Institute of Mathematics, Technical University of Łódź, Łódź 1983.
- [3] E. Kocela : Properties of some generalizations of the notion of continuity of a function, Fund. Math., 78 (1973), 133-139.
- [4] B. Koszela : On the equality of classes of continuous functions with different topologies in the set of real numbers, Demonstratio Math., 10 (1977) 617-627.
- [5] B. Koszela, T. Świątkowski, W. Wilczyński : Classes of continuous real functions, Real Analysis Exchange, Vol.4 (1978-79), pp.139-157, Western Illinois University.
- [6] H. Nonas : Stronger topologies preserving the class of continuous functions, Fund. Math., CI.2 (1978) 121-127.
- [7] W. Wilczyński : Topologies and classes of continuous real functions, Bull. Acad. Pol. Sci., Ser. Math., 24 (1976) 905-907.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF ŁÓDŹ,
90-924 ŁÓDŹ, POLAND

Received February 3, 1984.