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THE HAHN-BANACH THEOREM FOR TOTALLY CONVEX SPACES 

1. In t roduct ion 
In [8] the category of Eilenberg-Moore algebras was de-

termined f o r the category Bar?., of r e a l or complex Banach 
spaces with l i nea r contract ions as morphisms with respect to 
the unit b a l l f unc to r , assigning to any Banach space i t s closed 
unit b a l l . I t was proved tha t the category of Eilenberg-Moore 
algebras of flan., , the smallest a lgebraic category "generated" 
by flan-,, so to speak, cons i s t s of an eqnat ional ly def inable 
category of Q-algebras over the category of s e t s , where ft 
i s the set of a l l r e a l r a sp , complex sequences (a Ine N) with oo, 
2-> l a J $ 1. For an J2-algebra X the operat ion of a c Q , a » 

= (ot I n c N ) , i s wr i t t en as X] a ,x 4 f o r eaah x e I , x = 
n i=i 1 x 

= ( x Q | n e N ) . The def in ing equations f o r the Bilenberg-Moore 
algebras are then (see [3] )* 

(TC 1) £ 6 í k X í = x k , 
i 

(TC 2) £ ( 2 f i i k x k ) = £ ( £ ) xfc, 
i k k i 

i f a . ^ e f l , = ( P i k | k e N ) and x e XN. An a - a l g e b r a X i s ca l led 
a r e a l r e sp . complex t o t a l l y convex space, i f X i s non-empty 
and (TC 1) and (TC 2) are va l i d . A morphism between two t o t a l l y 
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2 D. Pumplin 

convex spaces is just an Q-algebra morphism. This category of 
totally convex spaces is denoted by Jt and is the Silenbsrg-
-Moora category of fian^. 

If B is a Banach-apace, the closed unit ball 0(B) = 
= {x|x e B and ||x|| ( 1) is in a natural way a totally convex 
space and ie as such denoted by 0(B)t This induces a full and 
faithful functor 0 : fla^-^TC (see [8], (3.5)) the so called 
comparison functor. 0 has a left adjoint S t (cp. 
[s] , §7) assigning a Banach space S(C) to every totally con-
vex space C in a universal way. As 7t is "generated" by San., 
in a canonical way (cp. e.g. [5] ) it seems natural to ask the 
question if one can prove a Hahn-Banach theorem for totally 
convex spaces. Of course, the Hahn-Banach extension theorem 

A 
in flancarries over to Tt via the left adjoint S of 0 to 
some extent and this fact is used in [8] (see e.g. [8], (10.8) 
and (11.2)). Nevertheless, it should be interesting to have 
an independent version of the Hahn-Banaoh theorem for totally 
convex spaoes for the following reasons: (i) Jt consists of 
algebras of rank and to have a Hahn-Banach theorem for such 
a category should give further insight into the algebraic 
structure of £an1 ; (ii) Tt contains many objects having a 
structure entirely different from the structure" of subsets of 
the unit ball of a Banach space (see [s] , Linton's example 
(4.4), (4.5), and §11). Thus, one could hope that a Hahn-Ba-
nach theorem for totally convex spaces would provide new and 
interesting examples; (ill) Because of the close connection 
between and J? it should be possible to retrieve the 
usual Hahn-Banach theorem of .Bar?., from the Hahn-Banaoh theorem 
of Jt as a special case. 

Rode proved in [9] an abstraot version of the Hahn-Banach 
theorem containing all known Hahn-Banach type theorems as spe-
cial cases. The setting in which he formulates and proves his 
result suggests a close connection between the Hahn-Banaoh 
theorem and algebras of a certain type, namely finitary (uni-
versal) algebras with a commuting set of operations (cp* e.g. 
[3], p.127). Totally convex spaoes are of this type aa has 
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been proved in [a] , with one important difference: The opera-
tions are infinitary. In the following we will prove a Hahn-
-B&nach theorem for totally convex spaces» Por this, Rode's 
fiiethod has been modified in two vrâ s. F'irst, for totally con-
vex spaces, the canonical object for a functional to take its 
values in is 0(R) and not, as iß [9]» the half open interval 
; —OC { + 00 [. Secondly, we are dealing with infinitary operations 
in totally convex spaces and wo make fall use of the algébrala 
structure of totally convex spaces as developped in [8], 

H. König has generalized Rodé s theorem to the case of 
universal algebras with infinitary operations in [6]. This 
generalization is proved under very general assumptions: As in 
[9J the boundary functions p and q {op. (2.2)) are per-
mitted to take their values in the half-open interval [-00,TO[ 
and they are only assumed to be bounded from above on a so-
called boundary system in the domain of definition. This, 
together with the fact that the connection between an opera-
tion and the admissible elements a e -i? (cp. [6] ) is not ne-

T 

cessarily unique, requires ingenious arguments in the proof. 
Section 2 ÍB devoted to the proof of the general Hahn-Ba-

nach theorem for real totally"convex spaces. In section 3 
extension theorems in the real case are derived. It turns out A 

that a morphism f : CQ O(R) from a subspaoe CQ of a totally 
convex space C can be extended to C if and only if it is norm-
-bounded (see (3.4)). The appropriate type of totally convex 
spaces for extension theorems are the normed spaces (see [8], 
(12.1}){ actually they are characterized by the fact that for 
any non-zero element x eC there is a morphism cp : C -»• 0 ( R ) 
with <p(x) = flx|| and ||<p|| ® 1 (see (3.7)). This is remarkable, 
as there are normed totally convex spaces which are not iso-
morphic to totally convex subsets of Banaoh spaces (see (3.9)). 

In section 4 the results of section 3 are extended to com-
plex totally convex spaces in a way analogous to the method 
in the classical case. Then it is briefly sketched how the 
olassical Hahn-Banach theorems oan be easily retrieved from 
the corresponding results for totally convex spaces. Finally, 
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4 D. Pamplia 

we take a look at some other o&tegories of algebras correspond-
ing to the examples of Rode [9], which, su rp r i s i ng ly , are de-
fined i n a way closely r e l a t ed to the d e f i n i t i o n of t o t a l l y 
convex spaces ( ( 4 . 3 ) - ( 4 . 5 ) ) . 

2. The Hahn-Banach theorem 
F i r s t we need some notions genera l iz ing the c l a s s i c a l no-

t ions of convex and subl inear f o r t o t a l l y oonvex spaces. In 
t h i s s ec t ion , t o t a l l y convex spaoe always means r e a l t o t a l l y 
convex space, i . e . the operat ions are the elements of 

ft = j f o t j J i e N ) ! c^e R and ¡«¿I S "ij» the elements of £2 are 

denoted by a , a = ( a i | i e N). S2+ := {a |oce 2 and 0 f o r a l l 
i e N j i s the subBet of non-negative opera tors . 

D e f i n i t i o n 2.1 . Let G be a t o t a l l y convex 
space. Then, f o r a mapping p : C 0(R), we say t h a t : 
( i ) p i s £2+-oonvex, i f , f o r any oce&+ and x e C^, 

p ( E a i x i ) * E « i p (* Í ) . 
i 

( i i ) p i s S2+-concave, i f , f o r any a e and x e C^, 

p ( E a i x i ) * E « i P Í « i ) . 
i i 

( i i i ) p i s posi t ive homogeneous, i f p(ax) = ap(x) f o r any 
ote R with 0 ^ a í 1 and any z e C . 

( iv) p i s sub l inear , i f p i s posi t ive homogeneous and 
& -convex. A 

I f p,q:C 0(R) are mappings, we wri te p$q i f and only 
i f p(x) í q ( x ) f o r every x eC. Obviously the se t of a l l mappings 
from C to 0(R) i s ordered by " s " , i . e . i s r e f l e x i v e , t r a n -
s i t i v e and antisymmetrio. 

T h e o r e m 2 .2 . Let C be a t o t a l l y convex space and A 
p,q:C —• 0(R) be two mappings, such tha t p i s Q -convex, 
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The Hahn-Banach theorem 5 

q i s Q^-concave and q i p holds . Then there i s a morphism 
9:C -»• 0{R) of t o t a l l y convex spaces with q i <f $ p. 

The proof i s oarr ied out i n severa l s teps (see [9]) . 
L e m m a 2.3 . Z = {ir|ir: C -•> 0(R), jt i s ft+-convex and 

ir < p} i s a non-empty s e t , induotively ordered from below 
by 

P r o o f . Z <t> as p e Z ho lds . I f W c 2 i s a l i n e a r l y 
ordered subse t , put n(x) :» inf{w(x) |weff} f o r x eC. Then 
jr : c —*0(R) i s wel l defined and i t i s an easy exera ise to 
v e r i f y tha t jr i s a+-convex and, of course, i t i s a lower 
bound f o r W* 

Now, f o r the fol lowing, l e t <p be a minimal element of Z, 
which e x i s t s by Zorn s lemma beoause of ( 2 . 3 ) . 

L e m m a 2 .4 . i s pos i t ive homogeneous. 
P r o o f . One has to prove 9 (ax) = a<j>(x), f o r 0 s a $ 1, 

x c C . The a s se r t i on i s t r i v i a l f o r a = 0 . For cc> 0 put 31 (x) -
= a " V ( a x ) and v e r i f y j reZ. Besides, jr(x) = a~1tp(«.x) $ tp(x), 
i . e . 3T $<p, which implies JT » tp and hence our a s s e r t i o n . 

L e m m a 2 .5 . For every e > 0 there e x i s t s xg e C such 
tha t cp(Xg) - q(x £ ) < 6 . 

P r o o f . This fol lows immediately from the minimality 
• f tp. 

L e m m a 2.6 . Let ocefl+. Then f o r any ne N and f o r 
•very x e C N 

, 00 1 ® 00 
9 ( 2J a i * i ) * H « ^ ( » i ) + S 

i«1 i=1 i=n+1 

P r o o f . This inequa l i ty i s proved by induct ion . The 
case n • 0 i s t r i v i a l , so assume tha t the inequal i ty i s t rue 
f o r n . I f a

n + 1 = 0 , we are f i n i s h e d , as the a s se r t i on f o r 
n+1 i s equivalent with the induct ion hypothes is . Hence we oan 
r e s t r i c t ourselves to the case 0 <otn+1 i 1. For z E C put 
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6 D. Pumplin 

too oo 

an+1 ( * ( £ «1*1) " £ « Y P i V - £ « ^ ( t ^ ) 
i»1 i=1 i=n+2 

t ± e C for i e N with t f l + 1 • z and t i = ( J ^ with 0 «5 Pĵ  $ 1 
for 1 « i * n j . 
The induction hypothes 1B at onoe implies q$ i r . Now take e>0 
and put t^ • x£, for i »n+2 , then (2.5) implies 

co n 00 
»{»)«<*;£, « i * ! ) - £ al<P<V " £ «±«J<V)< 

i«1 i - 1 i=n+2 

$ a n ! l ( a n + 1 , p ( z ) + £ «i(«p(xe) - q (x e ) ) )<9 ' ( « ) + i=n+2 00 
+ «'nh ( £ « i ) e 

i=»n+2 

and hence q $ j f i 9 • 
In order to prove that st i s fl+-convex, we take j , ef l + and 

u e CN Take « R with. jr(up) < x^s 2, ^ N . Then the def in i t ion 
of or (Uy,) y i e lds the existence of t i v e C and p i v with 0 * |5iv O , 
0 e N, 1 $ i S n, with t i v , « p^Xj for 1 i i < n, s> e N and 
tn+1,v = 8 U c J l t h a t 

00 n 00 
« ^ ( » ( S «1*1«) - £ a i * ( t i v > - £ " i ^ i v O ^ 

i=1 i « l i=n+2 

o e v , N. 
00 

One pats t^ 2 ¡fy^i^» i n ^ e tota l l y convex space C 
r i (see |8J ) , and gets 

00 
*1 " ( £ P i ) X i ' 1 < 

V = 1 

00 
= 2 Tv uv» 

V =1 
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The Hahn-Banach theorem 7 

because of [8 ] , ( 2 . 1 2 ) , [8 ] , ( 2 . 4 ) , ( i x ) , y i e l d s 

oo oo oo oo oo 

E V i - E a i ( E J T ^ i v ) • E « 1 * 1 * ) • 

i=1 i - 1 9 = 1 -p =1 i=1 

Due t o ( 2 . 4 ) , ve have 

¿ ^ ( t , ) - ¿ « ^ ( ( f : r A ^ h ) -
1=1 i=1 9=1 

• E  a i ( E - E < v < w ) 

1=1 9 = 1 9=1 i=1 

and , a s q i s £2+-concave f Oo oo oo 
E « ± Q ( * ± ) - E «±q ( E r v t i 9 ) > 

i=n+2 i=n+2 9=1 

OO OO oo oo 

* E « i E tf"9q(ti9> = E * 
i«n+2 9=1 9=1 i=n+2 

P u t t l o g t h e s e r e s u l t s t o g e t h e r one o b t a i n s the f o l l o w i n g 
e s t i m a t e 

— ^ — oo 
V i ) - E - E « ^ ( v ) « 

v=1 i=1 i=1 i=n+2 

OO OO n OQ 

< a a l l ( E ^ ( » ( Z «1*19) " E « i ^ i ^ " E « i ^ i v O ) * 
i=1 i=1 i=n+2 

oo 
i E W 

9=1 
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D. Pumplln 

As was a r b i t r a r y , s u b j e c t to j t (u 9 ) s>eN , t h i s 
i m p l i e s the £!+-convexity of Jr. Thus we get sr e Z and and . 
hence jt = 9 . Choosing z » *n +-j» • i 4 n+1» i n the d e f i -
n i t i o n of it, one has 

00 n 00 

( * ( £ a i x i ) " £ ° i » < * l > " E o i « < * i 0 
i»1 i«1 i«n+2 

and hence our a s s e r t i o n . 
P r o o f of Theorem 2 . 2 . For e> 0 there i s a n Q ( e ) , 

such that f o r n > n Q ( e ) 

i - n + 1 
< € 

hence Lemma 2.6 i m p l i e s , f o r n > n ^ ( e ) , that 
00 00 

* ( S a i * i ) 51 S a i<p(*i> - e 
i = l i»1 

and one g e t s 

i=1 i=1 

T h i s , together with the f a c t that <p i s £2+-convex, proves that 

(*) 9
 a i * i ) = 2 <*i<p(*i) 

i=1 i»1 

f o r a r b i t r a r y a e S 2 + , x £ C^. 
I n order to see that ip i s a morphism of t o t a l l y convex 

spaces one has to show the v a l i d i t y of (* ) f o r a l l a eft - (op. 
[ 8 ] , ( 2 . 6 ) ) . Now, f o r any x e C , [ 8 ] , ( 2 . 1 2 ) , shows t h a t 

1 1 1 0 = 2 x + 2 ^ence, a 8 *p(0) - 0 , 0 = <p{0) = £ <p(x) + 
1 N + g ip(-x) and thus <p(-x) • -q>(x). Taking amy oce£2 and x e C 

one gets (see [ 8 ] , ( 2 . 1 2 ) , ( i i i ) , ( v ) ) 
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The Hahn-Banach theorem 9 

oo oo 
<P ( I ] « i * i ) = <p(Z] |«i| ( a g i a i ) * ! ) « 

i=1 i»1 

oo oo 
= ] l i«*ii«pi8g(Oi)*i) - E « i T ^ i i » 

i=1 i«1 

sg(a^) denoting the s ign o f a ^ . Henoe Theorem 2 . 2 i s proved. 
R e m a r k 2 . 7 . With the seminorm introduced f o r a 

t o t a l l y convex space C i n [ 8 ] , ( 6 . 1 ) , one has f o r the mappings 
p,q i n Theorem 2 . 2 

|p(x)|*||x|| and |q(z)|*«|x| f o r any x e C . 

3 . Extension theorems 

We v i l l now apply ( 2 . 2 ) to get analogoues of the o l a s s i a a l 
ex tens ion theorems f o r t o t a l l y convex spaces* In t h i s s e c t i o n 
" t o t a l l y convex spaoe" always means r e a l t o t a l l y convex space . 

P r o p o s i t i o n 3 .1* L«t C be a t o t a l l y convex 
space and p : C —» 0(R) be an S2+-convex mapping with p(0) - O. 
Then there e x i s t s a morphism tp s C 6(R) of t o t a l l y convex 
spaces with 

- p ( - x ) $ <p(x) $ p ( x ) , f o r x e C. 

P r o o f . As usual (op. e . g . [10] , p. 103) one de f ines 

q ( x ) »» - p ( - x ) , f o r x e C. 

Because | x + \ ( - x ) - 0 holds f o r x e C ( [5 ] , ( 2 . 1 2 ) ) , we get 

0 » p ( 0 ) $ \ p(x) + ^ p ( - x ) implying q ( x ) « p ( x ) . q i s t r i -
v i a l l y ft+-conoave, henoe our a s s e r t i o n fo l lows from Theorem 2 . 2 . 

T h e o r e m 3 . 2 . (The Hahn-Banach extens ion theorem). 
Let C 0 < C be a subspace of the t o t a l l y convex space C and l e t 
P « c — o(R) be s u b l i n e a r . Then, f o r any morphism f : C f . -•O(R) 
o f t o t a l l y oonvex spaoes, such that f ( y ) $ p(y) f o r every y e C,,f 
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10 D, Pumplin 
A there ex i s t s a morphlem cp : C —• 0(R) extending f , i . e . w i t h <p | C0 = f , and 

- p ( - x ) $ <p(x) « p ( x ) , f o r x e C . 
P r o o f . We de f i ne , f o r x e C (op. e .g . [4], p .31 ) , 

q (x ) = 2 i n f j p Q x - \ y ) + \ f ( y ) | y e C0J. 
As 

p ( | x - \ y) + \ f ( y ) * \ p(x) + \ p ( -y ) + \ f ( y ) 
f o r y e CQ, one gets q(x ) < p(x> + p ( -y ) + f ( y ) and henoe, q $ p f o r y = 0. 

Besides, we have,, due to [8] , ( 2 .12 ) , f o r x e C , y e C Q 

which imp l ies 
J p( -y) * - \ y ) + J p ( - x ) . 

Th i s , as f { - y ) $ p ( - y ) , y eC 0 , leads to 
p ( i x - \ y ) + \ f ( y ) i - | p ( - x ) . From t h i s we conclude q (x )> - p ( - x ) and so q : C 0(R) i s w e l l def ined w i t h - p ( - x ) $ q ( x ) $ p ( x ) , x e C . The l a s t inequa-l i t y imp l ies q(0) = 0 . I n order to be able to apply (3.1) we are going to prove tha t q i s G+-convex. For t h i s , take occft+, x ,y e c l Due to [ 8 ] , ( 2 . 4 ) , ( i i ) , (which i s the de f i n i ng equat ion (TC 2) i n the i n t r oduc t i on ) we get YL - \ ? i ) = g S « i * i " f Z a i 7 i -i i i 
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The Hahn-Banach theorem 11 

I f £> 0 i s given, then, according to the d e f i n i t i o n of q (x^) , 
there i s a CQ with 

q(x±) < x i - \ y ± ) + \ f iy j . ) ) <q(* 1 ) + e . 

This, together with 

E a i x i - 2 E a i * i ) * E a i P ( 2 x i - 2 
i i i 

implies 

E 2 ( E a i p ( 2 x i - 2 » i ) + i E « i ^ i O - ( E « i ) 
i i i i 

* 2 H ] Z v i - + \ f ( £ « i ' i ) ) - £ > " ( E ^ i ) - 6 -
i i i i 

Since e > 6 was a rb i t r a ry q i s fi+-convex and, due to (3.1)» 
we get a morphism q> : C O(R) with 

-p( -x) « -q(-x) $ <p(x) S q(x) < p(x) , x e C. 

Now, ohoosing x = y e CQ, one has 

q(y) i 2(!p(0) + \ f(y)> = f ( y ) , 

hence q{-y) $ f ( - y ) = - f ( y ) or - q ( - y ) * f ( y ) , which implies 

<p(y) = f (y) = q (y) , f o r y e c 0 , 

and henoe our a s se r t i on . 
A na tu ra l choice f o r an £l+-convex mapping on a t o t a l l y 

convex space C iB the norm on C introduced in [8], (6 .1 ) , 
(2.7) shows that i t i s the g rea tes t Q+-convex mapping. I n t e -
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12 D. Pumplin 

resting applications oan be expected mainly from (3 .2) , because 
the assertion of (3*1) can always be f u l f i l l e d by the zero-
-morphiem cp» 0. Contrary to the c la s s i ca l case, however, two 
things have to be taken into account when applying (3 .2) . 
F i r s t , the norm on a total ly convex space C i s sublinear i f 
and only i f C i s normed in the sense of [8] , (12.1)« Secondly, 
i f Cq< C i s a subspaoe of a normed total ly oonvex spaoe C, 
the norm ||-||0 011 ^o i e general different from the r e s t r i c -
tion of the norm ||-|| on C to CQ. Due to [e] , (6 .3) , one has 
llyll * IIjIIq f o r any y e Cq. Thus, i f one wants to extend' a 
morphism f : Cq-» O(R) to C, a neoessary condition I s that 
|f(y)| < ||y||, y e C 0 , while in general one only knows |f(x)|<||y||g. 

This leads to the 
D e f i n i t i o n 3.3* Let C0 < C be a subspaoe of 

the total ly convex space C. For a morphism f t CQ 0(R) one 
defines 

|f | sup J g l l i i f 1 l * ' C 0 \ { 0 } } 

(op. [8], (6 .7) , (6 .9 ) ) . f i s called norm-bounded in C, i f f 
|f | « 1 . Obviously, i f CQ i s an i soaetr ioal subspace, then 
Ifl = llfll. 

P r o p o s i t i o n 3*4. Let CQ< C be a subspace 
of a normed, totally convex space. Then for any morphism 
f : CQ —» O(R) the following are equivalent» 

( i ) f can be extended to a morphism on C. 
( i i ) f i s norm-bounded in C. 

Moreover, i f f i s norm-bounded, i t oan be extended to 
a morphism (p with ||<p|| = |f| . 

P r o o f . ( i ) = > ( i i ) : Let <p t C - » 0(R) be given 
with <p |c 0 = f . Then, for y e C0 , y »f 0, 

lf(?)l _ l » ( j ) l < 
l n ~ i?» " 

henoe |f| < | |<p| | $ 1. 
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The Hahn-Banaoh theorem 13 

( i i ) => ( i ) s Put p(x) If | ||x||; then p i s sub l inear , 
due to [8] , (6.2) and (12.1) , Moreover, f o r y eC, one has 
| f ( y ) | ^ | f | | |y | | = p(y). Henoe, from (3.2) one ge ts an exten-
sion <p : C — O(R) with <p|c0 = f and |<p(x)| $ p(x) « | f | | | x | | , 
x e C. 

The comparison of the norms, on the other hand, leads to 
the 

D e f i n i t i o n 3.5. Let CQ <C be a subspaoe of 
the t o t a l l y convex space C. One def ines the norm quotient 
of CQ in C as 

v- Hte je0oX{°}}-
||-|| denoting the norm in C and [|-||Q the norm in CQ. CQ i s 
oalled a norm-equivalent subspace of C, i f jrP > 0 holds. This 
notion i s a na tura l genera l iza t ion of the equivalence of norms 
in vector spaoes. CQ i s an i sometr ica l subspace of C, i f and 
only i f Tn * 1» Obviously 

TCq = sup {*| 0 < k <1 and * ||y||0 $ ||y|| f o r y e CQ}. 

P r o p o s i t i o n 3*6. Let CQ ¿C be a norm-equi-
valent subspaoe of a normed t o t a l l y oonvex space. Then, f o r 
any morphism f : Cq — 0 ( R ) the following are equivalent! 

( i ) f oan be extended to a morphism on C. . 
( i i ) | |f | |<arc 

0 
P r o o f . As we have ^ > 0 , an easy computation shows 

| | f | = 3"c | f | , hence our a s se r t ion follows from (3*4). 

C o r o l l a r y 3 .7 . Por a t o t a l l y convex space C 
the following are equivalent : 

( i ) C i s normed. 
( i i ) Por every XQ e C with xQ ¿ 0 , there i s a morphism 

tp s C — 0(R) with ?(x0) - ||XQ || and ||<f|| = 1. 
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14 O. Pumplin 

P r o o f . ( i ) = » ( i i ) : Take f o r C0 the subspace of C 
generated by xQ , CQ = { a x Q | a e R and |a | $ l } ([Sj , ( 2 . 1 2 ) ) . 
As C i s a sp^pr ica l (see [8] , (12.2)) and xQ 4 0 , ocxQ = |3x0 

impl ies a = . Henoe, by F(axQ) J=OÍ | |XQ| | we have a wel l de-
f ined morphism f s CQ O(R). Besides , | f | = 1, hence ( i i ) 
fo l lows from ( 3 . 4 ) . By the way, we have ¡f c = | |x 0 | | . 

( i i ) => ( i ) : Let Xq C C, Xq 4 O, be given. Then with the 
morphism cp i n ( i i ) one has f o r any a e R , with 0 < |a | $ 1, 
|« | | | X o | | = Mcp(x 0 ) = |a<p(x0)| = M « x 0 ) | ^ ! | a x 0 l k l « | | |x0 | | . 

Hence, wfc get | |OXQ|| = |AJ | |x0 | | and ( i ) i s proved. 
C o r o l l a r y 3 .8 . For a t o t a l l y convex space, 

the fol lowing are equ iva len t : 
( i ) C i s separab le . 
( Ü ) For any *Q»7Q£ C with XQ 4 yQ there i s a morphism 

cp : C O(R) with <P(XQ) 4 <f(y0) and ||<,,|| = 1. 
P r o o f . ( i ) = ^ > ( i i ) : C i s normed because i t i s s e -

parable ( [8] , ( 1 2 . 2 ) ) . Put z s i x 0 - £ y 0 . Then z 4 O as 

z = 0 would lead t o 4 xq = 4 7 0 ^ ^ i l e n c e t o x o = ^ ' 
(10 .2)) which i s a c o n t r a d i c t i o n . Now, from (3.7) we get a <p 
with lltfH = 1 and tp(z) = ||z|| 4 0 ([e] , ( 6 . 9 ) ) , hence <p(xQ) 4 
¿ < f ( y 0 ) . 

( i i ) =s> ( i ) fo l lows immediately from [8] , (10 .2 ) . (3 .8) has 
been proved i n [8], (10 .8 ) , with the c l a s s i c a l Hahn-Banach 
theorem. 

R e m a r k 3 .9 . That the range of the Hahn-Banaoh 
theorem f o r t o t a l l y convex spaces i s ac tua l ly wider than t ha t 
of the c l a s s i c a l ve rs ion i s shown by the fol lowing example of 
a normed but not separable t o t a l l y convex space C. Provide R2 

with the supremum norm || ( , Xg) || = s u p j | x | »|*2 |} » R^ i s 

A 2 
a Banach space and 0(R ) i s a t o t a l l y convex space. Define f o r 
x,y c 0(R 2 ) , x = ( x 1 f x 2 ) , y = (y . , ,y 2 ) , 

x ~ y s <=> x = y or ( |x. , | < 1 and x1 = y ^ . 

An easy computation s.hows tha t i s a compatible equivalence 
r e l a t i o n in the category of t o t a l l y convex spaces (see [8] , §4). 
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Put C := 6(R2)/,S, and let it i 0(R) —» C be the canonical pro-
jection* C is a normed totally convex space and can be visua-
lised as a double T in the plane R 2, namely as the set 
([-1,1] x { o } ) u ({-1}. x [-1 ,lj ) u ( { 1 } «[-1,1]). Obviously, 
C is not separable and hence cannot be embedded by an infec-
tive morphism of totally convex spaces into the unit ball 
A 0(B) of any Banach space B. 

4* The complex and the olassioal case 
Like in the classical case (cp. e.g. [4], [10]) we now 

prooeed to derive Hahn-Banach theorems for complex totally 
convex spaces from the Hahn-Banaoh theorem in the real case. 

D e f i n i t i o n 4.1. Let C be a oomplex totally 
convex spaoe. A mapping p t C -» 0(R) is called a semi-norm, 
if the following^onditions are fulfilled! 

(SN 1) P ̂ X j «i'i) lail f o r «very aeaand every xcC^. 
i i 

(SU 2) p(ocx) = |a| p(x) for any aeC with |a| $ 1 and any x e C. 

As in the proof of Theorem 3.2 one shows, that for a semi-
norm p on C one has 

p(jx - 5 y) * 5 p(-y) - \ p(-x) = \ p(y) - \ p(x) for x,y e C 

and henoe || p(x) - ^ p(y)| í x - g y). In particular, 
one gets p >0. 

We are now in a position to prove the oomplex analogue of 
Theorem 3.2. 

T h e o r e m 4.2. (The complex Hahn-Banach extension 
theorem). Let C Q < C be a sabs pace of the complex totally con-
vex spaoe C, and let p i C —» 0(R) be a semi-norm on C. Then, 
for any morphism f t C Q — • 0(C) of totally convex spaces, 
such that |f(y)| « p(y), for ye There exists a morphism 
<f : C —» 0(C) with <p|c0 = f and |«p(x)| « p(x) for x c C. 
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16 D. Pumplin 

P r o o f . Deoompose f into i t s r ea l and imaginary 
part 

f (y) = g(y) + ih(y) . 
Cq and C are , ix^an obvious way, rea l to ta l ly convex spaces, 
and g,h : CQ —» 0(R) are morphism of rea l tota l ly convex spa-
oes. For the rea l space C, p i s sublinear with p(-x) = p(x) 
and, moreover, | g ( y ) | < p ( y ) , y c C^. Henoe, due to (3 .2 ) , 
g can be extended to a <p s C —»"0(R) with <p | C0 = g and 
|<p(x)| $ p(x) , x € C. As h(y) = -g( iy) for y c C 0 , i t i s natural 
to define 

$(x) <p(x) - i<p(ix) for x e C. 

Now take an operation a of the oomplex to ta l ly convex space C, 
i . e . a sequence ot = ( a i | i e N ) of complex numbers with 

Decompose every <xv into i t s rea l and imaginary part 

Vf + i f y * due to [8], ( 2 .4 ) , (2 .12) , 

- + \ E m ^ I v> V> 

for any x e cK An easy computation now yie lds 

and, as $(A,x) = A$(x) for arjy AcRwith < 1, we get 

if J 
Henoe, $ i s a morphism of oomplex tota l ly convex spaces, 
provided we can prove |$(x) | $ 1 for x eC. For th i s , write 
$(x) = e i 5 [ $ ( x ) | , which implies |$(x) | = e " i 6 $ ( x ) « 

J Mf 1 1 

= $(e x) 0 and thus 

|$(x)| - $ ( e - i 6 x ) = <?(e- i 6x)$ p(x). 
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Consequently, our assertion i s proved, as = f t r i v i a l l y . 
Definitions 3 .3 and 3 .5 can bs carried over verbatim to 

the complex oase. Propositions 3 . 4 and 3*6 and Corollaries 
( 3 . 6 ) - ( 3 . 8 ) then remain valid for complex total ly convex spa-
ces . 

Finitely total ly oonvex spaces were introduced in [8] , 
too; they are the Eilenberg-Moore algebras for the category 
Vec., of normed vector spaces with l inear contractions and the 
unit ball functor. They are defined quite analogously to t o t a l l y 
convex spaces> The defining equations (TC 1) and (TC 2) are 
the same, only the set of operations Q has to be r e s t r i c t e d 
to the subset 

n f i n 
n i 

( < x . j . • ,ocQ)| n E N and ^ ¡a^J $ H . 
i=1 J 

Hence, they are f ini tary (universal) algebras. The Hahn-Banach 
theorem ( 2 . 2 ) and the extension theorems ( 3 . 2 ) and ( 4 . 2 ) remain 
valid for f in i te ly total ly convex spaces and are proved ana-
logously. In the applications, however, the assumption that 
the space in question i s normed has to be replaced by "normed 
and regular" (see [8 ] , ( 1 3 . 7 ) ) for f in i te ly to ta l ly convex 
spaoes. 

We will now briefly sketch how one can easily re t r ieve the 
c l a s s i c a l Hahn-Banach theorems from the above r e s u l t s . We wil l 
only consider real vector spaces, as the complex case can be 
treated analogously, mutatis mutandis. Let V be a r e a l vector 
space and p : V —» R a sublinear functional in the ordinary 
sense. For x e V define q{x) *« max(p(x), p ( - x ) ) ; q s V —«• R 
i s a ,seminorm. Then 

0p(V) i = { x j x e V and q ( x ) c l } 

i s in an obvious way a f i n i t e l y total ly convex space. If we 
A 

denote the r e s t r i c t i o n of p to 0 (V) again by p, we see, 
P A A 

that , because of -q(x) « - p ( - x ) « p ( x ) £ q ( x ) , p s 0 (V) O(R) 
iB well defined and is sublinear in the sense of ( 2 . 1 ) fo r 
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18 D. Pumplin 

f in i te ly totally convex spaces. Applying now (3.1) for f i n i -
tely total ly convex spaces, we get a morphism cp J Op(V) O(R) 
of f in i te ly totally convex spaces with -p(-y) $ cp{y) $ p(y), 

A A 

yeOp(V). Por every xeV there exists an a > Ü and a y e O p ( V ) 
with x s a y . I t i s easily seen that <t>(x) $« atp(y) i s a well 
defined mapping and even a vector space homomorphism. Moreover, 
we have -p(-x) ^ i|i(x) < p(x), x e V . 

I f , in addition, a subspace U<V i s given and a homomorphism 
f t U-» R with f(y) $ p(y), y e U, then i t i s easily verified A A 

that Op(U)< Op(V) i s an (isometric) subspace. We can apply 
(3.2) for f in i te ly totally convex spaoes, taking into account A A 

that f r e s t r i c t s to a morphism Op(U) -*• 0(R), and we get an 
extension <f inducing in turn an extension f , as above, of 
the original homomorphism f . The other Hahn-Banach theorems 
for normed vector spaces and Banach spaces follow similarly. 

Finally, l e t us take a look at Rode's examples in [9], 
pp.478, 479, and some related situations in view of the above 
resul ts . 

E x a m p l e 4 .3 . Centrally convex spaces. As an 
example for his theorem, Rodó in [9] considers centrally con-
vex subsets X of real vector spaces, i . e . subsets X, s . t h . 
for x,y e X one has | x + ^ y e X. This i s a speoial case of the 
following general situation. Define 

V W neN, aeN, 0 * a « 2 n } 
2 

and for a set X set 

CC(X) : = { f | f e D * X ) and X ! * ( * ) - "»}. 
x 

i l l 
where, as usual, for a set M containing zero, Mx ' denotes the 
set of mappings from X to M with f in i te support. For ft = CC(N) 
c a l l an fl-ilgebra (c .p. [3]} X a centrally convex space, i f 
the following equations hold: 

(CCD. Z 5 i k x i = *k ' 
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The Hahn-Benach theorem 19 

n in m n 
(cc 2) £ «1 ( £ P i k * k ) = E ( E « i P i k ) ^ . 

i=1 k=1 k=1 i=1 

if x ^ e X, a,Pk€ Q, ot = (a,,,,.,^), Pk - (P1kf*tPa]C)> 
centrally convex spaces together with the Q-morphisms form . 
a category CCon . CC(X) is the free centrally convex space ge-
nerated by the set X( i.e. CC(-) is the left adjoint to the 
usual forgetful functor assigning to a oentrally convex spaoe 
its underlying set. CCon is a category of equationally defined 
(universal) algebras and the analogue of the Hahn-Banach theo-
rem (2.2) holds. CCon is the category of Bilenberg-Moore alge-
bras for the category of centrally convex subsets of real vec-
tor spaces. 

E x a m p l e 4.4. Convex spaces,» As a second example. 
Rode considers oonvex subsets of real vector spaces. Now, such 
convex sets are special (universal) algebras of the following 
type. If R+ := {x | xeR AX >0}t put, for a set X 

G(X) jf|fe R|X) and £ f(x) = 1 . 
x 

For S2:= C(N) call an ft -algebra X a convex space, if the follow-
ing equations holds 

n 
(C1) £ 6ikxi • xk' 

i=1 
n m n 

<c 2> E « i ( E i ^ k ) - E ( E « A k k . 
i=1 k=1 k=1 i=1 

for x± £ X, a,(ik e n, <*= (<x1,... .an), p>k = k,...,|i1m), 
^ik ^sing tiie Kronecker delta. The convex spaces together with 
the Q-morphisms between them form a category Conv. C(X) is the 
free convex spaoe generated by the set X, i.e. C(-) is the 
left adjoint to the usual forgetful functor assigning to a 
convex space its underlying set. Conv is a category of equa-
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20 D. Pumplin 

tionally defined (universal) algebras and the analogue of the 
Hahn-Banach theorem ( 2 . 2 ) holds. Conv i s the category of 
Bilenberg-Moore algebras for the category of convex subsets 
of t e a l vector spaces V. One sees at once, that this notion 
of convex space can be generalized to that of an inf ini te ly 
convex space, by defining Coo (X) « = { f | f e R * ^ support of f 

i s at most countable and f ( x ) = l } . Taking fl«, := Coo(N), 
x 

the Qoo -algebras f u l f i l l i n g the equations analogous to (C 1) 
and (C 2) are then the infini tely convex spaces. 

E x a m p l e 4 . 5 . Affine spaces. Another nice example 
i s furnished by the barycentric representation of the r e a l 
affine spaces as given by Ostermann and Schmidt in [7] and by 
Bos and Wolff in [ l ] , [2] . Put 

A(X) :< f f e R { x ) and £ = 4 » 
x J 

for any set X. Then, for ft:= A(N) the r e a l affine spaces are 
exactly those fl-algebras X, in which the following equations 
hold: 

n 
(AFP 1) £ 6 i k * i - * k . 

i=1 
n m m n 

(AFF 2) E a i ( £ ^ k ) - E ( E a i P i k ) x k ' 
i=1 k=1 k=1 i=1 

for x ± £ X, eXf/i^e Q, a. = (c* 1 , . . . , 0 ^ ) , ji^ = (ft^ k , . . . , P1 m) . 

Again, the affine spaces together with the ft-morphisms form the 
category AFFIN of affine spaces, which i s , of couree, a c a t e -
gory of (universal) algebras and the l e f t adjoint to the usual 
forgetful functor i s Ai- ) . And again, the analogue of the 
Hahn-Banach theorem ( 2 . 2 ) holds. 

The example of the category of commutative semigroups 
Rode mentions in [9], p.479, i s , of course, also a category 
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The Hahn-Banach theorem 21 

of algebras. But even the last example in [9], p.479r fite 
into this framework. There, for two fixed real numbers cx>0, 

ß > 0, a function % on a real vector space B is given with 
r(ax+ßy)j at(x) + ßr(y), x,y e E. The (universal) algebras 
belonging to this example can be characterized as follows. 
For a set X denote by F(X) the real vector space with basis X. 
Call a subset Mcp ( x ) (a ,|3) -closed, if for any ^ , r?eM one has 
ct^+fiqeM. Define H(X) to be the smallest (oc,ß)-closed subset 
of F( X) containing X, i.e. generated by X. Take as set of ope-
rations ß := H(N) and as defining equations, for the alge-
bras we want to define, all equations valid in H(N) as subset 
of the vector space F(N). We then have exaotly the same situa-
tion as in the preceding examples: H(-) is a left adjoint to 
the forgetful functor and the Hahn-Banaoh theorem (2.2) holds 
for this category of algebras, which is, by the way, the cate-
gory of Eilenberg-Moore algebras of (ot,ß)-closed subsets of 
real v.eotor spaces. 

Hence it seems, as the formulation of Body's theorem in 
[9] already suggests, that appropriate categories of universal 
algebras over the real or complex numbers are an interesting 
setting for general versions of the Hahn-Banach theorem. Espe-
cially the consequences of the Hahn-Banach theorem for totally 
convex spaces will be investigated in a forthcoming paper. 
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