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THE HAHN-BANACH THEOREM FOR TOTALLY CONVEX SPACES

1. Introduction
In [8] the category of Eilenberg~-Moore algebras was de-
termined for the category 5an1 of real or complex Banach
spaces with linear contractions as morphisms with respect to
the unit ball functor, assigning to any Banach space its closed
unit ball. It was proved that the category of Eilenberg-Moore
algebras of Ban, , the smallest algebraic category "generated*
by 33an1, 8o to speak, consiste of an equationally definable
category of Q-algebras over the category of sets, where Q
is the set of all real resp. complex sequences -{(u« ]neN) with
Z |a1| 1. For an Sz-algebra X the operation of xeQ, o =
(a |neN), is written as iZ‘, oyx; for each xe xN X =
= (x, |neN). The defining equltions for the Eilenberg-Moore
algebras are then (see [3]):

(Tc 1) 20 BipXy = Xys
i
(TC 2) Zij o (T Ay )= T (T by ) %o
k k 4

12 a,BieQ, By = (B, [keN) and xe XN, AnQ-slgebra X is called
a real resp. complex totally convex space, if X is non-empty
and (TC 1) and (TC 2) are valid. A morphism between two totally
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2 D. Pumplin

convex spaces 1s just an R~algebrsa morphism, This category of
totally convex spaces is denoted by Jt and ie the Eilenbsrg-
-Moors category of Han,.

If B is a Banach~space, the clossd unit ball 0{B) =
= {x|xe¢B and [x]| <1} is in & nafural way a totally convex
space and is as such denoted by 0{B}. This induces a full and
faithful functor O : Bar,»7¢ (see [8], (3.5)) the so called
comparison functor. O has & left adjoint S : Jt = Bany {cp.
[8], §7) assigning a Banach space S(C) to every totally con-
vex space C in a universal way. &s Jf is "“generated" by 5Ban1
in a canonical way (cps. €.8. [5]) it seems natural to ask the
guestion if ons can prove a Hahn-Banach theorem for totally
convex spaces. Of course, the Hahn-Banach extension theorsm
in Ban, carries over to JT via the left adjoint S of 0 to
some extent and this fact is used in [8] (see e.g. [8], (10.8)
and (11.2)). Nevertheless, it should be interesting to have
an independent version of the Hahn-Banaoh theorsem for totally
couvex spaces for the following reasons: (i) J€ consists of
algebras of rank ﬂ1 and to have a Hahn-Banach theorem for such
a category should give further insight into the algebraio
structurs of Ban1; (ii) JC contains many objects having a
structure entirely different from the structure of subsets of
the unit ball of a Banach space {(see [8], Linton’s example
(4.4), {(4.5), and §11), Thus, one could hope that a Hshn-Ba~-
nach theorem for totally convex spaces would provide new and
interesting examples; (iii) Because of the close conmnection
between Barz1 and JC it should be possible to retrieve the
usual Hahn-Banach theorem of Ban, from the Hahn-Banach theorsm
of J€ as a special o¢ase,

Rode proved in [9] an abstract version of the Hahn-Banach
theorem containing all known Hahn-Banach type theorems as spe-
cial cases, The setting in which he formulates and proves his
result suggests a close connection between the Hahn-Banach
theorem and algebras of a certain type, namely finitary (uni-
versal) algebras with a commuting set of operations {(Cpe. €.8e
[3], ps127). Totally convex spaces are of this type as has
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ine Habn-Bensch theorem 3

vean proved in [8] ; with one lmportant difference: The opera-
tione are infilpnitary. In the following we will prove a Hahn=
~Benach theorsm for totally convex spaces. For this, Rode’s
method has been modifisd in two wayg. First, for totally con-
78X zpaces, the cancnicel object for a functicnal to take its
valiee in is O(R) and not, as in |9}, the half open interval
imocg+mo s Secondly, we are dealing with infinitary operations
in totally convex spaces and ws make full use of the algebraie
structure of totally coavex spaces as'developped in [8].

H. Konig has generalized Rodé s theorem to the case of
universal algebras with infinitary operations in [6]. This
generalization is proved under very general zssumptions: As in
[9] ths boundary functions p and g {op. (2.2)) are per-
ritted to take their values in the half-open interval [-oco ,eo[
and they are only assumed to be bounded from above on a 8o~
-called boundary system in the domain of definition, This,
togsther with the fact that the connection between an opera-
tion and the admissible elsments « ¢ {l (cp. [6]) is not ne-
cessarily unigus, requires ingenious arguments in the proof.

‘Section 2 is devoted to the proof of the general Hahn-Bae
nach theorem for real totally convex spaces. In section 3
extension theorems in ths feal case are derived. It turns out
that a morphism f : Co-> 0(R) from a subspace C° of a totally
convex space C can be extended to C if and orly if it is norm-
~bounded (see (3.4)). The appropriate type of totslly convex
spaces for extension theorems are the normed spaces (see [8],
(12.1))3 actually they are characterized by the fact that for
any non-gero element x ¢C there is a morphism ¢ : C —» 6(R)
with ¢(x) = [x|| and |¢|| = 1 (see (3.7)). Thie is remarkable,
as there are normed totally convex spaces which are not iso-
morphic to totally convex subgets of Banaoch spaces (see (3.9)).

In section 4 the results of section 3 are extended to com-
plex totally convex spaces in a way analogous to the method
in the classical case. Then it is briefly sketched how the
classical Hehn-Banach theorems ocan be easily retrieved from
the corresponding results for totally convex spaces. Finally,
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4 D. Pumplin

we take é look at some other chtegories of algebras correspond-
ing to the examples of Rodé [9], which, surprisingly, are de=-
fined in a way olosely related to the definition of totally
convex spaces ({4.3)-(4.5)).

2. The Hahn-Banach theorem

First we need some notions generalizing the classical no~-
tions of convex and sublinear for totally convex spaces, In
this section, totally convex space always means real totally
convex space, i.e. the operations are the slements of

2= {{ay[teN)| aje R and 22 loey| < 1}; the elements of 2 are

denoted by ay a = (ailie NJ). Q, 1= {alaesz and oy > 0 for all

ie N} is the subset of non-negative operators.
Definition 2.1, Let C be a totally convex

space, Then, for a mapping p : C — G(R), we say that:

(1) p 1is @ -convex, if, for any xeR and xeC',

1

P (Z g Xy )\ <20 xp(xg ).
i

{ii) p 1is Q -concave, if, for any aeQ_ and xeCN,

D (Z aixi) 3 Zaip(xi).
i i

(iii) p 4is positive homogeneous, if p{ax) = ap(x) for any
e R with 0 s <1 and any xeC.

(iv) p 4is sublinear, if p - is positive homogeneous and
S%-convex.,\ .

If p,q:C — O(R) are mappings, ws write p<q if and only
if p(x) sq(x) for every x ¢ C. Obviously the set of all mappings
from C to O(R) is ordered by “s%, i.e, "<" 1s reflexive, tran~
sitive and antisymmetrio.

Theoren 2e2e Let C be a totally convex space and
P,9:C —» S(R) be two mappings, such that p is Q+-convex,
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The Hahn~-Banaoch theorem 5

g 1is Q ~concave and q < p holds., Then there is a morphism
93:C — O{R) of totally convex spaces with q < ¢ < pe

The proof is carried out in several steps (see [9]).

Lemma 2.3 2Z={m|n:¢C - O0(R), = is Q,~convex and
Qs < p} is a non-empty set, inductively ordered from below
by u<n

Proof. Z#oas pe? holds, If WcZ is a linearly
ordered subset, put 5i(x) 1= inf{w(x)|we W} for x ¢ C., Then
7 : ¢ —=0(R) 18 well defined and it is an easy exercise to
verify that 1 is 9 ~convex and, of course, it is a lower
bound for W,

Now, for the following, let ¢ be a minimal element of 2,
which exists by Zorn s lemma because of (2.3).

Lemma 2.4, ¢ is positive homogeneous.

Proof. One has to prove ¢ (xx) =ae¢(x), for 0 so <1,
x ¢ C. The assertion is trivial for o« = O, For >0 put 7 (x) =
= ot.-1<p(_otx) and verify ¢ Z. Besides, w(x) = a-1cp(ocx) <¢(x),
i.00 T <¢, whioh implies & = ¢ and hence our assertion.

Lemma 2.5, For every € >0 there exists > C such
that ?(xe) - q(x€)<e.

Proof, This follows immediately from the minimality
of ¢.

Lemma 2.6, Let:ie9+. Then for any ne N and for
every X e CN

<O n oQ
¢ (Z “1‘1) > 30 agplxy) + 25 oya(xy).
i=1 i=1 i=n+1

Proof. This inequslity is proved by induction. The
case n = 0 is trivial, so assume that the inequality is true
for n., 1If %ret = 0, we are finished, as the assertion for
n+1 is equivalent with the induction hypothesis, Hence we can
restrict ourselves to the case 0 <Gpiq € 1 For z e C put
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6 D. Pumplin

-

o0 n o
n(z) := inf {a;11 (“’(121‘“11‘1) - 121 aicp(ti) - izz aiq(ti))l
= = =N+

t;¢C for 1¢ N with theq = 2 8nd ty = Box, with 0<By <1
for 1<1i<n}. _
The induction hypothesis at once implies q<s . Now take &> 0

and put t, = x., for 1> n+2, then (2.5) implies

a

JT(Z)SOL;11 ((p(i “iti) - Z agp(ty) = i aiq(ti))s
1=1 i=1 i=n+2

$°‘211(°‘n+1“’(z) + i “i(‘P(xe) 'Q(xe)))‘q’(" +
1=p4+2

o0

-1

+0Ln+1 ( Z ai)E
i=n+2

and hence <<y o

In order to prove that x 1is Q, -~convex, we take ¢ 9+ and
necN, Take x, ¢ R with m(u,) < zys 2, ve N. Then the definition
of ¥ (u,) yields the existence of ty,€C and Py, with 0 <f,, <1,
veN, 1<i<n, with ¢, = PyypXy for 1<ign, veN and ~
1;11"_1,\7 = u,, veN, such that

© n o)
ma,) a;11(¢(121 oty ) - j;; ayplty,) = 122 aya(ty,)) <
= = =N+

<®,, veN.
peol
One puts ty 3= Z a'vtiv’ ieN, in the totally convex space C

v=1
(see [8] ), and gets

0
ty = (Z 'J'-;pi)xi’ 1¢ign,
v=1

[o.]
ther = Z Tv By
v=1 '
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The Hahn-Banach theorem T

because of (8], (2.12), [8], (2.4), (ix), yields

oo oo (> =} [= o]
S ety = 2oy (2wt )= L 7 (Z ayty,) -
i=1 im1 ve=1 v =1 i=1

Due %o (2.4), we have

n n oo
> agelty) = 3 ase((D0 aybyy)xy ) =
i=1 i=1 v=1
n oo o0 n
= 2. “1(2 (0 rfsio)‘*’("i) =2 %(Z “1*“19))
i=1 v=1 v=1 i=1

and, as q 1is Q+-concave,

o oo o0

2 agaltyl = 3 e (20 aytg,)
i=n+2 i=n+2 v=1
i-n+2 9:1 ien+2

Putting these results together one obtains the following
estimate

o n oo

“(i Ty 1y)<a ;11(‘1’(2 oty ) = 30 ayelty) - 3 9(ty)) <
! is1 R 1=n42
oo «© - n oo
m(Z S (220 ety ) = D0 oqelty,) = S ayalty))) <
a=1 =1 i=1 1=n+2

(o]
< }Z: TH%

v =1
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8 - Do Pumplin

As %, was arbitrary, subject to n(u,) <¥, <2, veN, this
implies the 52+-convexity of 7, Thus we get e 2Z and & <9 and .
hence 7 = 9. Choosing z = g ¥y = X5, 1 ¥ n+1, in the defi-
nition of m, one has

[ n oo
olxg,q) <onty ({30 oyxy ) = D agelny) - “1‘1(‘1))
i=1 . i=1 i=n+2

and hence our assertion,
Proof of Theorem 2,2. For €> 0 there is a no(e).

such that for n»> no(e)

oo

2 qalxy)

i=n+1

<E

hence Lemma 2.6 implies, for n>ny(e), that

©0 (o]
¢ (Z %) > 2 agelxy) - e
i=1 i=1q
and one gets
oo o0
@ (EE: aixi> 2 j{: ai?(xi)’
i=1 i=1

This, together with the fact that ¢ 1is Q+-convex, proves that

™8

{=) ¢ (Z{: g%y ) = ai¢(x1)

i=1

[y
[
->

for arbitrery aco,, xccN

In order to see that ¢ is a morphiem of totally convex
spaces one has io show the valldity of (») for all o e Q{op.
(8], (2.6)). Now, for any xc¢C, (8], (2.12), shows that
0= % X + % (=x), hence, as ¢(0) =0, 0 = ¢{0) = % o(x) +

+ % p(=x) and thus ¢{=-x) = =-g¢(x). Taking any xecQ and xeCN
one gets (ses [8], (2.12), (1i1), (v))
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The Hahn-Banach theorem 9

¢ (; aixi)’ = q)(i Iuil (sg(oti)xi ):

i=1
o0 oad
= 3 Joyl9leelay)xy) = D ayqlx),
i=1 i=1

sg(oci) denoting the sign of oy e Hence Theorem 2.2 is proved.

Remark 2.7 With the seminorm introduced for a
totally convex space C in [8], (6.1), one has for the mappings
P,9 in Theorem 2.2

Ip(x)| ¢ |x]|] and jq(x)|*< x| for any xeC.

3. Bxtension theorems _

We will now apply (2.2) to get analogoues of the classical
extension theorems for totally convex spaces, In this section
"totally convex space” always means real totally convex space,

Proposesition 3.1. Let C be a totally convex
space and p ¢ C —» O(R) be an @ -convex mapping with p(0) = 0.
Then there exists a morphism ¢ : C — G(R) of totally convex
spaces with

-p(-x) < ¢(x) < p(x), for xeC.

Proof. As usual (op. 6.8. [10], p.103) one defines
q‘x) = -P(-I), for xe¢C.
X+ % (~x) = 0 holds for xeC ([5], (2.12)), we get
0= p(O)s% p(x) + % p{~x) implying q(x) < p(x)e q is tri-
vially 9+-conoave, hence our asasertion follows from Theorem 2.2,

Theorem 3.2, (The Hahn-Banach extension theorem).
Let Cy<C be a subspace of the totally convex space C and let

p t C — O(R) be sublinear. Then, for amy morphism f : C - 0(R)
of totally convex spaces, such that f(y) < p(y) for every ye Cqy»

Because %
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10 D. Pumplin

there exists a morphiem ¢ : C — G(R) extending £, i.e.
with ¢ Cy = £, and
~-p({~x) < ¢(x) < p(x), for xeC.

Proof. We define, for xeC (cp. 0.8. [4], pe31),

g{x) = 2 inf{p(% X - % y) + % f(y)lye co}.
As

pdx-13) +12mcdntx + 3 ol3) + 1 2ty

for y € C,, one gats g(x) < p(x) + pl=y) + £(y) and'henoo, q<p
for y = 00
Besides, we have, due to (8], (2.12), for xeC, y ¢ Co

1 1/(1
-37=3(3x-33)-}=
which implies
1oty <3 p(d =~ 37) + 3 ol-x).
This, as f(-y) <p(-y), J € Cy, leads to

p(—;- X - % y) + -;— £ly): -Jé pl=x),.

From this we conclude q(x)> =-p(=-x) and 8o q : C —» 6(R) is
well defined with =-p(-x) < q(x) ¢p(x), xeC., The last inequa~-
1lity implies g(0) = O,

In order to be able to apply (3.1) we are going to prove
that q 1is $2+-convex. For this, take o=« S?.+, x,ye C', Due to
(8] , (2.4), (ii), {which is the defining equation (TC 2) in
the introduotion) we get

? “1(% ¥ - % 3’1) = Jz‘zi: e B Wi %; *33e
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The Hahn-Banach theorem 11

If ¢> 0 is given, then, according to the definition of q(xi),
there is a Jq€ C0 with

Q(xi) <2(p(% x5 - % 71) + % f(yi)) <q(xi) +€Ee

This, together with .

o(3 ;“1"1 - %; a3 ) < Z oyp(} x; - % 31)
1

implies

2 oq9(xg)3 2(2 oyp(3 xy = 395) + 32, “if"i’) '(Z o) e>
i 1 i

i

g 2("(%; e %; “31) + 3 f(§ agy ) -e > q(zi:“ixi)"e'

Since € > O was arbitrary q is Q -convex and, due to (3.1),
A :
we get a morphism ¢ : C + O(R) with

~p(~-x) s =9(~-x) qo_(x) <q(x) < p(x), xeC.

Now, ohooeing x = y ¢ Cys One has

aly) s2(plo) + } 2(3)) = £(3),
hence q{~y) < £(=y) = =f(y) or =q(=y) > £(y), which implies

¢(y) = £(3) = a(y), for yecC,,

and hence our assertion,

A natural choice for an Si+-convex mapping on a totally
convex space C is the norm on C introduced in [8], (6.1),
{2,7) shows that it is the greatest Q -convex mapping. Inte-
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12 D. Pumplin

resting applications can be expected mainly from (3.2), because
the assertion of (3.1) can always be fulfilled by the zero-
-morphism ¢ = O, Contrary to the classical case, however, two
things have to be taken into account when applying (3.2).
First, the norm on a totally convex space C is sublinear if -
and only if C is normed in the sense of [8], (12.1). Secondly,
ir Co< C is a subspace of & normed totally oconvex space C,
the norm [|-f, on C, is in general different from the restric-
tion of the norm ||-f on C to Cy. Due to [8] , (6.3), one hes
Iyl < iyl for any 3 € Cye Thus, if one wants to extend a
morphism b S C — O(R) to C, a necessary condition is that
12(3)] < I3l ye Cys while in general one only knows |f(x)|<]i¥| ¢
This leads to the

Definition 3.3. Let CO<C be a subapaoe of
the totally convex space C. For a morphism £ : C, — O(R) one

defines
|£] 1= sup {If§ 1 Iyeco\{o}}

(ope [8], (6.7), (6.9))e £ 4is called norme-bounded in C, iff
I£] < 1. Obviously, if Cy, 18 an isometrical subspace, then
lel = lzl.

Proposition 3.4. Let Co<Cbeasubspace
of a normed, totally convex space. Then for any morphism
f:Cy— 0(R) the following are equivalent:

(i) f oan be extended to a morphism on C.

(ii) £ 41is norm=bounded in C.

Moreover, if f is norm~bounded, it can be extended to
a morphism ¢ with foff = [£]. R

Proof. (i) =>(ii): Let ¢ : C — O(R) be given

with ¢ |C, = £, Then, for yeCy, y # 0,

l2(z)] _ loly) ]
[E7 I 7 I A
hence |f]g [l¢f <1
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The Hehn=-Banach theorem 13

(11) = (1): ©Put p(x) := |f||[x]|; then p is sublinear,
due to [8], (6.2) and (12.1), Moreover, for yeC, one has
[£(3)| < 2|3l = p{y). Hence, from (3.2) one gets an exten-
sion ¢ : C — O(R) with ¢|co = £ and |o(x)| < p(x) = |£] x|,
xeC,

The comparison of the norms, on the other hand, leads to
the

Definition 3.5 Let C0 <C be a subspace of
the totally convex space C. One defines the norm gquotient

of C,. in C as
a'co 1= inf Hg;k] ye co\{o}},

0
-} denoting the norm in C and |-}, the norm in C,. C, is
called a norm-~equivalent subspace of C, if-gb > 0 holds. This
0

notion is a natural generalization of the equivalence of norms
in vectoxr spaoces. co is an isometrical subspace of C, if and

only 1if Tco = 1, Obviously

g'co = sup{u|0<n<1 and xllvllosHyII' for yeco}.

Proposition 3.6, LetC, <'C be a norm-equi-

valent subspace of a normed totally convex space. Then, for
A

any morphism £ : C, — O0(R) the following are equivalent:

(i) f oan be extended to a morphism on C. .

(11) ll£l “Teyn

Proof. A8 we have TCO> 0, an easy computation shows
£l = 3b0|f|, hence our assertion follows from (3.4).

Corollary 3.7 For a totally convex space C
the following are egquivalent:
(1) C 4is normed.
{ii) For every x,e C with x, # 0, there is a morphism
¢ : C = O(R) with ¢(x,) = | x|l end |o|| = 1.
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14 D. Pumplin

Proof. (i)=>(ii): Take for C, the subspace of C
generated by x,, Cy = {axo|cxeR and |«| ¢ 1} ([8], (2.12)).
As C is aspherical (see [8], (12.2)) and x, # 0, ax, = px,
implies o =f3 . Hence, by flax,) :=a|x,| we have a well de-
fined morphisem f : C, —> O(R). Besides, |f| = 1, hence (ii)
follows from (3.4). By the way, we have a*co = J| x|l

(1i1) = (1): Let x,€Cy X, # 0, be given, Then with the
morphism ¢ in (ii) one has for amy aeR, with 0 < || < 1
el gl = ledl o(xy) = loselxg)| = lplaxy)] < laxgl<lel I le
Hence, wh get [ox, || = || [lx,[l and (i) is proved.

Corollary 3.8, For a totally convex space,
the following are equivalent:

(i) ¢ 4is separable.

(ii) For aqy XY € C with X # ¥ there is a morphism

S(R) with cp(xo) # cp(yo) and o] = 1.

P nvo o f e (i) =>(ii): C is normed because it is se=-

parable ([8], (12.2)). Put 2z = L x, -1 y,. Thenz # 0 as

= 0 would lead to % x, = % 3, and hence to x, = y, (cp. [8];
{(10.2)) which is a contradiction, Now, from {3.7) we get a ¢
with [lo]| = 1 and o(z) = [z # 0 ([g], (6.9)), hence ¢(x,) #
#olyy). ‘

(ii) => (i) follows immediately from [8], (10.2). (3.8) has
been proved in [8], (10.8), with the classical Hahn~Banach
theorem,

Remark 3.9 That the range of the Hahn-Banach
theorem for totally convex spaces is actually wider than that
of the classical version is shown by the following example of
a normed but not separable totally convex spacs C. Providé-R2
with the supremum norm "(x1,x2)” = sup{lx l lx ”', then R® is

a Banach space and 6(R ) is a totally convex space. Define for
,ch(R )y x = (x1vx2)o y = (y1!72

X~y t&> X =3 or (lx1|<1 and %, = y,).

An easy computation shows that "~" is a compatible equivalenocs
relation in the category of totally convex spaces (see [8], §4).
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The Hahn-Banach theorem 15

Put C := O(R?)/. and let n: O(R) — C be the canonical pro-
jection, C is a normed totally convex space and can be visua-
lized as a double T in the plane R2, namely as the set

([=1,1] = {o})u ({-1} x [-1,1]) 0 ({1} « [-1,1]). Obviously,

C is not separable and hence cannot be embedded by an injec-
tive morphism of totally convex spaces into the unit ball

0(B) of any Banach space B,

4. The complex and the classical case

Like in the classical case (cp. e.g. [4], [10]) we now
proceed to derive Hahn-Banach theorems for complex totally
convex spaces from the Hahn-Banach theorem in the resl case.

Definition 4.1, Let C be a complex totally
convex space. A mapping p ¢ C = 8(R) is called a semi~norm,
if the following <donditions are fulfilled:

(sw 1) p(z cxixi) sz |oz1| p(xi) for every c.eQ and every chN.
i i

(S§ 2) plxx) = |o| p{x) for any «eC with |a| <1 and any x e C.

A8 in the proof of Theorem 3.2 one shows, that for a semi-
norm p on C one has

p(%x- % y)?% pl-y) - -;- pl-x) = % p(y) - ;— p(x) for x,yeC

and hence |% p(x) - —;— p(y)l < p(% b %y). In particular,
one gets p 3 O.

We are now in a position to prove the ocomplex analogue of
Theorem 3,2. .

Theorem 4.2, (The complex Hahn-Banach extension
theorem), Let Co <C be & subspace of the complex totally con-
vex space C, and let p : C —-O(R) be a semi-norm on C., Then,
for any morphiem f : C,—» 0(C) of totally convex spaces,
such that l£(y)] < p(y), for ye C,. There exists a morphism
¢: C — 0(C) with cplco = £ and |¢(x)| < p(x) for xeC.
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16 : D. Pumplin

Proof,. Decompose f into its real and imaginary
part

f(y) = g(y) + ih(y).

C0 and C are, in an obvious way, real totally convex spaces,
and g,h : C,—> O(R) are morphism of real totally convex spa=-
oes, For the real space C, p is sublinear with p(-x) = p(x)
and, moreover, |g(y)| < p(y), y ¢ C,. Hence, due to (3.2),

& can be extended to a ¢ : C —0(R) with (pI C, = 8 and
lo{x)| < p(x), xeC. A8 h(y) = ~-g(iy) for yeCy, it is natural
to define

O(x) := ¢(x) - ip(ix) for =xecC.

Now take an operation o of the complex totally convex space C,
i.e. a sequence o = (oc. |ie N) of complex numbers with

ZJ |(1. Decompose every o, into its real and imaginary part
= g, + 1B,. Then, due to [8], (2.4), (2.12),

;“v"v = %Z’:Toxv + % gﬁe(i"v)

for any xe¢ CN. An easy computation now yields

¢ (3 ;u\,x\,) s %Z\’] a,d(x,),

and, as ®(Ax) = A(x) for any AcR with 4] <1, we get

(Za x,‘,) Zaﬂ(x‘,).

Hence, ¢ is a morphism of oomplex totally convex spaces,
provided we can prove |[®(x)| <1 for x c¢C. For this, write
®(x) = ei [®(x)]| , which implies |®(x)| = e"3%8(x) =

= 9(e19x)> 0 and thus

N|=

18(x)| = 2(e™38x) = ¢le™3%x) ¢ p(x).
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Consequently, our assertion is proved, as @|C0 = f trivially.

Definitions 3.3 and 3.5 can ba carried over verbatim fo
the complex case. Propositions 3.4 and 3.6 and Corollaries
(3.6)=(3.8) then zamain'valid for complex totally convex spa-
ces.

Finitely totally convex spaces were introduced in [8],
too; they are the Eilenberg-Moors algebras for the oategory
Vec, of normed vector spaces with linear contractions and the
unit ball functor. They are defined quite analogously to ftotally
convex spaces: The defining equations (TC 1) and (IC 2) are
the same, only the set of operations Q has to be restricted
to the subset -

n
Rfin = {(0{1..",o:n)|ne N and Z |0'-1| <€ 1}'
i=1

Hence, they are finitary (universal) algebras. The Hahn-Banach
theorem (2.2) and the extension theorems (3.2) and (4.2) remain
valid for finitely totally convex spaces and are proved ana-
logously. In the applications, however, the assumption that
the space in question is normed has to be replaced by "normed
and regular” (see [8], (13.7)) for finitely totally convex
spaces,

We will now briefly sketch how one can esasily ratrieve the
classical Hahn-Banach theorems from the above results. We will
only consider real vector spaces, as the complex case can be
treated analogously, mutatis mutandis. Let V be a real vecior
space and p : V—= R a sublinear functional in the crdinary
sense. For xcV define q(x) 1= max(p{x), p(=x)); q : V— R
is a seminorm. Then

n
op{vj g= {xix eV and q(x)< 1}

is in an obvious way a finitely totally convex spacs. I{ we
denote the restriction of p to 0 (V) again by p, we sece,
that, because of =g(x) < =p(=x) < p(x?s q(x), p : 0.(V) - B{R}
is well defined and is sublinear in the ssnse of f2.1} for
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finitely totally convex spaces. Applying now (3.1) for fini-
tely totelly convex spaces, we get a morphism ¢ 10 (V)—»S(R)
of finitely totally convex spaces with -p(=y) < o(y) ¢ p(;),
ye Op(V). For every xec¢ V there exists an a>0 and a ye 0 _(V)
with x = ay. It is easily seen that y(x) := aply) is a well
defined mapping and even a vector space homomorphism. Morsover,
we have -p(-x) <y(x)< p(x), xecV.

If, in addition, a subspace U<V is given and a homomorphism
f U—- R with f(y) < p{y), e U, then it is easily verified
that 0 _(U) < Op(V) is an (isometric) subspace. We can apply
(3.2) for finitely totally convex spaces, taking into acoount
that f restricts to a morphism Op(U) -+ O0(R), and we get an
extension ¢ inducing in turn an extension ¥, as above, of
the original homomorphism f. The other Hahn-Banach theorems
for normed vector spaces and Banach spaces follow similarly.

Finally, let us take a look at Rode s examples in [9],
pPp.478, 479, and some related situations in view of the above
results. .

Example 4.3. Centrally convex spaces. A48 an
example for his theorem, Rodé in [9] considers centrally con=
vex subsets X of re?l vector spaces, i.e. subsets X, s.,th.

for x,y € X one has 3 X+ % ¥y ¢ X. This is a special case of the

following general situation. Define

D2’:={i2‘-5| neN, aeN, 0 sas?n}

and for a set X set
CC(x) := {fl fe D£X) and :E: f(x) = 1},

where, as usual, for a set M containing zero, M(x) denotes the
set of mappings from X to M with finite support. For Q = CC(N)
call an Qe2lgebra (c.p. [3]) X a centrally convex space, if
the following equations hold:
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n m m n'
@2 X ey (X Am) < X (5 P
i=1 k=1 =1 1i=1

1f x,x5 ¢ Xy ot oPy € Qy o= (aggeceyay)y By = ([51k,....(5mk). The
oentrally convex spaces together with the Q-morphisms form .

a category Clon . CC(X) is the free centrally convex space ge=-
nerated by the set X, i.e. CC(~) is the left adjoint to the
usual forgetful functor assigning to a centrally convex space
its underlying set., (lon is a category of equationally defined
{universal) algebras and the analogue of the Hahn-Banach theo-
rem (2.2) holds. Clon is the category of Eilenberg-Moore alge-
"bras for the category of centrally convex subsets of real vec-
tor spaces,

Example 4.4, Convex spaces, As a second example,
Rodé considers convex subsets of real vector spaces. Now, such
convex sets are special (universal) algebras of the following
type. I R := {x|xeR Ax 30}, put, for a set X

c{Xx) := {flfe RIX ang 37 £(x) = 1}.
x
For f:= C{N) call an R -algebra X a convex space, if the follow-
ing equations hold:

n
(¢ 1) D 8% = Xy
i=1
n m n
(c 2) P ( P x*x )‘ 2. (Z o5 By )xk’
1=1 k=1 =1 i=1

Tor x; € X, ctyPyeQy o= loqrevesoy)s Py = (Byyreecsfyp)s

Gik being the Kronecker delta, The convex spaces together with
the Q -morphisms between thex form a category lonu. C(X) is the
free convex space generated by the set X, i.e. C_(-) ie the
left adjoint to the usual forgetful functor assigning to a
convex space its underlying set. fonv is a category of equa=.
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tionally defined (universal) algebras and the analogue of the
Haehn-Banach theorem (2.2) holds. Conv is the category of
Bilenberg-Moore algebras for the category of convex subsets

of real vector spaces V. One sees at once, that this notion

of convex space can be generalizad to that of an infinitely
convex space, by defining Co, (X) := {f|fe Rf and support of f

is at most countable and 2_ f(x) = 1}. Taking Qe :=-Coo (N),

the Q.. ~algebras fulfiliing the esquations analogous to (C 1)
and (C 2) are then the infinitely convex spaces.

Example 4.5, Affine spaces. Another nice example
is furnished by ‘the barycentric¢ representation of the real
affine spaces as given by Ostermann and Schmidt in [7] and by
Bos and Wolff in [1], [2]. Put

A(X) := {flfe R(X)  ang :E: £(x) = 1},
x

for any set X. Then, for Q:= A(N) the real affine spaces are
exactly those Q~algebras X, in which the following equations
hold:

n
(AFF 1) 2 BiyFy = Xy
i=1
n m m n -
(AFF 2) 2o (20 Puemic) = 20 (20 caPiy)%ier
in k=1 k=1  i=1

for x;€ X, ot yBpefl, o= (cx1,...,onn). Bx = (ﬁ1k""’51m)'
Again, the affine spaces together with the Q-amorphisms form the
category AFFIN of affine spaces, which is, of course, a cate-
gory of (universal) algebras and the left adjoint to the usual
forgetful functor is A{~). And again, the analogue of the

Hahn-Banach theorem (2.2) holds.
The example of the category of commutative semigroups

Rodé mentions in [9], p«479, is, of course, also a category
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of algebras. But even the last example in [9], p.479, fite
into this framework. There, for two fixed real numbers o> 0,
>0, a function 7 on a real vector space B is given with
tlax+#py) 3 at{x) + prl{y), x,y ¢ E. The (universal) algebras
belonging to this example can be characterized as follows,
For a set X denote by F(X) the real vector space with basis X.
Call a subset M cF(X) (x,p)-closed, if for anmy §,neM one has
at+pn e Me Define H(X) to be the smellest (o«,B)-closed subset
of F{(X) containing X, i.e. genersted by X. Take as set of ope~-
rations Qd,ﬁ := H(N) and as defining equations, for the alge-
bras we want to define, all equations valid in H{N) as subset
of the vector space F(N). We then have exaoctly the same situa-
tion as in the preceding examples: H(-) is a left adjoint to
the forgetful functor and the Hahn-Banach theorem (2.2) holds
for this category of algebras, which is, by the way, the cate-
gory of Eilenberg-Moore algebras of («,B)-closed subsets of
real veotor spaces.

Hence it peems, as the formulation of Rodé s theorem in
[9] already suggests, that appropriate categories of universal
algebras over the real or complex numbers are an interesting
setting for general versions of the Hahn-Banach theorem. Bspe-
cially the consequences of the Hahn-Banach theorem for totally
convex spaces will be investigated in a forthcoming paper.
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