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ON THE CONJUGATES OF SOME OPERATOR SPACES, I

0. Preliminaries

In this papei‘ we prove that the dual space of ‘fz1n (#) (non-
-~commutative Lorentz space) is the non-commutative Maroinkie-~
wioz space \Mw(a‘k) and in general, ‘MW (R)* # l’;&ﬁ). In the
last seotion we determine the predual of .fl (A) is some cases,

Throughout, the paper # is a semifinite von Neumann alge-
bra on a Hilbert space #. The lattice of or.thogonal projections
from f is denoted by Proj(R) (see [3]).

Definition O.1. A projection p in & is mi~
nimal (atom} if each non-zero projection q in & such that
q < p is equal to p.

(¥, &, m) is the regular gage space in the sence of [8] ’
&Cm(d%) = Im = £ is the »~algebra of m-measurable operators
(see [4], [1]) and I (#) = 5 = § = {aeim(o‘t):m(e‘é) <o, E> 0},

(v ]
where Va‘a = |a| = Ade, is the spectral resolution of |a] .

0
5111 is the x-subalgebra of L . The functional: §m: Lxd +[0,00)

(see [1]) g, la,b) = gy la=b) = inf {e>0 : m(e‘é) se} -

8

= inf{e>0: (a-b)(e) ¢ e}\where la-b| = § Ade,, is a metrie
o .

ind. ;Em(dk) in this metric is a Frechet space.

Definition 0.2 (cf. [9], [4], [1])e A sequence
of m-measurables operators 8, is said to be m-convergent
{convergent in measure) to a measurable operator a (an = a)
if o (a=a ) = 0 as n =+ .
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2 L.J. Ciaoh

For any acd,(#) and o> 0 we define (see [5], [10], [2]):
(1) al«) = inf{o <A <oo: mle))<, >0}, |a| = j Ade,

(11) ala) = 1/ocj a(p)dp,
o

(111) &(x) = {Zup{1/"‘(9)'ﬂ(|98|): asm(p) < oo}, 0<asm(l)

a>mn(1).

It is not difficult to observe that (see [5], [2])

(a + b)(a) < alo) + bla), (8 + B)(a) ¢ &la) + Blax), a,Ded (),
500 ) ) |
o >Ve

Proposition 0.1 ([1], proposition 2.7). If

ay 2o g (a, anei) then a,(a) — a(x} at each point of con-
tinuity of the funotion a(oc).

Proposition 0.2 ([2], proposition 2.4). Por
any ae S (#) and o> 0,

a(a) < 8la) < afa)e
Throughout, y(x), 0 <& <o is & non-negative, concave conti=-
nuous function such that y(0) = 0, p( ) =°g.im plax) =00,
» 0o

It is easy to see tha‘axt yp'(a) is a non-negative, non-increasing

funetion and y(a) = f y'(p)dp. We say that {#) or {»x) is sa-
tisfied ifs °
(%) ali.nolo afpla) = sup{oc/np(oc): o> 0} = o0, ylo)/x < T yp{e) for

o > 0 and some conatant > 0.
(x#) 0 <ry safy{a) € ry<oo for >0 and some constants Iy, pe

1. Non=oommutative Lorentz spaoes
Definition 1.1 (ses [5], [1], [2]). For any
a el’m(dt) and conoave funotion y(«), we define

lally,my = [ ¥ ala) d
o]

and

nyh) =Zp, = facdy(d) ¢ Jaly gy <o}
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Conjugates of some operator 3

£1 are called non-commutative Lorentz spaces. Non-ocommutative
Lorentz space is a Banach space with the norm [e II1 ny (500 (71,

[1], [2]). By J1 («f“) we denote the space of1w in’the oase

pla) = o lyla) = a1/6, 1< 8 <o) with the norm [-],
(I-ls,1,a)e Fote that &g (&) = (&) and 1/rye ,mn1 2%

< llall4 mq)s‘l/r‘, lels,m 1f the condition (%) is satisfied.
Theorem 1.1 (cfe [1], the6.3)s 4 linear functio-
nal h 41is continuous on I:"P(ﬂ) if and only if

h(b) = hy(b) = m(ba), bedy (#),

where a 1is an operator locally measurable in the sense of
[10] and sup {1/y(m(p))em( |pa|) : peProjift),m(pl<oc}<cos s
Then

l8g | = sup{1/v(nlp))en[pa]) : peProj(#), a(p) <co}.

Theorem 1.2 Assume that hae I;w(&)*. Thens

(1) acdl®) + 4,

(1) ae Iy ifali.gooc/q;(a) sup {o/y (o) 3 «>0} =,
{iii) ac f1if lim o fy () inf{oc/qr(oc) t >0} = >0,
(iv)  1/y' («)e a(a)<r||h | if (%) is satisfiod.

Prootft., (i) Suppoee that |a¥| = fMieA and

m(ez ) = o . For any p<ex , m{p) 21, we have
ple*| p = * > A
le*] p P"xo |8 l%of” oP
and
log > 17¢(mlp) )en([pa|) > 1/p(n(p))em(|a*| p)>
2 Amlp)/yp(m{p)) > A, /p(1)

that is ;{osw(ﬂ”ha” <oo. In consequence, a¥eZ (&), whioh is
equivalent to a el (#). Moreover, for any x>”ha” y (1) we have
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4 L.Jd. Ciach

o«
* _ ¥ % L 1 *| _
a® = d'e, + a'e, cft + L, where la*| = ! Ade, .
0
(ii), With the notations of the proof of (i) we have the

foilowing "ha“; m(p)/q.»(m(p))'il.o -+ o as m{p} =+ oo, In con=

sequence, m(e;: ) <o for any A,> O that is |a¥| e jm(&')' whioh
o
is equivalent to aed _{#).

(1.11). Let pg ei ' m(ej ) # 0. Then ||ha'|2m(p)/w(m(p))'

0
-}vo; ¥, which implies A, s"ha“/r(y that is |a*| ¢ & and

Ila*||l < ||bg|/¢s Pinally, aed, |a < |Ba] /e
(iv). For any pe Proj(#), m(p) <o, we have

1/m(p)em( |pa|) = w(m(p))/m(p)*1/v(alp))en(|pal) <
<y(n(p))/m(p)efb,fcp(a)faen, | 1 wmlp)sa.

In consequence, &(a)< y(a)/as|hy| and 1/y! (o) 8la) < T by |-
2. Nop-commutative Mareinkiewiocz spaces

Definition 2.1 (see [7], [1]). For any
ae.tl + & and y(x), we define

o
Mlp(a) = aup{1/\p(a) . jo a(p) dp : a>0}
and

My @) = My = {acdy + & 1 Myla) <oo}e

M (#) are called non-commutative Marcinkiewioz spaces.
12‘“(-&) denotes the space \M.w(dt) in the case y(a) = 1/8
1/8 + 1/8' = 1,8, & > 1. It is easy to see that J“lq,(&) is a
normed linear space with norm M, (*). We shall prove that
Maroinkiewicz space J{w(ﬁ:) is a Banaoch space, First we prove
the following 4

Proposition 2.1, The topology of m-conver=
gence on M (#) is weaker than the topology of My(*) on M,(&).
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Conjugates of some operator 5

Proof. It is to be shown that, for any >0 :
: {aeﬂ‘p(dk) : p(a)<e} is a neighbourhood of zero in the to-
pology of M‘P(.)°

Case I. 1lim o/fp(x) = g>0,

oato
Let 08" e = {aeJ{ (#) : M p{a) <7e}. Assume that ac0,
la] = j Adeﬂ, is the spectral resolution of |a| = Ya*a; then,
‘L <1/e lale In consequence, M (e < 1/e°M (a)<a“. It is clear

that for any O ¢ pe Proj(#), M (p)>a'. Hence °e = 0, that is
aed and |lajse . Finally

c{aeJ{w(M : |la]l < e} c{ae\Mq,(dH t pla)s e}.

Case II, 1limo/yp(x) = 0.
axto

Supposgo that o/p(a) < ¢ =>x g€« Then for any 80, e’
la] = ."; MGA M (65) = m(eg)/q)(m(ee ) <+ Hence m(eg) < ¢ and,

in consequence, p(a)<€.,
Proposition 2,2, M, (&) is a Banach space.
Proef. Assume that {an} is a Cauchy sequence in
~M.q,(d’c). By Proposition 2.1, an—m’ e for some aceJd (f). Honce
and from Proposition 0.1 (ak - a, J ) — (a = 8y, )J{ex) almost

everywhere on (0,cc) with respect to the Lebesgue measure.
Thus

o
1yl | (a-a,)(A)ap < 1im 102 1/p ()« | (s-a,)(B)aB <
0
< limkin.f Mq,( ay-a,)
and, in consequence,

Mq,(a-an) < limkinr M (ak-e )e

Pinally, a = (a-a )+ a e M (c&) and M, (a-a } — 0, which ends
the proof of the propositlon. a
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6 L.Jo Ciach

Definition 2.2, For any: aecJty(f) and y(a«),
we define
(1) Ja]y = sup{1/v'{«)cala) ¢ o> 0},
(11)  “Ja]l, = sup{1/y’ (a)*dla) : o >0},
(11i) .faf, = sup{1/y’'(a)ea(x) 1 a > 0}
It is clear that

la + bllycconst(faly + [ blly),
“la + b"tp$~||3“1p +7f by,
~le + b||q)$~" 3||q)+'°|| b"tp,

8o that " « Hq, (vi*lly) is a norm and |[*flv is a quasi-norm.
Proposition 2,3. (i). Suppose that (x) is
satisfied. Then the same topology is defined on Mq,(fc) by all
four functionals My(+), fl<ly, "l «lly, woll e llye
(i1). JQ,P(M = & and P1|[a||<M,P(a)S ylal

if (%x) is satisfied.

Proof. (i). For an arbitrary ae.Mq,(-ﬂ:) we have
o

Mlp(a) = aup{1/xp(a) . ja([ﬁ) dg s a>o}s

0
[+

< "3"?{5“? 1/yle) f p'(B) dp s o> o} =
°

= "a"q) S'\'"a"w.ysm"‘"q; =
o
= aup{1/lp’(oc)'1/oc ! a(B) ap s a)O}g
: )

o
» sup{q}(a)/oc yle) e 1/yla) f a(pf) 4ap a>0}sruw(a).
o

(ii). Obvious.
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Conjugates of some operstor

The main result concerning the dual space of I;w(&} is
the following
Theorem 2.1 (¢f. [1], the6.5)s The mapping

Mylh) s 8 —= boe 2y (R),

where ha(b) = m(ba), bei.l is a linear isometry of M(#)
L

onto uf; (#)*.
Pr'oof. Itis clear that for any pe Proj(f),

m{p) < co and ae\Mq, (p)
m(p

Vy(a(p))eml|pal) < 1/p(n(p)) « | alx) dashya).
0

In other words (see th.1.1) hgedl* and |h,[< ¥ fs).
v a A
Conversely, suppose that h e i; (#)*, where a eil + &
(see th.1.2), Let ¥

Alypla)y, 0<Adsa
g(i) =
afpla), A2a.

By Lemma 2,3, [12] we have

o
pla) « | alp) ap =
]

A
= aup{|m(ba)| : bsI; + &, f b(p) dpsg(ﬁ.)} s g |l
: °
slnce
a £~
1= 1pla) * j y' (A)dA = j p'(1)d,8() =
0 °

=a/fy(a)ep(oo) -j g(d)d, v’ (1) >
]
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8 L.J. Ciach

oo f A
> o fpla)e y'(oo) -f [j b(plap|d, v (4) =

0 Lo
. zp’(oo)[a/qa(a) - f b(ﬂ)dﬁ] + | y(ap@)az =
o o

= ‘P.'(m)[ot/w(oc) - j b([s)dfs] + "b"hnw’
o

Consequently ae‘Mlp(M and M,P(_a)s "ha"‘ which ends the proof
of the thecorenm.

30 MR)* £ L) (R)
L AN T
It is evident that M‘PM)*D I:l (#). We shall prove that
Y
in general ‘MW(M* ¢ -f; (#). In this sectien ¥ k) = ?m =

= {a ef : m(supplaf)< !)o} denotes the ideal of m~elementary
operators,

Lemma 3.1, Supposs that N is a non-trivial conti-
nuous semi~norm on M, (#) such that N(a) = 0 for any ae"fm(d‘c).
Then [hy(a)| = [m(ba)| < N(a) for acM,(#) and some bed] (#)
implies b = O, hd

Proof. ZLetb=ulbl be the polar decomposition

0

of b and I6*l = ulpju* = § Ade, the spactral resolution of
)

|o*

i;wcif . Therefore a = u."e'&L e Fp (k) c M(&) and

« For any arbitrary €> 0, we have m(eJe‘) <oo, since

m
|by(a)| = |a(va)] = |m(bu*e;)| = |m(Ib*]ef)] < W(u*e}) = 0.

In other words |b*l eéL = 0 for any ¢>0 and, in consegquencs,
|v*| = 0 which is equivalent to b = O.

Corollary 3ot N defines a continuous linear
functional h on J'tq)(o"c) which 18 not of the form h,(a) = m(ba)
with bs.f;l (&)

¥

- 544 -



Conjugates of some operator 9

Proof. By Hahn-Banach theorem and Lemma 3.1.
Definition 3.1 We define a continuous semi-

-norm N, (N,) on M (&) by o

(1) Ny (a) = lim sup 1/p{x) ° j alp) dp< M, (a),
o -+0 0y

(11) Neo{a) = lim sup 1/y(x) * fa(ﬁ) ap leP(a)-
[o B R0

©

It is easy to check that N (a) = 0, ac Fpe Lot lim o fyla) =0,

Then N (a) = 0, ac . x*0
Proposition 3.1. (i). 4Assume that there

exists a projection O # pe Proj{#), such that p contains

no atoms, If m{p) < o (m{p) = =) then N, (Noo) is non-trivial,
(11). Let 1limo/y(a) = "<, m{1) = oo . Then N is

non~trivial, FF o o
Proof. (iJe Let m(p) <o and letp=Z Py

oo n=1

P;L Pys o(py) = nf{p)/2°. Let a = g P’ .(m(g pk)>pn. It is

easy to see that ala) sw/{x) and ala) 2 v/ {2a), 0 <ax<a(p).
Therefors

x

Mw(a) <1 and No(a)z lim sup 1/yl{x) * j p/(2p)dp =
o+ 0 :

= 1/2 lim sup y(2a)/y{a)> 1/2.
o —» 0
Similarly if m(p) = oo, then No is non-trivial., Indeed, let
(p(ot) be a deoreasing, continuous on the right step function
inscribed between the two curves y’/{x) and 2y'(x). Suppose
that ¢ («) has the jumps in the points « = o,y Whers cxni 0

as n —» =co, ocn4ooas n +»o0, if lim y'(x) =0« If
s 0
lim y/{o) = g <oo let the jumps of ¢(x) occur at the points
a+0
= an, n = 1,2,00., Wn‘ Q0 9 (P(O) = T.
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10 LeJo Clach

We got in the first ocase

OO

a = Z v (a,)p,,

Ne=o0

[ o]
where p = D Dpy PyLlbge i # 3y mlpy) =y map o
Nz oo

and in the second case

o0
a =gp, + Z y'loe,) Py
n=2

o0
where p = Z Ppe Pi-LPj’ i#i, m(P1) = Olgy lﬂ(pn) = Xp=On 9
n=2
D= 2,3,44000 o
It is clesr thet a(a) = ¢(x) and, in consequencs, Mw(a)S'Z
Noo(a)?1
(ii) In this case 1eJ'th(.ﬁ) and M, (1) = Neo(1) =T.¢
Corollary 3.2 J'lq,(d!:)* #I; (#) if one of the
conditions (i) = (iii) ie setisfied: ¥
(1) There exists pe Proj{#), such that m{p) = o and p
contains no sastoms.
(ii) There exists pe Proj{#) such that m(p) <w, p con-
tains no atoms and lim « /y{x) = O.

x>0
{iii) (1) = o and 1lim oc/xp(a) = M<oo,
oL+ OO0
Consider the case when an arbitrary projsoction pe Proj(#)
hac atoms.
Proposition 3.2 Assume that there exists
a projection p ¢ Proj{#), such that p = Z Pps O# pneProa(o%),

Py L Py, i # j. Then ‘Mw(a‘l)* I1 (dl) if one of the three con-
ditions:

(i) m(p)<oo, 2m{py)< > olpy), lim a/fyla) =
k=n o0
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Conjugates of some operator 11

(i1) m{p) <=, lim oafyl(a) = 0 and () is satisfied,

(1ii) m(p) = o and (*) is satisfied holds.

Proof., Without loass of generality we may assume
that Pn is an atom, n = 1,2,00e o

(i) In that case N, is non-trivial. The proof of the
above fact is the same as that of Propositiom 3.1(i},

(ii) with no loss of generality we may assume that

o0

m(p,) > 1/2 kZ o{p )y B = 1,2,e.. « For an arbitrary
=n
(&) Pp8P, = anpn. We define a continuous semi-norm N

on M, (&) by

N(a) = lim sup|A,|/y'(u(p,)) = llm sup|ﬁn‘ ||pn"
ne+o

= 1i < <M .
n‘i:oup llpnapnlltp<llall‘!’ <rity(a)

It is not dlfficult to observe that N{a) = 0, aeFy. If
o0
= 2 y (2 m(pk)) p, then aeJ'le(\M and

n=1 k=n
K(a) = lim sup v/ (35 mip))/y’(n(py)) >
B+ oo k=n

> lim sup w'(2m(p,))/ p'(m(p,)) 2 1/2

n-e oo

that is W is non=-trivial.
ProposltJ on (1i) results 1mmedlately from Lemma 3.1 and
from the above,

e n
(iii) Putting a = nf_-__'—‘ p’ (E m(pk))pn we have aerlw(.ﬁ)

and
ol
oo (@) = 1lim sup 1/y (o) 'f a(f) dp>
o000 5

Ps .
n =
lﬁuiosoup 1/w(m<z Pi)> ! a{p) dp =
o

i=1



12 L.do. Ciach

n n i
= lim sup 1/zp(m(z pi)) . Z\p’ (Z m(pk)) * nlps)>
n+oo i=1 i=1 ket
n n n
2 1lim sup m(z pi) w(m(z pi)) . q)'(m(z Py ))z1/r> 0.
D-+oo i=1 i=1 k=1

In other words N, is non-trivial.

Corollary 3.3 off:(m* #afg'1(‘ﬁ) for an arbi=-
trary infinite dimensional algebra dt.
Proposition 3.3 J'lq,(.ﬂ)* #ifnw(\ﬁ) if one of

the two conditions: k k+1
(1) wlp) =wo, y'(n(S” pi))sconst-w’(m(z p1))s
i=1 i=1

(11) wm(p) <,

’P’("‘(i py ))< constey!(n( S Py ))s 1 x/yla)=0
{=n izne1 a+0

holds, where p = Z Pps O<m(p,) <oy p,eProj(f), p; L Py
i+#3. =1

Proof, As in the proof of proposition 3.1 (ii)
{for the semi-norm N, in the case (11)}).

As an examples suppose that # = B(JH) is the von Neumann
algebra of all bounded operators acting in an infinite di-
mensional Hilbert space ¥ , while m(p) = dim p(¥) is the
ordinary trace on & and y(a) = 1ln(1+a).

Remark 3.1 Let m(1) <o and lim o fyla) = 3>0,

In this case M (dkl =foqyfafjcu plal < ll(1)/tp(m(1”' la|l and
.t1 (&) =.,t1(~ﬂ:). y(m(1)) laly, "8"1,11 srlal, g Consequently,

M (.M* = I1w(.ﬂf) implies the reflexivit;y of &, but one can
easily gee that a reflexive von Neumann algebra is finite
dimensional,
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Conjugates of some operator ‘ 13

4, The predual of ;f;ly(d%)

In this section we denote by ?m the closure of %, in
J’lq,(d%).

Proposition 4.1, Iet peProjlf), m(p)<o
and |b, <, ml[by|) = byl ;— 0, Then M (b)) —>0 if one
of the conditions (1)=(ii) 18 satisfied:

(1) lim o/yla) = inf{oc/q;(oc) : oc>0} = 0,

o0

(11) inf{m(p) 3 peProj(.ﬁ:)} = >0,

Proof. (i) PFix e¢>0. Leto/yle) c€/2 for o <85 and
n(p)/y{e) <€/2 for a»1/8. Then

g/2 for ogb ,

o
1 b dp <
fp(e) j; n{P) ap {5/2 for o > 1/§

and for §<o <1/6 we have

-]
pla) | dy(B) ap < 8/4(8) + o] o/w(8) <
°
for sufficiently large n. In other words, lin sup M (b ) gee

From the arbitrariness of € > 0 the proposition (1) follows,
(ii) In this case et’ (®) = & (topologically and algsbrai-

o To finieh the proof, it

suffices to use the following simple fact: [b — 0

n"1,m
implies bn—’o.

Corollary 4.1. 4Assume that (i) or (ii) ise sa-
tisfied and h 1is a continuous, linear functional on gm'
where the closure is taken in M (:M. Then h(a) = hy(a) =
= m(ba), a ¢ ? while b 1is an oporator locally measurable
in the sense of [1o].

Proof follows from Theorem 4.3 [11], Proposition 2.1 and
the proof of Theorem 4.4 [11]. _

Theorem .4.,1. The nuapping.,t'}1 2b —>hy ¢ ’f';,
where hy(a) = m(ba), a ¢ ?; is a linear isometry of J;‘w onto

5‘; if one of the conditions (i)-(ii) is satisfied:
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14 L.J. Ciach

(i) limafy{a) =0 a8 o — 0,
(i1) inf {m(p) : peProj(&)} = ¢>0.

Proof. Suppose that b egf;w. By Theorem 2.1 hb =
= m(be)e M,{,(M* and "hb"s I]bllll,m . Hence hbl.;me ’5:‘ and
"hblgm"s ||b||1,mw. It is easy to see that hblim = 0 implies

b = 00
Conversely, let h e i;. By Corollary 4.1 h = hy, where b
is locally measurable in thE, sense of [10]. We shall prove
that beet; (#)s Lot |b*| = Ade, be the spectral resolution
o
of |b*| and b = u|b| the polar decomposition of b. For any
peProjl), ml(p) <o, a =vwim(p))/n(p)eu*pe ¥ and hy(a) =

= y(n(p))/nlp)en( |¥] p) < |,

and O # pnsei . m(pn) —» o o Then
0

« Assume that m(e;: ) = oo, A°> 0
o v

o > [ by |2 y(@(py)) /m(p ) em [0*] py) 2
2 Apln(p,)) —> 0 a8 n-sco,

a contradiction. In consequence, |b* ¢ Ju(®) which is equi-
valent to be :fm(&). Let

y'(1/n), 0<a<1i/n,
ppla) = ‘V'(“)xh/n,n]’ 1/ngasgn,
0

, & >n.
By Lemma 2.3 [12] we have

}ocpn(a) bx) do =
[«

a a
= sup{|m(ba)| : ae.f; + &, _‘ a(f) ap < f on(B) dﬁ}.
° o
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Conjugates of some operator 15

[¢ 2

Koreover, for o <1/n, aala)g § a{f)df < y'(1/n)a. Hence
o

a(0+) = llaj| <y/(1/n) and ae‘E" e ¥, for any e> 0, where

o0
lef = j Ade,. Conseguently,

0
59 o (<4
j Pn(a)bla)da = sup{lm(ba)l tae¥, j a(B)ap < fcpn(ﬁ)dﬂ}s“hb“.
0 - o 0
Pinally

o0 o0
[Ib”hm‘? = jw’(Q)b(a)da = sup | ¢yla)blalda < by,
0 B
which ends the proof of the theorem.
Proposition 4.2.
(i) Assume that lima/y(a) = 0 a8 « —» 0. Then

o0,

_ o
o = {acty@) ¢ 1n 14 f alslas = o)ct @,
o]

_ (ii) Supposé that inf{m(p) 3 peProj(\M} = 4> 0. Then
?Fm = jm(\ﬁ) if (%) is satisfied. '

a
Proof., (i) Let 1lim 1/;p(oc)-,. a(fpldp = 0. It is
o+ 0,00 o o«

clear that aefm. Fix €> O. Suppose that 1/\;:(0/.)-,’. a(pflapse

o]
for <8 and o> 1/8. For any n = 1525000 8y = a(en-e1/n) €¥F,

L :
and a - a, = a(e, + e4/n)s wherse |a| = £ ﬂ.dez. Hence

(a - 8 )(a)< (aes)@/2) + ( Ha/2) < ala/2) 1/n,
8 -8yl ae, ) (o + (@ey /) {a ala/2)y 0,2m(e:)]+ n
and consegquently,
1/8 2m(e;)
| (a-ay)aact/(nd) ¢ | ala/2)da =
(] m(ei-) [»]
= 1/(n§) + 2 I a{a)da <1/{ns) + 2ew(m(et))
0

3eyp(§) for npN_,
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16 L.J. Ciach

Since (a - ap«) = (a(e;,"1 + °1/n”(°‘) <a{a), therefore
Mq,(a - an) <3e for n3 N;. In other words ae ¥pe
Conversely, let a e'fm and Mw(a -8 -0asn-s> ,

where a, ¢ ?rm. Pix €> 0 and let 2/w(q)-§ (a - an)(ﬁ)dﬁ <E

for n> Ny, a>0. We have

a
1/w(a)-j alp)dp <
o]

o o
< Uyla)e (a8 = a ) (B/2)dB + 1/y(x)e) a (p/2)4B
n n
) )

[o Qa
¢2/yla)ey (a - a )(P)dp + 2/y(x)-} a (P)dP, n2N..
n n €
[¢) 0
[+ 3

Hence 1lim sup 1/tp(cu.)‘,‘ a(f)dp<e. From the arbitrariness
OC’O,CD 0
of € > 0 the proposition (i} follows.

(11) It is easy to see that the closure of ¥, in o'fm(.ﬂ:)

is 3m(.ﬁ). Since, in this cass, ofm(:ﬂ) =f = Mq,(&) and

8, 5 a8 la - an" — 0, therefore ?m = Iyl

n
Corollary 4.2. Assume that ft =B (%) 1is the

von Neumann algebra of all bounded operators acting in a Hilbert

space ¥ , C(¥) the space of all compact operators on Y , while

m(p) = dim p(¥) is the ordinary (von Neumann) trace on &. Then

£MA) 5 b —= by = m(be) e C(3)*

is a linear isometry of ufl(d’c) onto C(¥)*.
Remark. By Theorem 1.1 and the proof of Theo-

rem 4,1 we easily obtain

hy(+) = a(be) e M}, iff be.t;w.
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Conjugates of some operator 17

In the partiocular case

/2,

1
sup{]m(ba)] : "8"6«,&1} <oo iff be .‘8: y 1/8 + 1/8 = 1.
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