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ON A NONLINEAR BOUNDARY VALUE PROBLEM
FOR HIGHER ORDER INTEGRODIFFERENTIAL EQUATIONS

1. Introduction

This paper is concerned with the existence, unigueness
and continuous dependence on parameter of solutions of the
nonlinear boundary value problem for higher order integro=-
differential equations., The Banach fixed point theorem is used
to eatablisn our results,

We consider the boundary value problem (BVP, for short)

t
(1) x(n) = F(t,x,x’,...,x(n’”, jK(t,s,x,x’,...,x(n'”)ds,p),
a

(2) x(r)(aj) = o’ j = 1,...,!11, T = 0.1,o.o,rj"1’

m:b,1smsn,z‘irj=n,pisa

where a = 84 <8y <ese <2
real parameter, K and F are real-=velued continuous functions
defined on I°xR™ and IxR™*2 respectively in which I = [a,b]
and R denotes the set of real numbers., Recently in [7] J. Mor-
chalo has studied the existence and wniguvness of the solutions
of equation (1) when p = 0 and the derivatives involved in K
and F are absent, under different boundary conditions by using
the general idea of Chaplygin. Morchalo [7] assumes that the

functions K(t,s,x) and F(t,x,u) therein have bounded partial
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derivatives with respect to the variables x and u. These
conditions, severely restrict the growth of the functions X
and F in order to assure the existence and uniqueness of the
solution.

Cur purpose in this paper is to obtain the existence,
uniqueness and oontinuous dependence of solutions of the
BVP (1) - (2) without any conditions on the derivatives of
the functions K and F involved in (1), Here, we use Lipschitz
conditions on K and F and apply the well known Banach fixed
point theorem to obtain the existence, uniqueness and conti=
nuous dependence of solutions of BVP (1) = (2). Thus our method
is different from that 1in [7] whioh in turn allows us to weaken
the conditions en K and F in (1). The problems of existense
and uniqueness of solutions of various special forms of
BVP (1) - (2) have been studied by many authors under different
conditions, see (5, 10-12] and the references given therein.

2. Statement of results

In order to establish our results we need the following
preliminary lemmas.

Lemma 1., Thers exists Green’s function G(%,s),
a <8, t<b, such that the BVP (1) - (2) 1s equivalent to the
integral equation

(n-1)(8),

(3) =x(t) = G(t,s)F(s,x(s),x’(e),o..,x

0 oy Y

K(S,T’X(T),xl(t),oo.,x(n-‘l’('l'))d'['l.] )ds.

m‘-.—.m

Lemma 2, If G(t,8) is Green’s function of the
equation

(4) =8l(ey £ o,
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with the boundary cenditions (2), then
b

-1,
(5) | latt,8)lde < (1) (b-0)"
s anl n
Tt (3=1) (beg) 21+
(€) _‘ gpi=1 G(tys]|ds < (n=i+1)t n
8

for 1 = 2,40e,0

Lemma 1 may be found in Coppel [4]. Lemma 2 is given in
Kobelkov and Kobyakov [6].

Our main result reads as follows,

Theorem 1. Suppose that the functione K and P

satiefy the conditions

(7) IK(foB.I.X’....,x(n'”) - K(t’g’y’y”...’y(n"')l <
| D1
<20 Mil"(i) - 3‘”‘ '
. i=0
(8) l.F(t,x,x',,,.'x(n'1)’u'y) - F(tﬁyoy 9000y7(n-1)"v(J)l <
-1
< Z Lilx(i’ - '.Y(i)l + Qlu=v|,
i=0

for all (t,s,x,x',...,x(n'”),(t,s.y,y’,v...,y(n'”) € szRﬁ,

(t,%,X yeeo ’x(n-1)-u’&-')’ (t,3,3 a”*vy(n-1)'V,P) € I’Rn+2v whers

My, Iy (1=0,1,000on=1) and Q are nonnegative constants such
that

_1)0=1 n B _aya=3

(9) o= max {Lo (n 1)11[ n(b -a) . 321 HLEJ&? - ]’
2118=1 (_o0 fod e yP=d

i, - o= ome)? gg: FTT L J}.
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and
{10) [14Q(b-a)] o < 14

Then, for an arbitrary pe¢R, the BVP (1) - (2) has a unique
solution,

OQur next result deals with the problem of continuous de=
pendence of solutions of BVF (1) - (2) on a parameter u.

Theorem 2. Assume that the conditions of Theo-
rem 1 are satisfied. Further assume that there exists a oon-
stant N>0 such that for t eI, (2,2 000008, ,)¢ R%, ucR,yp,
Yo € R,

(11) |F(t,z,z1,...,zn_1,u,p) - F(t,z,a1....,zn_1,u,p°)]s
<N Ip- pol.

If x, denote the unigue solution of BVP (1) - (2), then

u — x, maps continuously R into the space cln=1) [1,r].

P
3. Proofs of Theorems 1-2
Let S be the Banach space of functions z e C\2~1)[1,R]
with the norm

n=-1 n-1
2] = mex {mgx ;;,; Ly Ig(d)(t)i » mex > MJ,z(J)(t)l} )

J=0

.

Define a mapping T : S — S by setting for each x¢ S,

(12) T=x(t) = j G(t,s)F(s.x(s),x'(s),...,x‘nﬂ)(B),
a

0 e, (O

K(s,T,x(1),x’ (’r),...,x(n"”(t))d'c, y) ds,
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for t €I, Clearly the solution of BVP (1) - (2) is a fixed
point of the operator equation Tx = x, If x, ye S, then from
(12), (7), (8) and Lemma 2 we have

b n=1
(13) |7=x(%) -Ty(t)lsj |c(t,8)] [Z Lilx(i)(a)-y(i)(s)l +

a i=0

8 ne1i
+Q j Z Mi]x(i)('r) - y(“('l)ld't} ds <
a i=1

-1
< [1 + Q(b-a)] {n=t)® f,b'a)n ==yl
nl n

and
(14) l(rx(£)) 3 = (2y06))03)] <
b 3 n=1
< " gt—da(t.s) [Z Lilx(“(s) —y(i)(s)l +
a i=0
8 n=1
+Q f > Milx(i)('r) - 321y d't} ds ¢
a i=o

n=1
<[1 + Q(v=a)] [ nE;'a{ 5 } %=yl
for j = 1,eee,n-1, From (13), (14) and (9) it follows that

(15) Frx=2y < [1 + Q(o=a)] || x-3 4

Since f1+Q(b-a)]ot <1, it follows from the Banach fixed point
theorem that T heas a unique fixed point in S. This completes
the proof of Theorem 1,

Assume Hp —> U, 88 B —>o00 + Let S be defined as in the
proof of Theorem 1; denote by T, (m = 0,1,000) the mapping T
whenever u = Mpe Evidently,
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7% = 23] < [ + a(v-a)] o« || x-7],

for m = 0,1,2,.. 2nd x,y € S, Arguments similar to the above
and (11) imply that ”Tnx - T x cal|p, - pO{, for n=1,2,ee0}

henoe nlizgo ”Tnx - T % H = 0 for each x¢ S.

Comsequently, Theorem 1.2 in [3, p.6] applies to the map-
ping T and the space S, and we conclude that “x, - X ﬂ -+ 0
n bn ¥

83 h -» o « The proof of Theorem 2 is complete.

We note that a special case of Theorem 1 for n =2, p=20
and when the integral term in (1) is absent, with different
boundary conditions appears in [2, Theorem 1.1, p.5], see
also [1]. The proof given there motivates the proofs of our
Theorems 1 and 2, which in turn show that the recent results
on existence and uniqueness of-solutions of special forms of
BVP (1) - (2) obtained by various authors in (5, 7, 10-12]
{see, also the results in.[6,8] with deley arguments) under
qulte dissimilar hypotheses, can in fact be derived from s
common prinoiple. The sufficient oconditions obtained here are
weaker than those required in [7]. We also note that the
BVP (1) = (2) for n = 2 and p = 0 is recently studied by the
present author in [9] by reducing it to ths two systems of
more general first order integrodifferential equations and
using monotone method under different conditions.
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