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GENERAL APPROACH TO LINE GRAPHS OF GRAPHS

1. Introduction

4 unified approach to the notion of a line graph of general
graphs is adopted and proofs of theorems announced in Rﬂ are
presented, Those theorems characterize five different types
of line graphs. Both Krausz-type and forbidden induced sub=-
graph characterizations are provided.

So far other authors introduced and dealt with single spe-
ciel notions of a line graph of graphs possibly belonging to
a special subelass of graphs, In partiouler, the notion of
& simple line graph of a simple graph is implied by & paper
of Whitney (1932), Since then it has been repeatedly introduc-
od, redisgoversed and generalized by many authors, among them
are Krausz (1943), Izbicki (1960; a special line graph of a
general graph), Sabidussi (1961; a simple line graph of a
loop-free graph), Menon (1967; adjoint graph of a general
graph) and Schwartz (1969; interchange graph which coincides
with our line graph defined below].

In this paper we follow another way, originated in our
previous work [6]. Namely, we distinguish special subclesses
of general graphs and consider five different types of line
graphs each of which is defined in & natural way.

Note that & similar approach to the notion of a line grarh
of hypergraphs can be adopted.

We consider here the following line graphs: line graphs,
loop-free line graphs, simple line graphs, as well as augmented
line graphs and augmented loop-free line graphs.
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2 A, Marczyk, 2. Skupient

The natural reason for introducing the concept of augmented
line graphs is that they can be underlying general graphs of
line digraphe of general digraphs,.

The corresponding five operations from a graph to its line
graph are considered and some relations between them sare
observed and proved. In particular, restrictions of those ope-
rations to the class of simple graphs all coincide,

We deal mainly with the problem of the characterization
of line graphs under consideration, Two different characteri-
zations are given, The first one is Krausz=-{ype characteriza-
tion in terms of a decomposition of the graph into subgraphs,
and the second one in terms of forbidden induced subgraphs,.
The first characterization of simple line graphs of simple
graphs on one hand and of general graphs on the other hand is
given by Krausz [5] and by Hemminger [4] as well as Bermond
an Meyer [2], respectively. Because classes of loop-free line
graphs and augmented loop-free line graphs coincide we give
Krausz-type characterizations of loop-free 1line graphs, line
graphe and augmented line graphs only.

Simple line graphs of simple graphs are charaoterized in
the second way by Beineke [1], and those of general graphs
by Bermond and Meyer [2].

Beineke ‘s result will play an imprtent role in proofs
of our second characterizations of remaining line graphs.

Some comments and remarke about sbove-mentioned related
results can be found in [6].

2. Definitions

Terms and symbols not defined here will be used in their
common meaning unless it is otherwise stated below. In parti-
cular we shall make use of conventions introduced in our pa-
per [6].

By a graph {general graph, called sometimes pseudomalti-
graph) G we mean an ordered triple G = (V,E,n,) where V = v{G)
is the vertex set, E = E(G) the edge set, and py is the func-
tion E — ?1 2(V) which associates with each edge of G the
(one- or two-element) set of its end-vertices. (G) denotes
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Line graphs of graphs 3

the set of loops in G. Letters M, ¥ and O stand for the
cless of graphs, loop-free graphs, and simple (ordinary)
graphs, respectively.

My o denotes the class of graphs having at most one loop
at any vertex and no more than two edges connecting any pair
of different vertices. ?2 is the subclass of loop~free graphs
with at most two edges connecting any two different vertices.
Attaching a single loop to each vertex of a complets graph
gives a complete 1-graph. In general, an s-graph with s Dbeing
a non-pnegative intseger contains at most 8 different edges
connecting any pair of (possibly the same) vertices., If W
stands for M, JH’2,3 v 35, or O then the elements of N are
called N-graphs. So a loop-free 2-graph is called simply
32-graph.

4 loop-graph contains one vertex and one 1loop.

The degree of & vertex x of a graph G, denoted by dG(x2.
is the number of edges incident to x, each loop being counted
twice. A vertex x is called naked, resp. hanging,in G if
dG(x) = 0 and dG(x) = 1, respectively. An edge is hanging if
it is incident to a hanging vertex. Two vertices x and y
are adjacent (neighbours) in G if there exists an edge e con-
necting them, i.e. with ny(e) = {x,y} (and x # y). A vertex
without any neighbour is said to be isolated. A loop-free
vertex has no attached loops. A4 vertex incident to a loop is
self=-adjacent.

The multiple of adjacency of two (possibiy the same) ver-
tices 1s the number of edges connecting them. If this number
is one then the vertices are simply adjacent. Two edges are
multiple edges if they are different and have the same set of
end-vertices; if in addition they are not loops, they are
called doubly adjacent,

Two graphs G and H are isomorphie, in symbols G 2 H, if
there is a bijeotion ¢ : V(G) —» V(H) which preserves the mul-
tiple of adjacenocy of vertices,
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4 4. Marczyk, Z. Skupierd

3+ Line graphs
Given two graphs H and M consider the following conditions:

(1) V(H) = B(M);

(i1) The number of edges in H connecting arny two different
vertices e1,e2(e1,92 e B(M), o, # 32) is equal to 2 if
nyleq) = nyle,) otherwise it is equal to IQM(S1)DQM(62”3"

(14i) H has exactly one loop incident to a vertex e if e
is a loop of M;

(iv) The number of edgee in H joining any two different
vertices 31,92,(91,32 e B(M), o, # 32) is equal to
|7mleq) noyleyl]s

(v) Two vertices of H are simply adjacent if they are dif=-
ferent and adjacent edges in M,

(31 Definition, We define operations L, AL,

Lg, AL;, and Lo by the foilowing implications under the assump-

tions that, for a given M, the graph H is the smallest possible

(cfe Pig.1):

(1), (1iii), (iv) =H = L(M), the line graph of M;

(1), (i1), (1ii)=H =-AL(M), the augmented line graph of M;

(1), (iv) = H Lg(M), the line ¥=~-graph (or loop~-free :ine
graph of M);

AL?(M), the augmented line F-graph of M;

L&(M), the line ¢-graph (or simple line

graph) of M.

A graph H is called a line-graph of a fixed type if there is

a graph M suoh that H ig isomorphic to the line graph of M

of the type in guestion.

Given a graph M, let o be a 1-1 mapping from the set
(M) =L of loops of M onto a set V, of new vertices which can
be added to M.

Let 71 denote the set of new vertices obtained from V1

by substituting a single vertex for each set of images under ¢

of all mutually adjacent loops and let p: & = 71 be a result-

ing mapping. Now we define loop-free transform y(M)[(resp.

#(M))] of M by adding V, (recp. 71) and replacing each loop

(1), (i1) = H
(i), (vi ==H
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L¢3 (M) by a pew edge connecting o({) [resp. p(¢)] with the
vertex of 1,

G
L(G) AL(G)

=1 B3 B]

Lgl G) L(Gl

Fig.1

Thus nonadjacent loops in M are replaced by nonadjacent
edges both in y(M) and $(M). Moreover, adjacent loops in M
correspond to adjacent new edges which are doubly adjacent in
(M) only. For a loop-free graph M, y(M) = M = (M),

Now observe that, for each M,

Ly(M) = L;(w(M)) and AL.(M) = ALg(fv(M)).

Morsover, restrictions of operations Ly and ALy to the class 7
coincide, Therefore the images of M and % under the opera~
tions Lg and AL; all oocincide, i.e.,

(3.2) Ly [M] = Ly (%] = ALy [3] = AL (M.
Note elso that Bermond and Meyer observed [2] that
LO(M) g Lo(w(u)) whence

(3.3) Ly [M] = Ly [3].

4. Krausz~-type charascterizations
(4417) Definitions. Given a graph H, let
be a set of edge-disjoint subgraphs whose edge sets, those
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non-empty, form a partition of the edge set E(H) of H and
such that:

(4.2) each naked vertex is in exactly one and each non-
=naked vertex in exactly two members of ¥ .

Let sets E, E; and E;o consist of complete subgraphs,
mutually disjoint loop-graphs, and mutually disjoint complete
1=-graphs, respecfively. Then C is called:

1., D-decomposition of H if ¥

2. D -decomposition of H if € NOUEN;

3s D, -decomposition of H if C = CoouC» every two
loops incident to adjacent vertices of H belong to ohe 1=grarh
in E;o and, for each member of Eog' its vertex set is contained
in the vertex set of a member of (.

In what follows o stands for the empty symbol, o, or 00,
(4,3) Definition. The definition of D -de-
oomposition is obtained from the above definition of D ~-decom=-
position by replacing the condition (4.2) with the less Te-

strictive one?

(4.4) each vertex is in one but not in more thar two of
members of €.

(405) Proposition. The existence of a D -de-
composition is equivalent to the existence of & ﬁa-decomposi-
tion (o = 0, 00 or @ is the empty symbol).

In fact, a D,~-decomposition ie clearly a Ea-decomposition.
Conversely, adding an appropriate set of trivial subgraphs to
a given ﬁd-decomposition of H gives a Qx-decomposition {in
which each non-naked vertex is contained in two members). Q.E.D.

In what follows we shall make use of L, ~decompositlons only.
Note, however, that Harary [3] presents Krausz theorem in
terms of & 5—decomposition.

Now note that only ?2-graph can have a D=-decomposition,
only ﬂ1,2-graph in which no vertex incident to 2 loop is doubly
adjacent to another vertex oan have a Do-decomposition, and
only JH 2-graph can have a Doo-deoompoeition.

(4.8) Theorem. &graph H is a line F-graph iff
there exists a D=decomposition of H.

1]
32 %
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Proof, Necessity. Let H be the line ¥ -graph of
a graph M, Assume (without lose of generality) that M has no
isolated vertices. Then to every vertex x of M with {x
loops attached to x there corresponds a complete subgraph
K(x of H (= L (M)) of ordsr dM(x) - t, whose vertices are
edges of M incldent to x. Let = {K(x)- xeV(u)}.

Since, by the definition of L;(M), doubly edjacent edges
of M are doubly adjacent vertices of H, we may agsume that
each edge of H belongs to exactly one member of C2. Let V
be the set of non-isolated vertices of H each of whioch belongs
to gxactly one member of 52. So if b eV1 then the only member
of C2 containing b is clearly a non-trivial subgraph. There-
fore the upnioa of 62 and the set {K1: V(K1) c V1} is a D-de=-
composition of H.

Sufficiency. Let T = E be a D=decomposition of a graph H.
Let C be the set of duplicates of those (trivial) members K
of C each of which contains an isolated vertex of H. Let M
be an ¥-graph with V(M) = CLJC and with IV(Ci)r1V(C )| edges

1

connecting different vertices Ci' C 13 CL;C1. Now it is easily
seen that L (M) is isomorphic to H. n

(4.7) C orollary. (Krausz [5]). A simple graph H
is a 1line CG=graph iff there exists a D-decomposition of H.

Arguments similar to that used above (with modifications
in dealing with loops) can be used to prove two following
theorens,

(448) Theorem. Agraph H is a line graph iff H
has a Doldecomposition.

(4,9) Theorem. Agraph H is an augmented line
graph 1ff there exlsts a Doo-decomposition of H.

5. Forbidden subgraph characterizations

Our aim is to characterize different types of line graphs
under consideration in large enough classes of graphs by giving
the minimal (with respect to the inclusion) lists of forbidden
induced subgraphs.
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8 A. Marezyk, Z. Skupieni

Sueh characterization of simple line graphe for simple
araphs is found by Beineke [1] and that for loop-free as well
a8 (cf. (3.3)) for general graphs is found by Bermond and Meyer
[2] and Hemminger [4].

The following theorem of Beineke will play a crucial role
in proving the sufficiency of the conditions given in the next
theorems.

(51} Theorem, (Beineks [1]). 4n 0'=-graph H is
the line (O=-graph of an ('-graph iff none of the nine graphs
shown in Fig,2 is isomorphic to an induced subgreph of H.

NN
gl

Fig.2

In what follows similer ligts of forbidder induced sub=-
graphs will be displayed. It can be easily seen that Beineke ‘s
list as well as those given below are minimal in the sense that
no graph on a list is an induced subgraph of another one on
the list.

The necessity of conditions givon in any of forbidden sub-
graph cheracterizations can be easily oroved by using the
corresponding Krausz-type theorem,

In the proofs the following easy observation is essentislly
needed.
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(52) Propoesition. Any induoed subgraph of
a particular type of a line graph is a line graph of the same
v pe. '

In what follows uroofs of necessity are left to the reader.
In general, tae proofs of sufficisncy are more ccmplicated.

It can bs observed that the lists given in Beineke ‘s thao=
rem 8 well as in our belowegtated theorems are finite because
those theorems provide characterizations in restricted classes
of graphs, The corrssponding charscterizations in the class M
of all graphs can be obtained by adding suitable infinite
lists of flowers, that is, graphs either with one vertex and
attached locops or with two multiply adjascent verticee possibly
with single loops at them.

5+1, Loop-free line graphs

Note that, by (3.2}, the set of loop-free line graphs and
that of augmented loop-free line graphs both coincide. Thus
a single thecrem will characterize fthe two types of loop-free

line graphs.

an
-
R1i

Fig.3 Fig.4

Given an ?2-graph H, let AH.and DH be respectively adja-~
cency relaticn and doable adjacency relation both in V(H),.
So if He ?2 then

XAy &>x,y e V(H), x # 3, and 3ee E(H): 2ule) = {x,5}»
XDy <=>X,y eV{H), x £y, and 3eq,0,5¢ E(H): o, ¥ e, and
Pyley) = {x,y} for i = 1,2.
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Observe that DHs;AH and both AH and DH are symmetric., Define

By = Dyuly

where IH is the identity relatiom over V(H). Seo RH is symmetrioc
and reflexive. The transitivity of Ry and a certain useful pro-
party pf AH and DH are equivalent to that the 2-graphs F1,F2
and F2 of Fig.3 do not occur in H as induced subgraphs. This
is preocised in the following obvious lemma,

{(53) Lemma. For any ¥,-graph H, the following
equivalences hold truse: :

(1) Ry is an equivalence relation iff neither F2 nor F3
is isomorphic to an induced subgraph of H.

(1ii) For any two doubly adjacent vertices x,y of H, if
8 vertex 2z 1is adjacent to x then either 2z 1is adjacent
to y or z =y, that is (by the symmetry of A; and Dy)s

(5.4) Ago Dychyuly and Dyo Ay ciyuly,
iff neither F1 nor F2 is isomorphic to an induced subgraph
of H, [ '

The statement (ii) is equivalent to the following

(5¢5) Corollary. Sets-of neighbours of any two
doubly adjacent vertieces of H coincide iff neither F1 nor F2
is isomorphio to an induced subgraph of H.

(5¢6) Theoraem. 4n %,-graph H is a line F-graph
[en augmented line ¥-graph] iff none of the 12 graphs of Figs.2
‘and 3 is isomorphio to an induced subgraph of H,

Sufficiency. Because complete ?Z-Eraphs are line ¥-graphs,
without any loss of generality, assume that H is a non=trivial
graph whose no component is a complete ?2-graph.

Now, by Lemma (5.3), R = Ry is an equivalence relation
over V(H)} and {5.4) holds truse. '

Let f bYe a choice function for the quotient set V/R with
VvV =V(d) and R = Ry So f: V/R — V and the following condi-
tion is satisfied

AGV/R if(A)GA.
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Moreover, let H' be a subgraph of H induced by f[V/R], the
image of V/R under f. Because R is no total relation there-
fors H’ contains at least two vertices., Note that, by defini=-
tions of R and 4', H' is a simple graph. Now suppose that x
is an isolated vertex of H'. Then, by Corollary (5.5), the set
[x]R induces a component of H being a complete ?Q—graph, a con=-
tradiction. Hence H' is an (*-graph without trivial compo-
nents, Since, moreover, none of the graphs of Fig.2 occurs in
H' as an induced subgraph, H' is the line graph of an ('-graph.
Therefore, by Krausz theorem, there is a D-decomposition
{K'J: Jje J} of H' into complete subgraphs K 'd, We shall con~
struct a D-decomposition {K9: je J} of H such that K'J ckJ
for all jedJd. Put

(5.7) v, = U Ixlp fer jea
xeV(K'Y)

In comnection with this definition of V; note that [x]g =
£=Y(x) for any xeV(H') and, moreover, v # VJ for i £ 3
because then K'T # k'J, By the definition of f, and proper-

ties of the D-decomposition of H', sach vertex from V is in
the relation R with an element of V(K'j) for some je J, Hence,
the family {Vaz Je J} of sets V:j is a covering of the vertex
set V of the graph H. Moreover,

(5.8) For each jeJ, every two different elements x,y of V.
are adjacent (or doubly adjacent)} vertices in H,

In fact, this is olear if either x,y e V(K'J) or xRy. So
consider the remaining case. Then either x or 7y, say x,
does not belong to V(K‘a). Thersfore there existe x'e V(K'Y)
such that xRx' and x # x', that is, x is doubly adjacent
to x'. Now, if ye‘V(K’J) then y is adjacent to x. Indeed,
this is obvious if y = x’, But if y # x' then y is adjacent
to x’ and x'Dyx. Therefore, by (5.4), y is adjacent also
to x. Otherwise, if y¢ V(XK' J) then there is a vertex
y'e V(K J), which is doubly adjacent to y. Moreover, either

]

y =x"or 3’ is adjacent to x' (cf. Fig.4),

J
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Therefore, by (5.4}, y is adjacent.to x' and consequently
also to x, which coapletes the proof of {(5.8).

Now since H' has no trivial component, each vertex of g’
lies in exactly two graphs from the D-decomposition. Hence,
by (5.7}, we have
(5.9) each vertex of H belongs to exactly two sets from the
family {Vj: Je J}.

Moreover, any two different veritices x,y doubly adjacent
in H, i.e., belonging to the same element [x] of V/R, belong
simultaneously to exactly two different sets defined by {5.7).
In fact, f([x]) is a vertex of exactly two different graphs
from the D-decomposition of H', say f([x]) ¢ V(K'ier’J),
i,jed, 1 # jo Therefors, by (5.7), X,y eVierj as desired.

Convergely, if two different vertices x,y belong simul-
taneously to two different sets Vi and V., i,je J, then thoy
are doubly adjacent in H, i,e., [x] = [y]. Really, for other-
wise f([x]) # £([y]) and (since {x,y}cV; nvy ) {£0[x] ), £([3] )}
c V(K’i K'd), Thus there is in H a single edge with end-ver-
tices f([x]) ana £([y]), which belongs to H and lies in two
different graphs K'*, K'9, a contradiction to the definition
of the D-decomposition of H'.

So we have proved that any two different vertices belong
simultaneously to two different sets Vi, Vj iff they are.
doubly adjacent in H.

Furthermore, we can prove that for any two vertices x
and y whioh are adjacent but not doubly adjacent in H, there
is a single set V. containing them. Indeed, then, by (5.4},
f([x]) and f([y]) are adjacent vertices of H’' which belong
therefors to a single graph K A, Hence, by (5.7), %,y € Vj.
Since x and y are not doubly adjacent, there is no other
set Vj containing both x and y. Hence and from (5.8) it
follows the following proposition.

(5.10)  The number of different sets V; containing any two
different vertices x,y of H is equal to the number of edges
joining x and y in H,
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Let g ¢ E{H) — J be a function satisfying the conditiocne:

(1) gle) = 3 =>QH(e)<;V3,

(2) g associates different values with any multiple edges
e,s8,, that is, (e1 F 85, ?H(°1) = QH(62)) = 5(91) # g(ee).
The existence of the function g 1is guaranted by (5.10).

Define

kd =<y, e3> for 3§ e ds

Observe that each Kj is a well-defined subgraph of H, which
in fact is a complete subgraph of H. All the graphs X3 are
mutually edge-disjoint and cover the veritices-and edges of H,
Furthermore, by (5.9}, any vartex of H belongs tc precisely
two of graphs Ka Se {K $ Je J} is a D-decomposition of H,
Hence, by Theorem (4.0}, H is a line F-graph.

5¢2., General line graphs

(5.11) Lemma., & graph G is @ line graph iff G has
no adjacent loops and its loop~free transform y(G} is a line
F-graph.

Proof. It is easily seen that y transforms a
5°-deoompoaition of G onto a D-decomposition of y(G)., Con-
versely, from a D-decomposition of y(G) it is possible %o get
a 5°-decomposition of G by replaocing some K2's or pairs K2, K1
with loop-graphs. Thus Lemma follows from Proposition (4.5)
and Krausz-type Theorems (4.6) and (4.8). g

Let M be a connected F~-graph non-isomorphiec to K2. Denote
by V, = V, (M) and B, = E (M) the set of hanging vertices and
the set of hanging edges of M, respeotively.

Suppose that J ie a subset of Ey that is a matohing of M,
Given M # K,, let SJ(M) denote the graph obtained from M by
replacing each edge e of J by a single loop joined to the
non=hanging vertex of e,

Let W be a subset of vertices of M that are not incident
to any loop. Denote by Tw(M) the graph, obtained from M by
attaching a single loop to every vertex in W,
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14 Ao Marczyk, 2. Skupien

(5¢12) Lemma. Let a graph H have no adjacent loops,
let M # K2 and let y{d) bhe the loop~free transform of H. Then
M is isomorphic to an induced subgraph of w(E) iff there exists
a subset J of Eh(M) that is a matching of M and a subset W
of loop-free vertices of SJ(M) such that TW(SJ(M)) is isomorphie
to an induced subgraph of H.

Proof. If M is an induced subgraph of G = ¥(H) and
H has no adjecent loops then the set J = J' n E(M) where
J' = {eeE(G) : pgle) n(V(G) - V(H)) # ¢} is a matohing of M
and no element of the set

W= {xeV(l)nV(HE)|3eed’ =~ B(N) : xér;G(e)}

is incident to a loop of SJ(M). Then obviously TW(SJ(M)) is
an induced subgraph of H,

Conversely, if there are appropriate sets W and J such
that N := TW(SJ(M)) is an induced subgraph of H then w(S;(M})
is equal to M, and w(N), an induced subgraph of G, is equal
to M together with hanging edges which replace those loops
of N which are incident to the vertices belonging to W, Thus
M is an induced subgraph of G.

(513) Theorem. A 2-graph H is a 1ine graph iff
H has no adjacent loops and none of 29 graphs of Figs.2,3,5
and 6 is isomorphic to an induced subgraph of H.

Proof. Denote by A and B the set of 12 graphs of
Figs.2 and 3 and the set of 29 graphs of Figs.2,3,5 and 6,
raspectively. :

Sufficiency. Assume that H is a graph without adjacent
loops and no slement of B is isomorphic to an induced subgraph
of H, Let M e A. Put

Py = {N:N= Ty(5;(i)), where J cE, (M), J is a meztohing
of M, and W is a set of loop-free vertices of SJ(M)}.

Let ¢ = \UJ p.

Meh
It follows from the Lemma (5.12) that the following statement

is true:
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JIYA

Ng Ng
Ng Nig
N1 N2 N13 N1g
B, B, By
Fig. 6
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None of the grapha belonging to C is an induced subgraph
of H 1ff no graph from 4 ocours as induced subgraph of w(H).

‘ Se if H has no induced subgraph isomerphic to a graph
from C, then, by the Lemma (5.1%1} and Theorem (5,6), H is
a line graph., ’

Observe that the family B is minimal, that is, no element
of B is isomorphioc to an induced subgraph of another member
of B. Morsover, by Propoaition (5.2), any induced subgraph
of a line graph is also a line graph and, as it will be clear
later, B 1s contained in C,

Tharefore, in order to end the proof it suffioces to show
that each member of C has an induced subgraph isomorphic to
& certain graph belonging to Be

Observe first +that the only graphs in A which have hahging
edges sare 61, 64, GS’ and F1, Let us list the images of those
last 4 graphs under SJ, for all J permissible:

S{e}(G1) = NB’ S{e}(G4; = Ng; S{e’f}(G4) = N8’
S{E}(GS) = N13, S{G}(F1) = ﬁ1

{see the Figs.2, 3 and 5; e,f stand for non-adjacent hanging
edges in corresponding graphsj.

Let us apply the transformations TW to all graphs from the
family 4 = A\J{N1,N3,N8,N9,N13}. Pirst W is tsken as a subset
of "white" vertices dapicted in Figs.2, 3 and 5 as small
circles., We get the following list:

N2=T{x}(F1), N4=T{x}(G1), N5=T{x97}((}1),

N6 = T{X,y,z}(G1)’ N7 = T{X}(GB), N10 = T{X}(Ng)'
N11 = T{x}(G4), Ny, = T{x,y}(G4)’ N14 = T{x}(GS) (erh(Gs)),

B1 = T{x}(N1), BZ = T{x}(N3)’ B3‘= T{X,y}(N3)'
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For other admissible non-smpty subsets W of "white" vertices
we obtain graphs which have Ng {for G = G3 or G = N13), Ng
or N, (for G = Gg or G = Ge) and Ng. or N13 (for G = G¢) as
induced subgraphs,

Let Ge A, It is easy to verify that by adding new loops
to some of loop-free vertices of G that include one whioh is
drawn as a black point in Figs.2, 3 and 5, we get a graph
which_has an induced subgraph isomorphic to N1, NB' B1, 32
or BB'

5¢3. Augmenied line graphs

Let M be a 2-graph without adjacent loops. Denote by ¢(M)
a subgraph M' obtained from M by deleting exactly one edge
from each pair of parallel edges whoss both end-vertices are
incident to loops.

Let € be a D,-decomposition of a 2-graph M' and let ﬁL
be a complete graph belonging to C . Let Vo(ﬂ),lR » and Ip
be the set of all vertices of R incident to loops in M',
the correspomding set of loops of M', and the corresponding
set of loop-graphs, respectively.

Let us add a duplicate e’ of every edge of R whose both
end-vertices belong to Vo(ﬂJ (this operation will be denoted
¢~ V). If V_(R) # ¢ then V (R) together with the union of the
set of new edges e’ and the subset JR, of loops of M' form
a complete 1=graph, Qs which is disjoint from the members
of € - ({R}n;ﬁﬁ). It is clear that the family of.all complete
graphs R in C together with the graphs Gg is a D, -decompo-
sition of ¢~ (M),

Conversoly, one can easily oonstruct a Do-decomposition
of ¢(¥) from a given D,,-decomposition of M. Therefore, due to
Theorems (4.8) and (4.9), the following Lemma holds true,

(5¢14) Lemmas. & 2-graph M without adjacent loops
is an augmented line graph iff ¢ (M) is a lins graph and
M=o e(M)). g

{515) T heorem. 4 2-graph H is en augmenied line
graph iff H has no adjecent loops and none graph of Figs.2,3, 5
and 7 is isomorphic to an induced subgraph of H.
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Proof., Sufficiency. Suppose that H has no adjacent
loops and none of graphs in Figs.2, 3, 5 and 7 is isomorphioc
to an induced subgraph of H.

[,

Pig.7

Since the graph A1 in Fig.7 is not isomorphic to'any induoed
subgraph of H then any two adjacent vertices of H both incident
to loops are doubly adjacent. Moreover, if M is an induced
subgraph of H then ¢(M) is an induced subgraph of ¢(H). The
converse statement is also true, i.,e., if N is an induced
subgraph of ¢(H) then M = ¢'1(N) is an induced subgraph of H.

Now it is easily seen that if H has no induced subgraph
isomorphic to any graph of Pigs.2, 3, 5 or to the graphs 4,
or A3 then none of the graphs of Figs.2, 3, 5, 6 is isomorphic
to an induced subgraph of ¢(H), and, by Lemma (5.14) and Theo-
rem (5.13), H is an augmented line graph. g

The natural reason for introducing the concept of augmented
line graphs is that they can be underlying graphs (i.e., multi-
graphs) of line digraphs of general digraphs.
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