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GENERAL APPROACH TO LINE GRAPHS OF GRAPHS 

1. In t roduct ion 
A unif ied approach to the notion of a l ine graph of general 

graphs i s adopted and proofs of theorems announced in [6] are 
presented. Those theorems charac ter ize f i ve d i f f e r e n t types 
of l ine graphs. Both Krausz-type and forbidden induced sub-
graph charac te r i za t ions are provided. 

So f a r other authors introduced and deal t with s ingle spe-
c i a l notions of a l ine graph of graphs possibly belonging to 
a spec ia l subclass of graphs. In p a r t i c u l a r , the notion of 
a simple l ine graph of a simple graph i s implied by a paper 
of Whitney (1932). Since then i t has been repeatedly in t roduc-
ed, rediscovered and generalized by many authors , among them 
are Krausz (1943), I zb ick i (1960$ a specia l l ine graph of a 
general graph), Sabidussi (1961) a simple l ine graph of a 
loop-f ree graph), Menon (1967} ad jo in t graph of a general 
graph) and Schwartz (1969; interchange graph which coincides 
with our l ine graph defined below). 

In t h i s paper we follow another way, originated in our 
previous work [6]. Namely, we d i s t ingu ish specia l subclasses 
of general graphs and consider f i v e d i f f e r e n t types of l i ne 
graphs each of which i s defined in a na tu ra l way. 

Note tha t a s imi la r approach to the notion of a l ine graph 
of hypergraphs can be adopted. 

We consider here the following l ine graphsi l i ne graphs, 
loop- f ree l ine graphs, simple l ine graphs, as wel l as augmented 
l ine graphs and augmented loop-f ree l ine graphs. 
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2 A. Marczyk, Z. Skupieii 

The natural reason for introducing the concept of augmented 
line graphs is that they can be underlying general graphs of 
line digraphs of general digraphs. 

The corresponding five operations from a graph to its line 
graph are considered and some relations between them are 
observed and proved. In particular, restrictions of those ope-
rations to the class of simple graphs all coincide* 

We deal mainly with the problem of the characterization 
of line graphs under consideration. Two different characteri-
zations are given. The first one is Krausz-type characteriza-
tion in terms of a decomposition of the graph into subgraphs, 
and the second one in terms of forbidden induced subgraphs. 
The first characterization of simple line graphs of simple 
graphs on one hand and of general graphs on the other hand is 
given by Krausz [5] and by Hemminger [4] as well as Bermond 
an Meyer [2], respectively. Because classes of loop-free line 
graphs and augmented loop-free line graphs coinoide we give 
Krausz-type characterizations of loop-free line graphs, line 
graphs and augmented line graphs only. 

Simple line graphs of simple graphs are characterized in 
the second way by Beineke [l], and those of general graphs 
by Bermond and Meyer [2]. 

Beineke's result will play an imprtant role in proofs 
of our second characterizations of remaining line graphs. 

Some comments and remarks about above-mentioned related 
results can be found in [6]. 

2. Definitions 
Terms and symbols not defined here will be used in their 

common meaning unless it is otherwise stated below. In parti-
cular we shall make use of conventions introduced in our pa-
per [6]. 

By a graph (general graph, called sometimes pseudomulti-
graph) G we mean an ordered triple G = {V,E,7Q) where V = V(G) 
is the vertex set, E = E(G) the edge set, and is the func-
tion E —• 331 g(V) which associates with each edge of G the 
(one- or two-element) set of its end-vertices. 5C(G) denotes 
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Line graphs of graphs 3 

the set of loops in G. Letters M., ? and 0- stand for the 
class of graphs, loop-free graphs, and simple (ordinary) 
graphs, respectively. 

<AL 0 denotes the class of graphs having at most one loop • t ̂  
at any vertex and no more than two edges connecting any pair 
of different vertices. ?2

 i s ttie subclass of loop-free graphs 
with at most two edges connecting any two different vertices. 
Attaohing a single loop to each vertex of a complete graph 
gives a complete 1-graph. In general, an s-graph with s being 
a non-negative integer contains at most s different edges 
connecting any pair of (possibly the same) vertices. If Jf 
stands for JH, M^ 2,? , i2, o r & then the elements of W are 
called Jf-graphs. So a loop-free 2-graph is called simply 

-graph. 
A loop-graph contains one vertex and one loop. 
The degree of a vertex x of a graph G, denoted by d(,(x), 

is the number of edges incident to x, each loop being ooanted 
twice. A vertex x is called naked, resp. hanging,in G if 
dQ(x) = 0 and dQ(x) = 1, respectively. An edge is hanging if 
it is incident to a hanging vertex. Two vertices x and y 
are adjacent (neighbours) in G if there exists an edge e con-
necting them, i.e. with 9Q(e) = {*»?} (and x i y). A vertex 
without any neighbour is said to be isolated. A loop-free 
vertex has no attached loops. A vertex incident to a loop is 
se If-ad jaoent. 

The multiple of adjacency of two (possibly the same) ver-
tices is the number of edges connecting them. If this number 
is one then the vertices are simply adjacent. Two edges are 
multiple edges if they are different and have the same set of 
end-vertices; if in addition they are not loops, they are 
called doubly adjacent. 

Two graphs G and H are isomorphic, in symbols G = H, if 
there is a bijection ? : v(G) V(H) which preserves the mul-
tiple of adjacency of vertices. 

- 449 -



4 A. Marczyk, Z. Skupien 

3. Line graphs 
Given two graphs H and M consider the following condi t ions: 

( i ) V(H) = E(M), 
( i i ) The number of edges in H connecting any two d i f f e r e n t 

v e r t i c e s e 1 , e 2 ( e 1 , e 2 eE(M), e 1 4 e 2 ) i s equal to 2 i f 
•?„(•,) » otherwise i t i s equal to |?M(a1)n ?M(e2)|*' 

( i i i ) H has exactly one loop incident to a ver tex e i f e 
i s a loop of M; 

( iv) The number of edges in H joining any two d i f f e r e n t 
ve r t i ce s e 1 , e 2 , ( e ^ , e 2 eE(M), e^ 4 e 2 ) i s equal to 

| r ?M ( e 1 ) n ' ?M ( e 2 , h 
(v) Two ve r t i oes of H are simply adjacent i f they are d i f -

fe ren t and adjacent edges i n M. 
(3o1) D e f i n i t i o n . We define operations L, AL, 

Lj , ALy, and Lp, "oy the following implicat ions under the assump-
t ions t h a t , f o r a given M, the graph H i s the smallest possible 
( c f . Pig.1)J 
( i ) , ( i i i ) , (iv)=s»H « L(M), the l ine graph of M; 
( i ) , ( i i ) , ( i i i ) => H =• AL(M), the augmented l ine graph of Mj 
( i ) , ( iv) => H = L?(M), the l ine ?-graph (or loop- f ree i ine 

graph of M); 
( i ) , ( i i ) => H = AL^(M), the augmented l ine 3-graph of M; 
( i ) , (v) H = LgXli), the l ine & -graph (or simple l i ne 

graph) of M. 
A graph H i s ca l led a l ine-graph of a f ixed type i f there i s 
a graph M suoh tha t H i s isomorphic to the l ine graph of M 
of the type in ques t ion. 

Given a graph M, l e t p be a 1-1 mapping from the set 
S£(M) » a o f loops of M onto a set V1 of new v e r t i c e s which oan 
be added to M. 

Let V.| denote the set of new v e r t i c e s obtained from V^ 
by subs t i t u t i ng a s ingle vertex f o r eaoh set of images under p 
of a l l mutually ad jaoent loops and l e t p : 3L -*• V̂  be a r e s u l t -
ing mapping. Now we define loop- f ree transform ip(M) [ ( rasp. 
iji(M))]of M by adding V1 ( recp. V^) and replaoing eaoh loop 
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Line graphs of graphs 5 

£e2(M) by a new edge connecting çi-f) [ resp. with the 

oo 
A, (G) 

Thus nonadjacent loops in U are replaced by nonadjaoent 
edges both in f(M) and ip(M). Moreover, adjacent loops in M 
correspond to adjacent new edges which are doubly adjacent in 
ip(M) only. For a loop-free graph M, iy(M) = M = ¡¡¡(M). 

Now observe that, for each M, 

L?(M) = L ? (v (M) ) and AL?(M) = AL?(qi(M)). 

Moreover, restrictions of operations and A t o the class 5 
coincide. Therefore the images of X and ? under the opera-
tions Ly and AL^ a l l coincide, i . e . , 

(3.2) L , [A] = L? [ » ] = AL? [J] - Alg-LH], 

Note elso that Bermond and Meyer observed [2] that VM) s V,̂(M,, whanoe 
(3.3) M « * ] - I-frL*]« 

4. Krausg-type characterizations 
(4.1) D e f i n i t i o n s . Given a graph H, let C 

be a set of edge—disjoint subgraphs whose edge sets, those 

vertex of I . 

8-0 

XI 
LgIG) Lj(G) 

Pig.1 
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6 A. Marczyk, Z. Skupien 

non-empty, form a part i t ion of the edge set E(H) of H and 
such t h a t : 

( 4 . 2 ) each naked vertex i s in exactly one and each non-
-naked vertex in exactly two members of C . 

^ /Ni 

Let sets C, CQ and E consist of complete subgraphs, 
mutually disjoint loop-graphs, and mutually disjoint complete 
1-graphs, respect ively . Then C i s ca l led : 

1. D-decomposition of H i f t = C; 
«Nl <*-> 

2. D0-decompoeition of K i f C = CQuC; 
3. D00-decomposition of H i f C = C QuC , every two 

loops incident to adjacent v e r t i c e s of H belong to one 1-graph 
/VI <*>J 

in C„ and, for each member of i t s vertex set i s contained 
0 0 * Ofi 

in the vertex set of a member of C. 
In what follows a stands for the empty symbol, o, or oo. 
( 4 . 3 ) D e f i n i t i o n . The definit ion of Da-de-

oomposition i s obtained from the above definit ion of ^-decom-
position by replacing the condition ( 4 . 2 ) with the less r e -
s t r i c t i v e one! 

( 4 . 4 ) eaoh vertex i s in one but not in more than two of 
members of C. 

( 4 . 5 ) P r o p o s i t i o n . The existenoe of a ¡^-de-
composition i s equivalent to the existenoe of a- ^-decomposi-
t ion ( a s o, oo or a i s the empty symbol). 

In f a c t , a Da-decomposition i e c lear ly a Da-deoomposition. 
Conversely, adding an appropriate set of t r i v i a l subgraphs to 
a given ^-decomposition of H gives a ^-decomposition ( in 
which each non-naked vertex i s contained in two members). Q.B.D. 

In what follows we shal l make use of ¡^-decompositions only. 
Note, however, that Harary [3] presents Krauaz' theorem in 
terms of a D-decomposition. 

Now note that only Jg-graph can have a D-decomposition, 
only iX̂  2-graph in which no vertex incident to a loop i s doubly 
adjacent to another vertex oan have a D0-decomposition, and 
only 2-graph can have a D00-deoomposition. 

(4 .S ) 
T h e o r e m . A graph H i s a line f-graph i f f 

th«re e x i s t s a D-deoomposition of H. 
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Line graphs of graphs 7 

P r o o f . Necessity. Let H be the line ?-graph of 
a graph II. Assume (without loss of generality) that M has no 
isolated vertices. Then to every vertex x of M with lx 
loops attaohed to x there corresponds a oomplete subgraph 
K^*' of H (= L^(M)) of order d^(x) - whose vertices are 
edges of M incident to x. Let t2 = { K ^ : xeV(M)}. 

Since, by the definition of L?(M), doubly adjacent edges 
of M are doubly adjacent vertices of H. we may assume that 

<si 

eaoh edge of H belongs to exactly one member of C>. Let V^ 
be the set of non-isolated vertices of H eaoh of whioh belongs 
to exactly one member of Cg* So if e ̂ ^ then the only member 
of C^ containing b is clearly a non-trivial subgraph. There-
fore the union of and the set : V(K^) £ y J i 8 a D-de-
composition of H. 

CO 

Sufficiency. Let t = C be a D-decomposition of a graph H. 
N 

Let Cj be the set of duplicates of those (trivial) members K^ 
of C each of which contains^ an isolated vertex of H. Let M 
be an f -graph with V(M) = t u ^ and with [ V( C^) n V( C .) | edges 
connecting different vertioes Cif C^eC o C.j. Now it is easily 
seen that L^(M) is isomorphic to H. _ 

(4.7) C o r o l l a r y . (Krausz [5]). A simple graphH 
is a line C-graph iff there exists a D-decomposition of H. 

Arguments similar to that used above (with modifications 
in dealing with loops) can be used to prove two following 
theorems. 

(4.8) T h e o r e m . A graph H is a line graph iff H 
has a ¡^-decomposition. 

(4.9) T h e o r e m . A graph H is an augmented line 
graph iff there exists a D00-decomposition of H. 

5. Forbidden subgraph characterizations 
Our aim is to characterize different types of line graphs 

under consideration in large enough classes of graphs by giving 
the minimal (with respect to the inclusion) lists of forbidden 
induced subgraphs. 
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8 A. Marczyk, Z. Skupieii 

Suoh characterization of simple line graphs for simple 
graphs is found by Beineke [1] and that for loop-free as well 
as (cf. (3*3)) for general graphs is found by Bermond and Meyer 
[2] and Hemminger [4]. 

The following theorem of Beineke will play a crucial role 
in proving the sufficiency of the conditions given in the next 
theorems. 

(5.1) T h e o r e m . (Beineke [1]). An fr-graph H is 
the line fr-graph of an 01-graph iff none of the nine graphs 
shown in Fig.2 is isomorphic to an induced subgraph of H. 

In what follows similar lists of forbidden induced sub-
graphs will be displayed* It can be easily seen that Beineke's 
list as well as those given below are minimal in the sense that 
no graph on a list is an induced subgraph of another one on 
the list. 

The necessity of conditions given in any of forbidden sub-
graph characterizations can be easily proved by using the 
corresponding Krausz-type theorem. 

In the proofs the following easy observation is essentially 
needed. 

Pig. 2 
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Liae graphs of graphs 9 

(5*2) P r o p o s i t i o n ® Any induoed subgraph of 
a particular type of a line graph is a line graph of the same 
type. 

In what follows proofs of necessity are left to the reader. 
In general, the proofs of sufficiancy are more complicated. 

I'c can be observed that the lists given in Beineke's theo-
rem as well as in our below-stated theorems are finite because 
those theorems provide characterizations in restricted classes 
of graphs. The corresponding characterizations in the class Ji 
of all graphs can be obtained by adding suitable infinite 
lists of flowers, that is, graphs either with one vertex and 
attached loops or with two multiply adjacent vertices possibly 
with single loops at them® 

5.1. Eoop-free line graphs 
Note that, by (3.2), the set of loop-free line graphs and 

that of augmented loop-free line graphs both coinoide. Thus 
a single theorem will characterize the two types of loop-free 
line graphs. 

Given an ?2-graph H, let A^and DJJ be respectively adja-
cency relation and double adjacency relation both in V(H). 
So if H € ïg then 

xAHy <=>x,y e V(H), x t y, and a e e fi(H): ?H(e) = {x,y}, 
x DH y e » x ^ y» and 3 e., ,e2 e E(H) : e1 i e2 and 

?H(ei) = f o r 1 = 1'2' 
- 455 -
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10 A, Marozyk, Z. Skupieri 

Observe tha t Djj c a^ and both AH and D̂  are symmetric. Define 

RH = DjjUly 

where ia the iden t i t y r e l a t i o n over V(H). So R^ i s symmetric 
and r e f l e x i v e . The t r a n s i t i v i t y of RH and a c e r t a i n usefu l pro-
perty of Ah and DJJ are equivalent to that the 2-graphs 
and P2 of Pig .3 do not occur in H as induced subgraphs. This 
i s preoised i n the following obvious lemma. 

(5.3) L e m m a . For any ?2-graph H, the following 
equivalences hold t r u e : 

( i ) Ry i s an equivalence r e l a t i o n i f f ne i the r F^ n o r F3 
i s isomorphic to an induoed subgraph of H. 

( i i ) For any two doubly adjacent v e r t i c e s x,y of H, i f 
a ver tex z i s adjacent to x then e i t h e r z i s adjacent 
to y or z = y , tha t i s (by the symmetry of AH and DJJ), 

(5.4) AJJ ° D J J c Ay u IH and % 0 ah c ah u ' 

i f f ne i ther F1 nor F2 i s isomorphic to an induced subgraph 
of H, | 

The statement ( i i ) i s equivalent to the following 
(5.5) C o r o l l a r y . Sets-of neighbours of any two 

doubly adjacent v e r t i c e s of H coinoide i f f ne i the r F^ nor F2 

i s isomorphic to an induoed subgraph of H. 
(5.6) T h e o r e m . An ?2-graph H i s a l ine i -graph 

[an augmented l i ne ?-graph] i f f none of the 12 graphs of Figs .2 
and 3 i s isomorphic to an induced subgraph of H. 

Suf f i c iency . Because complete ?2-graphs are l ine i - g r aphs , 
without any loss of gene ra l i t y , assume that Ii i s a n o n - t r i v i a l 
graph whose no component i s a oomplete ? 2 -graph. 

Now, by Lemma (5.3)> R = By i s an equivalence r e l a t i o n 
over V(H) and (5.4) holds t r u e . 

Let f be a choice func t ion f o r the quot ient se t V/R with 
7 = V(H) and R = RH. So f : V/R V and the following condi-
t ion i s s a t i s f i e d 

A e V/R => f(A) e A. 
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Moreover, let H' be a subgraph of H induced by f [v/R], the 
image of V/R under f. Because R is no total relation there-
fore H' contains at least two vertices. Note that, by defini-
tions of R and H', H' is a simple graph. Mow suppose that x 
is an isolated vertex of H', Then, by Corollary (5.5), the set 
[x]R induces a component of H being a complete Sg-graph, a con-
tradiction. Hence H' is an (7-graph without trivial compo-
nents. Since, moreover, none of the graphs of Fig.2 occurs in 
H' as an induced subgraph, H' is the line graph of an C-graph. 

Therefore, by Krausz theorem, there is a D-decomposition 
{K'3: je J} of H' into complete subgraphs k'*'. We shall con-
struct a D-decomposition {K*5: j € j} of H such that K'J c k3 

for all j e J. Put 

(5.7) Vj = U [x]R for jej. 
X 6 V ( K , ; } ) 

In connection with this definition of V^ note that [x]R = 
= f"1(x) for any xeV(H') and, moreover, V. i V. for i ^ j 1 i v 
because then K' i K,J. By the definition of f, and proper-
ties of the D-decomposition of H', each vertex from V is in 
the relation R with an element of V(K'"h for some j e J, Hence, 
the family {v^: j e j} of sets V^ is a covering of the vertex 
set V of the graph H. Moreover, 
(5.8) For each j e J, every two different elements x,y of V^ 
are adjacent (or doubly adjaoent) vertices in H. 

In fact, this is clear if either x,y eV(K^) or xRy. So 
consider the remaining case. Then either x or y, say x, 
does not belong to V(K'^). Therefore there exists x'e V(K'^) 
such that xRx' and x Sx'f that is, x is doubly adjacent 
to x'. Now, if j s V I K' 3) then y is adjaoent to x. Indeed, 
this is obvious if y = x'. But if y / x' then y is adjacent 
to x' and Therefore, by (5.4), y is adjacent also 
to x. Otherwise, if y 4 V(K,;i) then there is a vertex 
y'e V ( K , whioh is doubly adjaoent to y. Moreover, either 
y' = x' or y' is adjacent to x' (cf. Fig.4). 

- 457 -



12 A. Marczyk, Z. Skupien 

Therefore, by (5.4), y is adjacent-to x' and consequently 
also to x, which completes the proof of (5.8). 

Mow since H' has no trivial component, eaoh vertex of H' 
lies in exactly two graphs from the D-decomposition. Hence, 
by (5.7), we have 
(5.9) each vertex of H belongs to exactly two sets from the 
family {v.: je j}. 

Moreover, any two different vertices x,y doubly adjacent 
in H, i.e., belonging to the same element [x] of V/R, belong 
simultaneously to exactly two different sets defined by (5.7). 
In fact, f( [x] ) is a vertex of exactly two different graphs 
from the D-decomposition of H' , say f ( [x] ) iTtK^nK' 3), 
i,j e J, i 4 j. Therefore, by (5.7), x,y e V. nV4 as desired. i t) 

Conversely, if two different vertices x,y belong simul-
taneously to two different sets V^ and V., i, j e J, then thoy 
are doubly adjacent in H, i.e., [x] = [yj. Really, for other-
wise f( [x] ) y f( [y] ) and (since {x,y} n V ̂) {f( [x] ),f( [y] )} 
£ V(K'inK'''). Thus there is in H a single edge with end-ver-
tices f( [x]) and f([y] ), which belongs to H' and lies in two 
different graphs K'1, K1*5, a contradiction to the definition 
of the D-deoomposition of H'. 

So we have proved that any two different vertices belong 
simultaneously to two different sets V^, V^ iff they are. 
doubly adjacent in H. 

Furthermore, we can prove that for any two vertices x 
and y which are adjacent but not doubly adjacent in Ht there 
is a single set V^ containing them. Indeed, then, by (5*4), 
f( [x]) and f( [y]) are adjacent vertioes of H' which belong 
therefore to a single graph K(i. Hence, by (5.7), x,y eVj^ 
Since x and y are not doubly adjacent, there is no other 
set Vj containing both x and y. Hence and from (5.8) it 
follows the following proposition* 
(5.10) The number of different sets V^ containing any two 
different vertices x,y of H is equal to the number of edges 
joining x and y in H. 
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Lat g s E(H) - » J tie a function sat isfy ing the conditionss 
(1) g(e) = 3 =i> 7H(e] c v^, 
(2) g associates different values with any multiple edges 

e 1 t e 2 , that i s , (e^ 4 e 2 , ?H(e-|) = ^ ^ 6(02'* 
The existence of the function g i s guaranted by (5.10). 

Define 

K*3 = <Vy g"1( j ) > for j e J„ 

Observe that each K̂  i s a well-defined subgraph of H, which 
in fact i s a complete subgraph of H. All the graphs K̂  are 
mutually edge-disjoint and cover the vertices-and edges of H. 
Furthermore, by (5 .9) , any vertex of H belongs te precisely 
two of graphs K*>. So {K^S Je j} i<s a D-decompoeition of H. 
Hence, by Theorem (4*6), H i s a l ine 7-graph* 

5.2. General l ine graphs 
(5.11) L e m m a . A graph G i s a l ine graph i f f G has 

no adjacent loops and i t s loop-free transform <|)(G) i s a l ine 
i-graph. 

P r o o f . It i s eas i ly seen that ip transforms a 
¡^-decomposition of G onto a D-decomposition of y(G). Con-
versely, from a D-decomposition of iy(G) i t i s possible to get 
a DQ-decomposition of G by replacing some Kg's or pairs Kg, K̂  
with loop-graphs. Thus Lemma follows from Proposition (4.5) 
and Krausz-type Theorems (4.6) and (4*8). _ 

Let U be a oonneoted ?-graph non-isomorphic to Kg. Denote 
by Vh =» V (̂M) and Ê  = B f̂M) the set of hanging vert ices and 
the set of hanging edges of M, respect ively . 

Suppose that J i e a subset of Ê  that i s a matohing of II. 
Given U / Kg, le t Sj(M) denote the graph obtained from M by 
replacing each edge e of J by a single loop joined to the 
non-hanging vertex of e* 

Let W be a subset of vert ices of M that are not incident 
to any loop. Denote by TW(M) the graph, obtained from M by 
attaching a single loop to every vertex in V. 

- 459 -



14 A. Marczyk, Z. Skupieii 

(5*12) L e m m a . Let a graph H have no adjacent loops, 
l e t M 4 Kg and l e t \|>(H) be the loop-f ree transform of H. Then 
M i s isomorphic to an induced subgraph of <|>(H) i f f there e x i s t s 
a subset J of that i s a matching of M and a subset W 
of loop-free v e r t i c e s of Sj(It) such that Tw(Sj(M)) i s isomorphic 
to an induced subgraph of H. 

P r o o f . If M i s an induced subgraph of G = >t>(H) and 
H has no adjacent loops then the set J = J ' n E{M) where 
J ' = {e £ B(G) : i?G(e) n (V(G) - V(H)) i fi} i s a matching of M 
and no element of the set 

W = {x 6 V(M) n V(H) | 3 e e J ' - E(M) : x e ^ f e ) } 

i s incident to a loop of Sj(M). Then obviously Tw(Sj(M)) i s 
an induced subgraph of H. 

Conversely, i f there are appropriate s e t s W and J such 
that N Tw(Sj(M)) i s an induced subgraph of H then ip{Sj(M)) 
i s equal to M, and ip(N), an induced subgraph of G, i s equal 
to M together with hanging edges which replace those loops 
of N which are incident to the v e r t i c e s belonging to W. Thus 
M i s an induced subgraph of G. 

(5.13) T h e o r e m . A 2-graph H i s a l ine graph i f f 
H has no adjacent loops and none of 29 graphs of P ig s .2 ,3 ,5 
and 6 i s isomorphic to an induced subgraph of H. 

P r o o f . Denote by A and B the set of 12 graphs of 
F igs .2 and 3 and the se t of 29 graphs of F ig s .2 ,3 ,5 and 6, 
r e spec t i ve ly . 

Suf f ic iency . Assume tha t H i s a graph without adjacent 
loops and no element of B i s isomorphic to an induced subgraph 
of H. Let M e A. Put 

PM = {N s N = Tw(Sj(M)), where JcB^iM), J i s a matching 
of li, and W i s a se t of loop- f ree v e r t i c e s of Sj(M)}. 

Let C = U PM. 
MeA M 

I t follows from the Lemma (5.12) that the following statement 
i s t r u e : 
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Fig. 5 

Pig. 6 
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None of the graphs belonging to C is an induced subgraph 
of H iff no graph from A occurs as induced subgraph of ip(H). 

So if H has no induced subgraph isomorphic to a graph 
from C, then, by the Lemma {5»11} and Theorem (5.6), H is 
a line graph. 

Observe that the family B is minimal, that is, no element 
of B is isomorphic to an induced subgraph of another member 
of B. Moreover, by Proposition (5*2)s any induced subgraph 
of a line graph is also a line graph and, as it will be clear 
later, B is contained in C. 

Therefore, in order to end the proof it suffioes to show 
that each member of C has an induced subgraph isomorphic to 
a certain graph belonging to B, 

Observe first that the only graphs in A which have hanging 
edges are G^, G^, G^, and P ^ Let us list the images of those 
last 4 graphs under SJ9 for all J permissible: 

S{e}(<V " N3* S{e}<V = V S{e,f}^G4) " 

S(e}iG5) = N13, S{<} 

(see the Pigs.2, 3 and 5; e,f stand for non-adjacent hanging 
edges in corresponding graphs). 

Let us apply the transformations T-̂  to all graphs from the 
family A = A u {n^ »N^.HgtNg.N^}. First W is taken as a subset 
of "white" vertices depioted in Pigs.2, 3 anc 5 as small 
circles. We get the following list: 

N2 " T{x}<P1>. B 4 - T { x}< G1»« N5 - T{x,y}<G1>' 

H6 " T{x,y,z}<G1>> N7 = T{x}(G3)' B10 = T {x} < V » 

N 11 " T{x}iG4 }» N12 ' * { x f , } < t y . *14 = T {x}« a 5 l t ^ W » ' 

B 1 = T { x } < V ' ^ " ' { x } ^ B3.= T{x,y}(K3)-
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For other admissible non-empty subsets W of "white" v.ertices 
we obtain graphs which have Kg ( for Q » Oj or G « N9 
or N10 ( for G » or G = GQ) and Ng or » 1 3 ( for G - Gg) as 
induced subgraphs. 

Let G e A. It is easy to verify that by adding new loops 
to some of loop-free vertices of G that include one which is 
drawn as a blaok point in Pigs.2, 3 and 5, we get a graph 
which has an induced subgraph isomorphic to N^, N^, B ^ Bg 

or B^. 

5.3. Augmented line graphs 
Let M be a 2-graph without adjaoent loops. Denote by cp(M) 

a subgraph M' obtained from M by deleting exactly one edge 
from each pair of parallel edges whose both end-vertices are 
incident to loops. 

Let C be a D -decomposition of a 2-graph M' and let !R 
be a complete graph belonging to C . Let VQ(iR), ¡L̂  , and 
be the set of a l l vertices of !R, incident to loops i s l ( ' , 
the corresponding set of loops of M', and the corresponding 
set of loop-graphs, respectively. 

Let us add a duplicate e ' of every edge of ft whose both 
end-vertioes belong to V0(!R) (this operation wi l l be denoted 
cp"1). I f V0(ft) 4 0 then VQ(!R) together with the union of the 
set of new edges e' and the subset of loops of M' form 
a complete 1-graph, (fyj, which is disjoint from the members 
of e - ( { f t juS^ ) . It is clear that the family o f . a l l complete 
graphs iR, in C together with the graphs Q^ is a D00-deoompo-
sition of (f>~1(M'). 

Conversely, one can easily oonstruct a D0-decomposition 
of <f>(M) from a given D00-decomposition of M. Therefore, due to 
Theorems (4.8) and ( 4 .9 ) , the following Lemma holds true. 

(5.14) L e m m a . A 2-graph M without adjacent loops 
is an augmented l ine graph i f f <p(M) i s a l ine graph and 
M = (<p (M)). a 

(5.15) T h e o r e m . A 2-graph H is an augmented l ine 
graph i f f H has no adjacent loops and none graph of P igs .2 ,3 , 5 
and 7 i s isomorphic to an induced subgraph of H. 
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P r o o f . Sufficiency. Suppose that H has no adjacent 
loops and none of graphs in F igs .2 , 3» 5 and 7 i s isomorphio 
to an induced subgraph of H. 

Pig. 7 

Since the graph Â  in Fig.7 i s not isomorphic to any induoed 
subgraph of H then an; two adjacent vert ices of H both incident 
to loops are doubly adjaoent. Moreover, i f M i s an induced 
subgraph of H then <p(M) i s an induoed subgraph of cp(H). The 
converse statement i s also true, i . e . , i f N i s an induced 
subgraph of <p(H) then M - <f"1(N) i s an induoed subgraph of H. 

Now i t i s easily seen that i f H has no induced subgraph 
isomorphic to any graph of F igs .2 , 3» 5 or to the graphs Ag 

or k j then none of the graphs of F igs .2 , 3» 5, 6 i s isomorphic 
to an induoed subgraph of cp(H), and, by Lemma (5.14) and Theo-
rem (5.13)» H i s an augmented l ine graph, g 

The natural reason for introducing the conoept of augmented 
l ine graphs i s that they can be underlying graphs ( i . e . , multi-
graphs) of l ine digraphs of general digraphs. 
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