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NOUVELLE DÉMONSTRATION D'UNE PROPRIÉTÉ ASYMPTOTIQUE 
DES SOLUTIONS D'UN PROBLÈME DE FOURIER 

1. Des résultats (d'un assez grand degré de généralité) 
concernant les propriétés limites pour t —» +qo des solutions 
du premier problème de Fouyier dans D * < O4+00), où D cRQ, 
sont bien connus (voir I. 4ojezyk-Kn$likiewicz [3] où une 
bibliographie est donnée) pour des résultats récents voir -
par exemple - [1] ou [4] ). 

Cett,e note est consacrée à une nouvelle démonstration d'un 
c«£ particulier du théorème 4 de [3]• SIle est beaucoup plus 
élémentaire que la démonstration primitive. Ce n'est que pour 
abréger les calculs que nous ne considérons ci-dessous que 
X» cas de deux variables spaciales et D égal à un reotangle 
(voir aussi le n° 4 ci-dessous). La méthode employée est 
apparentée à la méthode de Qellman [2] (mais dans ce dernier 
travail on emploie les séries complexes de Pourier et on 
ne s'occupe que du cas où la solution considérée tend vers 
zéro). 

2. Posons K s=<0|l> x <0|k> où l,k e (Oj + 00). Soient 
5 fonctions» g. 1 K —»fi, ¿£ 1 <0|1>»< 0 | + o o ) —» R, 
b^ : <Ojk> *<0j + oo) —*• R, i = 0,1, qui vérifient les condi-
tions suivantes de compatibilité 

ào(0,t) = V 0» 1^' âQ(l,t) = b-CO.t) 
(2.1) _ _ _ pour t e < Oj + oo) 

ai(0,t) = b0(k,t), a^(l,t) = b^(k,t) 
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2 K, Tatarkiewioz 

et 

g(x,0) = ân(x,0), g(x,k) s â,,(x,0) x €<0;1>, 
(2.2) _ pour 

S(0,y) = b0(y,0), g(l,y) = b,,(y,0) y c <Ojk>. 

Soit une fonction u = u(x,y,t) définie et continue dans 
P t= K*<Oj+oo), de classe 0 dans l'intérieur I'P = 
= (0;l)x(0;k)*(0}oo) de P, et vérifiant dans i'P l'équation 
parabolique 

(2.3) 
3z 3y 9 t 

pour (x,y) e K la condition initiale 

(2.4) u(x,y,0) = g(x,y) 

et pour tous les t e <0;+co) les conditions aux limites 

u(x,0,t) = in(x,t), u(x,k,t) a ïL(x,t) * e <0|1>, 
(>2.5) _ . J Pour 

u(0,y,t) = b0(y,t), u(l,y,t) = ^(y.t) y c < Ojk>. 

Il est connu que si les fonctions g,a£,b£, i = 0,1 , sont 
continues et satisfont aux conditions (2.1) et (2.2), alors 
le premier problème de Fourier (2.3)-(2.5) est bien posé. 

Soient maintenant 4 fonctions a^ « <0;1> R, 
b^ s <0|k> -»R, i = 0,1, telles que 

a Q(0)=b o(0), « { . ( D î U O ) , (2.6) 0 0 0 1 
a1(0) = b0(k), & 1(1) = b^k). 

Soit une fonction w = w(x,y) définie et continue dans K, ? / / • de classe C dans I'K, qui vérifie dans I K l'équation 
elliptique 

( 2.7) ! % - + ! % - = o 
dx* 3y 
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e t l e s condit ions aux l imi te s 

w(x,0) = a n ( x ) , w(x,k) = a^(x) x e <0;1>, 
(2 .8) u 1 pour 

w(0,y) = b 0 ( y ) , w(l ,y) = ^ ( y ) y e <0|k>. 

I l e s t connu que s i l e s fonc t ions a^jb^, i = 0 ,1 , sont 
continues e t v é r i f i e n t l e s condit ions ( 2 . 6 ) , a lo r s le problème 
de Di r i ch le t ( 2 . 7 ) , (2.8) e s t bien posé. 

T h é o r è m e . Si l e s fonc t ions i = 0 ,1 , sont 
cont inues , v é r i f i e n t l e s condit ions ( 2 . 1 ) , (2 .2) e t l e s quatre 
l imi te s uniformes 

(2 .9) 

lim unif a - ( x , t ) = a - ( x ) , 
t-*+ooxe<0|l> 

i = 0,1 

lim unif b - ( y , t ) = b-(y) 
+oo ye<0}k> 1 1 

e x i s t e n t , a lors l e premier problème de Fourier (2 .3 ) - (2 .5 ) 
e s t bien posé e t sa so lu t ion (unique) u s u ( x , y , t ) possède l a 
l imi t e uniforme 

(2.10) lim unif u ( x , y , t ) = w(x,y), 
t-»+oo (x,y)eK 

où w = w(x,y) e s t l a so lu t ion (unique) du problème bien posé 
de Di r i ch le t (2 .7) e t ( 2 . 8 ) . 

D é m o n s t r a t i o n . Vu ( 2 . 9 ) , l e s fonc t ions 
V = é tant continues, sont bornées. Donc l e s con-

d i t ions (2 .1) e t (2.2) é tan t v é r i f i é e s , l e problème (2 .3 ) - (2 .5 ) 
es t bien posé. Les fonct ion a^, b^, i = 0 ,1 , é tan t cont inues, 
de même de (2 .9) i l s ' e n s u i t que les fonc t ions a^, b^, i = 0 ,1 , 
le sont aussi e t v é r i f i e n t l e s condit ions ( 2 . 6 ) . Donc le 
problème (2.7) e t (2.8) e s t bien posé. 

I l ne nous r e s t e qu 'à démontrer l ' é g a l i t é (2 .10) . 
Soit un e> 0 f i x e . I l s ' e n s u i t de (2.9) q u ' i l ex is te un 

t £ > 0 t e l que pour t ? t£ e t pour i = 0,1 on a 
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I a - ( x , t ) - a-(x)| i £ x £ < 0} i >, 
(3.1) _ 1 pour 

i ^ i y . t ) - b i ( y )| <ç e y e < 0;k>. 

Soit w = w..(x,y) la fonction définie et continue dan:~ K, 
de classe G dans l 'K , vér i f iant (2.? ) dans cet ensemble l 'K 
et t e l l e que 

E 

(5.2) 

w£(x,0) = u (x ,0 , t e ) = aQ (x?t ) =: aQ (x) 
pour x e < 0;1>, 

w£(x,k) = u(x ,k, t £ ) = â  ( x , t £ ) =: a5j(x) 

we(O fy) = u(0,y , t £ ) = b Q ( y , t £ ) =: b* (y ) pour y e <0;k>. 
w £ ( l , y ) = u ( l , y , t £ ) = ^ ( y . t g ) =: b^(y) 

Les fonctions a|, b|, i = 0,1, étant continues et - vu 
(2.1) - te l les que 

a£(0) = b£(0), a£0(l) = bjf(0), a^(0) = b^(k), a^ ( l ) = b* (k) , 

le problème (2.7) » (3*2) est bien posé, donc une t e l l e foflc-
tion w = w£ (x,y) existe et e l le est déterminée univoquement. 
En plus e l l e dépend d'une façon continue de ses conditions 
aux limites et e l l e est de classe C°° dans l 'K . 

Posons g £ ( x ,y ) := u (x ,y , t £ ) - w£ (x ,y ) . La fonction ge 

est donc définie et continue dans K, de classe 0°° dans l 'K 
et s'annule sur la frontière 3'K de K. Malheuresement - sous 

• • 5 nos suppositions - e l l e peut ne pas être de classe Cr dans l e 
rectangle K entier. Cependant i l existe alors une fonction 
C^a g£ : K — » R â t e l l e que 

g (x,0) = 0 = g (x ,k) x e < 0}1>, 
pour 

g £ (0 ,y ) = 0 = g £ ( l , y ) y e < 0;k> 

et 

(3.3) |g£(x,y) - g e (x ,y )| <c e pour (x ,y ) e K. 

Posons P ( t ) := K * < t } + oo) (on a évidemment P(0) = P ) . 
0 2 Considérons la fonction C 9 vg t P ( t £ ) — R de classe C dans 

l ' P ( t £ ) qui v é r i f i e l 'équation (2.3) dans l ' P ( t e ) , la condition 
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v e ( x , y , t £ ) = g £ ( x , y ) pour (x ,y ) e K 

et pour tous les t e <"c£; + oo) les conditions 

v ( x ,0 , t ) = 0 = v, ( x ,k , t ) x e < 0 , l > , 
pour 

v £ ( 0 , y , t ) = 0 = v E ( l , y , t ) y e < 0 , k > . 

Les conditions de compatibilité étant i c i vér i f i ées , une 
t e l l e fonction v£ existe, est déterminée univoquement et - en 
plus - est de classe C°° dans I P ( t F ) . 

La fonction g£ est de classe C . I l s'ensuit (voir - par 
exemple - Tonelli [5] , p. 4-68) que pour tous les (x ,y ) e K 
nous avons 

00 
(3*4-) g £ ( x ,y ) = —j— =iu -g— , ce„, sin ^ s i n I Î M i . 

où pour = 1 ,2 , . . . nous avons posé 

sin ^ sin ^ dy dx. 
0 0 

T. 
Nous avons suppose que gg e C . On peut alors démontrer 

facilement que la série double 

(3.5) h.è := 2 |c 
00 

£ V l„e I 
. ¿H 

converge, donc la série double (3.4-) converge absolument et 
uniformément. I l s'ensuit de (3«5) que la série double 

v f ( x , y , t ) := £ sin sin 
vyj=1 

x exp \ -ot2 v2 + d , m2 + d 
l 2 k2 

( t - t F ) 
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6 K. Tatarkiewicz 

converge uniformément (et absolutment) dans l'ensemble P(t£) 
pour chaque 0 (et même pour chaque deR). Donc la fonction 
v^ est pour chaque d £ 0 continue dans P(tP). 
C /I 

Évidemment les fonctions v£ vérifient la condition initiale 

(3.6) v£(x,y,t£) = g£(x,y) pour (x,y)e K 

et pour tous les t e < t ;+oo) les conditions aux limites 

Vg(x,0,t) s 0 s Vg(x,k,t) x e <0;1>, 
(3.7) A * pour 

VgCO.y.t) = 0 = vf(l,y,t) y e <0;k>. 

Il est bien connu que la fonction v £ présente dans P(t£) 
la solution du problème de Fourier (2.5)» (3.6), (3.7)» donc -
ce problème étant bien posé - nous avons v£ = v £. Posons 

q(t) î= exp 

Admettons 

-f 2 

"te + ir2(12 + t2 )
 l n r ' î = m a x [ V ^ J -

fO C 

Nous avons q(tg) = e s h . La fonction q = q(t) décroît 
d'une façon monotone, donc pour t ^ t e > 0 nous avons 

(3.8) |v£(x,y,t)| = |v£(x,y,t)J = |v^(x,y,t)| .q(t) * 

$heq(t) ̂ h eq(t £) = e, 

Enfin posons 

(3.9) r(x,y,t;e) ;= u(x,y,t) - w(x,y) - v£(x,y,t). 

La fonction w = w(x,y) : = w(x,y,t) vérifiant (2.7) vérifie 
(2.3) aussi, donc les fonctions 

u = u(x,y,t), w = w(x,y) = w(x,y,t), v = v£(x,y,t) 
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Démonstration d'une propriété asyraptotique 7 

e t , l 'équation. (2 .3 ) étant l inéa i re et homogène,la fonction 
r = r ( x , y , t , E ) v é r i f i e aussi cette équation ( 2 . 3 ) . Cette der-
nière fonct ion v é r i f i e aussi pour tous les ( x , y ) eK la condi-
t ion ( i n i t i a l e ) 

r ( x , y , t e j e ) = u ( x , y , t £ ) - w(x,y) - v £ ( x , y , t e ) = 

= jw£ (x ,y ) - w(x,y ) ] + [ g £ ( x , y ) - g £ ( x , y ) ] . 

De (3« ' l ) pour t = t£ , ( 3 . 2 ) , (2 .3 ) et du théorème bien 
connu sur les extrema des solutions des équations e l l ip t iques 
nous aurons jw e (x ,y ) - w(x,y)| $e pour ( x , y ) e K. Vu (3.3) , i l 
3 'ensuit 

| r ( x , y , t £ } e ) | $ 2e pour ( x , y ) e K. 

Considérons la condition aux limites 

r ( x , 0 , t j e ) = u (x ,0 , t ) - w(x,0) - v £ ( x ,0 , t ) = I 0 ( x , t ) - aQ (x ) ; 

on a donc 

|r(x,0,tî e)| pour x e < 0 ; l > et t 0. 

De même, nous aurons 

|r(x,k,tje)| $ £ pour x e < 0 } l > et 

|r(0,y,tjE)| ̂  e , |r ( l ,y,t ,e)| $ e pour y e < 0;k> et t j t £ . 

Vu le théorème sur les extrema des solutions des équations 
paraboliques, i l s'ensuit 

* |r (x ,y,t }e )| 
(x ,y , t ) eP ( t £ ) 

= max sup |r(x,y,t } e)| , sup |r(x,y,t}e)| 
(x,y)eK te<tE|+oo) ' 

(x,y)e3'K 

« 2e. 
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8 K. îatarkiewicz 

Vu (3.8) et (3*9)» il s'ensuit que pour t2t £? 0 et pour 
(x,y) e K on a 

|u(x,y,t) - w(x,y)| s |r(x,y,t|e)| + |v£(x,y,t)|$ 3e. 

Donc pour chaque e > 0 il existe un t(e) : = 0 t©1 que 
si t ï t(e) et (x,y) eK, alors |u(x,y,t) - w(x,y)|*: e, et la 
formule (2.10) est vraie, ce qui achève notre démonstration. 

4. On peut facilement élargir le champs d'application de 
notre méthode de démonstration. \ la place du rectangle K on 
peut introduire (à l'aide des transformations conformes) un 
ensemble homéomorphe à K. On peut l'appliquer non seulement 
a l'équation (2.3) à deux variables spaciales, mais aussi 
aux équations Au = û . à n j 1 quelconque de variables spaciales 
(il faut alors définir la fonction gc de manière qu'elle sôit n+1 
de classe C ) et môme aux équations qui se laissent trans-
former dans l'équation Au = u^. 
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