Vol. XVIII

No 1

1985

Andrzei Schinzel

SYSTEMS OF EXPONENTIAL CONGRUENCES

Dedicated to the memory of Professor Roman Sikorski

Some years ago I have proved the following theorem ([1], Theorem 2). Let K be an algebraic number field, α_1,\ldots,α_k , β non-zero elements of K. If for almost all prime ideals p of K the congruence

$$\prod_{j=1}^{k} \alpha_{j}^{x_{j}} \equiv \beta \pmod{z}$$

is soluble in integers \mathbf{x}_{j} then the equation

$$\int_{j=1}^{k} \alpha_{j}^{x_{j}} = \beta$$

is soluble in integers. I have shown by an example that this theorem does not extend to systems of congruences of the form

even for h = 2, k = 3.

Recently L. Somer [4] has considered systems of the form (1) for k = 1. The study of his work has suggested to me that the connection between the local and the global solu-

bility of (1) may hold if for some $i \le h$ the numbers α_{ij} are multiplicatively independent. The aim of this paper is to prove this assertion in the form of the following theorem.

Theorem 1. Let K be an algebraic number field, α_{ij} , β_i (i = 1,2,...,h; j = 1,2,...,k) non-zero elements of K and assume that for some $i \le h$

If for almost all prime ideals \nearrow of K in the sense of the Dirichlet density the system (1) is soluble in integers x_j then the system of equations

is soluble in integers.

The following corollary is almost immediate.

C o r o l l a r y . If the system of congruences

$$\alpha_{\mathbf{i}}^{\mathbf{x}} \equiv \beta_{\mathbf{i}} \pmod{\mathbf{j}}$$
 (i = 1,2,...,h)

is soluble in integers x for almost all prime ideals p of K then the system of equations

$$\alpha_{i}^{x} = \beta_{i}$$
 (i = 1,2,...,h)

is soluble in integers.

Somer [4] has proved the above corollary under the assumption that either none of the α_1 's is a root of unity or all the α_1 's are roots of unity.

The next theorem shows that Theorem 1 cannot be extended further.

Theorem 2. For every $k \ge 2$ there exist non-zero rational integers α_{ij} , β_i (i = 1,2; j = 1,2,...,k) such that $\alpha_{12},\ldots,\alpha_{1k}$ are multiplicatively independent, the system (1)

with h = 2 is soluble for all rational primes p, but the system (2) is unsoluble in integers.

In the sequel \S_q denotes a primitive q th root of unity. For a rational matrix M den M denotes the least common denominator of the elements of M and M^T the transpose of M.

The proofs are based on eight lemmata.

Lemma 1. For every rational square matrix A there exists a non-singular matrix U whose elements are integers in the splitting field of the characteristic polynomial of A such that

$$U^{-1}AU = \begin{bmatrix} A_1 & & & \\ & A_2 & & \\ & & & A_n \end{bmatrix}$$

with A_{γ} a square matrix of degree ρ_{γ} :

(4)
$$A_{v} = \begin{bmatrix} \lambda_{v} & 1 & & & \\ & \lambda_{v} & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_{v} & 1 \\ & & & \lambda_{v} \end{bmatrix} \quad (v=1,2,\ldots,n)$$

where the empty places (not the dots) are zeros.

Proof (see [5], § 88). The elements of U can be made algebraic integers, since the left hand side of (3) is invariant with respect to the multiplication of U by a number.

Lemma 2. Let $L_0, L_j, M_j \in \mathbb{Z}[t_1, \dots, t_r]$ (j=1,2,...,k) be homogeneous linear forms and M_j (j=1,2,...,k) linearly independent. If the system of congruences

(5₁)
$$\sum_{j=1}^{k} x_j L_j(t_1, \dots, t_r) \equiv L_o(t_1, \dots, t_r) \pmod{m}$$

$$(5_2) \qquad \sum_{j=1}^{k} x_j M_j(t_1, \dots, t_r) \equiv O(\text{mod m})$$

independent we can assume also that the matrix

is soluble in x_j for all moduli m and all integer vectors $\begin{bmatrix} t_1, \dots, t_t \end{bmatrix}$, then $L_0 = 0$.

Proof. Let
$$L_j = \sum_{s=1}^{r} l_{js}t_s$$
 ($0 \le j \le k$), $M_j = \sum_{s=1}^{r} m_{js}t_s$ ($1 \le j \le k$). Taking if necessary $l_{js} = m_{js} = 0$ for $s > k$ we can assume that $r > k$. Since M_j 's are linearly

$$M = [m_{js}]_{j,s \leq k}$$

is non-singular. Put

$$M^* = \begin{bmatrix} m_{js} \end{bmatrix}_{\substack{j \leq k \\ k < s \leq r}},$$

$$L = \begin{bmatrix} l_{js} \end{bmatrix}_{1 \leq j, s \leq k}, \quad L^* = \begin{bmatrix} l_{js} \end{bmatrix}_{\substack{1 \leq j \leq k \\ k < s \leq r}},$$

$$\ell_0 = \begin{bmatrix} l_{01}, \dots, l_{0k} \end{bmatrix}, \quad \ell_0^* = \begin{bmatrix} l_{0k+1}, \dots, l_{0r} \end{bmatrix}.$$

Let K_0 be the splitting field of the characteristic polynomial of LM⁻¹. In virtue of Lemma 1 there exists a matrix U whose elements are integers of K_0 such that

(6)
$$U^{-1}LM^{-1}U = \begin{bmatrix} A_1 & & & & \\ & A_2 & & & \\ & & & \ddots & \\ & & & & A_n \end{bmatrix}$$

where A_{ν} of degree ρ_{ν} is given by (3) ($\nu = 1, 2, ..., n$).

We proceed to show that $\ell_0 = 0$ and $\ell_0^* = 0$. Let us write

(7)
$$\ell_0 \mathbf{M}^{-1} \mathbf{U} = [\mathbf{1}_1, \dots, \mathbf{1}_k].$$

Suppose that $\ell_0 \neq 0$ hence $\ell_0 M^{-1}U \neq 0$ and let the least $x \leq k$ for which $l_p \neq 0$ satisfy

(8)
$$\mathfrak{S}_{v} = \sum_{\mu \leq v} \varrho_{\mu} < x \leq \sum_{\mu \leq v} \varrho_{\mu}.$$

Let p be a prime which factorizes in K_0 into distinct prime ideals of degree one which divide neither den M^{-1} nor the numerators of l_x and of $\lambda_{\mathcal{U}}$ and $l_{\mathbf{k}}$ for $\mathbf{k} > x$.

Take the modulus $m = p^{q_v}$ and let $t := [t_1, ..., t_k]^T \in Z^k$ satisfy the congruence

where γ is a prime ideal factor of p in K_0 . Since γ is unramified of degree one and does not divide den M^{-1} the congruence is soluble in rational integers. Take further

(10)
$$t^* := \left[\mathbf{t}_{\mathbf{k}+1}, \dots, \mathbf{t}_{\mathbf{r}}\right]^{\mathbf{T}} = 0.$$

Setting $y = [y_1, \dots, y_k] = [x_1, \dots, x_k]U$ we can rewrite the system (5) in the form

$$y(U^{-1}LM^{-1}U)(U^{-1}Mt) \equiv L_0M^{-1}U(U^{-1}Mt) \pmod{p^{9}}$$

$$y(U^{-1}Mt) \equiv O(\text{mod } p^{q_y}),$$

hence by (6) - (10)

$$(11_{1}) \qquad \sum_{j=6_{\nu}+1}^{6_{\nu}-1} y_{j} \left(\lambda_{\nu} p^{j-6_{\nu}-1} + p^{j-6_{\nu}}\right) + y_{6_{\nu}+1} \lambda_{\nu} p^{9_{\nu}-1} \equiv$$

$$\sum_{j=\frac{\sigma_{\nu}+1}{2}}^{\frac{\sigma_{\nu}+1}{2}} 1_{j} p^{j-\frac{\sigma_{\nu}-1}{2}} \pmod{\mathcal{F}^{\rho_{\nu}}},$$

(11₂)
$$\sum_{j=6y+1}^{6y+1} y_j p^{j-6y-1} \equiv 0 \pmod{3^{9y}}.$$

The left hand side of (11₁) is congruent mod $\mathcal{F}^{\rho_{\nu}}$ to the left hand side of (11₂) multiplied by $(\lambda_{\nu}+p)$. Since $\lambda_{\nu}^{-1} \neq O(\text{mod }\mathcal{F})$ it follows that

$$\sum_{j=\overline{C_{y}}+1}^{\overline{C_{y}}+1} 1_{j} p^{j-\overline{C_{y}}-1} \equiv O(\text{mod } z^{\overline{C_{y}}}),$$

hence $l_k \equiv 0 \pmod{x}$ contrary to the choice of x.

Therefore $l_0 = 0$ and it remains to prove that $l_0^* = 0$.

Assume without loss of generality that

Choose a rational integer $\lambda \neq \lambda_{\mathcal{V}}$ ($\mathcal{V}=1,2,\ldots,n$) and take

(12)
$$m = 2 |\mathbf{1}_{or}| \operatorname{den}(\mathbf{L} - \lambda \mathbf{M})^{-1} > 0,$$
$$t^* = [0, \dots, 0, \operatorname{den}(\mathbf{L} - \lambda \mathbf{M})^{-1}]^{\mathrm{T}}.$$

With this choice of t^* we can find a $t \in Z^k$ such that

$$(L-\lambda M)t = \lambda M^*t^* - L^*t^*$$

and then the system (5) gives for $x = [x_1, ..., x_k]$

$$x \lambda (Mt + M^*t^*) = 1_{or} \operatorname{den}(L-\lambda M)^{-1} (\operatorname{mod} m),$$

$$x (Mt + M^*t^*) = 0 (\operatorname{mod} m),$$

hence

$$1_{or} \operatorname{den}(L-\lambda M)^{-1} \equiv O(\operatorname{mod} M).$$

The obtained contradiction with (12) completes the proof.

For every rational square matrix A there 3. exists a non-singular integral matrix U such that (3) holds with Av a square matrix of degree e, (in general not the same as in Lemma 2),

(13)
$$A_{\nu} = \begin{bmatrix} -\alpha_{\nu_1} & 1 & & \\ -\alpha_{\nu_2} & 1 & & \\ \vdots & & \ddots & \\ -\alpha^{\nu} \rho_{\nu} & & 1 \end{bmatrix}$$
 where $\alpha_{\nu_j} \in \mathbb{Q}$ and $x^{\rho_{\nu}} + \sum_{j=1}^{\rho_{\nu}} \alpha_{\nu_j} x^{\rho_{\nu_j} - j}$ is a power of a poly-

nomial irreducible over Q.

Proof (see [5], § 88). The form of the matrix A has been changed by applying central symmetry (matrices symmetric to each other with respect to the common centre are similar). U can be made integral via multiplication by a suitable integer.

Lemma 4. Let $L_0, L_j, M_j \in \mathbb{Z}\left[t_1, \ldots, t_{\mathbf{r}}\right]$ (j=1,2,...,k) be homogeneous linear forms, M_j 's linearly independent. Let $a_0, a_j, b_j \in Z$ (j=1,2,...,k) and w be a fixed positive integer. If for all moduli $m \equiv 0 \pmod{w}$ and for all integer vectors $[t_1, \dots, t_r]$ the system of congruences

$$(14_1) \sum_{j=1}^{k} x_j (L_j(t_1, ..., t_r) + a_j \frac{m}{w}) \equiv L_0(t_1, ..., t_r) + a_0 \frac{m}{w} \pmod{m},$$

$$(14_2) \qquad \sum_{j=1}^{k} x_j(N_j(t_1,\ldots,t_r) + b_j \frac{m}{w}) \equiv O(mod m)$$

is soluble in integers x_j then $L_0=0$ and $a_0\equiv 0 \pmod w$. Proof. When m runs through all positive integers divisible by w, m/w runs through all positive integers, hence applying Lemma 2 we infer that $L_0=0$. In order to show $a_0\equiv 0 \mod w$ we adopt the meaning of L, L*, M, M* from the proof of Lemma 2.

In virtue of Lemma 3 there exists a non-singular integral matrix U such that

(15)
$$U^{-1}LM^{-1}U = \begin{bmatrix} A_1 & & & & \\ & A_2 & & & \\ & & & A_n \end{bmatrix},$$

where A_{ν} of degree φ_{ν} is given by (13). We can assume without loss of generality that $\alpha_{\nu \varrho_{\nu}} = 0$, $\varrho_{1} \geqslant \varrho_{\nu}$ for $\nu \leqslant n_{0}$ and

 $\alpha_{\nu}\rho_{\nu} \neq 0$ for $\nu > n_0$ (n_0 may be 0). It follows from the condition on $x^{\rho\nu} + \sum_{j=1}^{\rho\nu} \alpha_{\nu j} x^{\rho_{\nu} - j}$ that

(16)
$$A_{y} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix} \quad (1 \le v \le n_{0}),$$

where the empty places are zeros as before. Now put

$$(17) U^{-1} \begin{bmatrix} a_1 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}, U^{-1} \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix},$$

where for v = 1, 2, ..., n

(18)
$$a_{v} = \begin{bmatrix} \mathbf{a}_{v1} \\ \vdots \\ \mathbf{a}_{vQ_{v}} \end{bmatrix}, \quad b_{v} = \begin{bmatrix} \mathbf{b}_{v1} \\ \vdots \\ \mathbf{b}_{vQ_{v}} \end{bmatrix}.$$

Take

(19)
$$m_0 = w \text{ den } M^{-1} \text{ den } U^{-1} \text{ l.c.m. den } A_y^{-1}$$

and put

$$m = m_0^{\gamma_1 + 1},$$

$$(21) t = \begin{bmatrix} t \\ 1 \\ \vdots \\ t_k \end{bmatrix} = M^{-1}U \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}, t^* = \begin{bmatrix} t_{k+1} \\ \vdots \\ t_r \end{bmatrix} = 0,$$

where

(22)
$$a_{y} = A^{-1} a_{y} \frac{p_{1}^{\gamma+1}}{m} (n_{0} < y \le n)$$

and for $v \le n_0$ u_v is a vector with ρ_v components and the j-th coordinate

$$u_{yj} = \frac{1}{w} \sum_{i=1}^{q_y} m_0^{q_1-i+j} (a_{yi} - m_0 b_{yi}) \quad (1 \le j \le q_y).$$

Since by (19) $u_y = 0$ mod den M^{-1} ($1 \le v \le n$) the vector t defined by (21) is integral. Moreover by (16), (18) and above we have

(23)
$$A_{y} u_{y} + a_{y} = m_{0} \left(u_{y} + b_{y} = m_{0} \left(u_{y} + b_{y} = m_{0} \right) \right)$$
 $(1 \le y \le n_{0}).$

Setting

$$[x_1,\ldots,x_k]U = [x_1,\ldots,x_n],$$

where x_y is a vector with φ_y components and using (15), (17), (20) and (21) we can rewrite the system (14) in the form

$$\sum_{v=1}^{n} x_{v} \left(A_{v} u_{v} + a_{v} \frac{m_{o}^{\rho_{1}+1}}{w} \right) \equiv a_{o} \frac{m_{o}^{\rho_{1}+1}}{w} \left(\text{mod } m_{o}^{\rho_{1}+1} \right),$$

$$\sum_{v=1}^{n} x_{v} \left(u_{v} + b_{v} \frac{m_{o}^{\rho_{1}+1}}{w} \right) \equiv 0 \left(\text{mod } m_{o}^{\rho_{1}+1} \right).$$

In virtue of (22) this gives

(24₁)
$$\sum_{\nu=1}^{n_0} x_{\nu} \left(A_{\nu} u_{\nu} + a_{\nu} \frac{m_{o}^{\rho_1+1}}{w} \right) \equiv a_{o} \frac{m_{o}^{\rho_1+1}}{w} \left(\text{mod } m_{o}^{\rho_1+1} \right),$$
(24₂)
$$\sum_{\nu=1}^{n_0} x_{\nu} \left(u_{\nu} + b_{\nu} \frac{m_{o}^{\rho_1+1}}{w} \right) \equiv$$

$$\equiv \sum_{\nu=n_0+1}^{n_0} x_{\nu} \left(A_{\nu}^{-1} a_{\nu} - b_{\nu} \right) \frac{m_{o}^{\rho_1+1}}{w} \left(\text{mod } m_{o}^{\rho_1+1} \right).$$

In virtue of (23) the left hand side of (24₁) equals the left hand side of (24₂) multiplied by m_0 . Hence

$$a_{o} = \frac{m_{o}^{\varphi_{1}+1}}{w} = m_{o}^{\varphi_{1}+1} \sum_{v=n_{o}+1}^{n} x_{v} \left(A_{v}^{-1} a_{v} - b_{v} \right) \frac{m_{o}}{w} \left(\text{mod } m_{o}^{\varphi_{1}+1} \right).$$

Since by (19) the vectors $\left(\mathbf{A}_{\nu}^{-1} a_{\nu} - b_{\nu}\right) \frac{\mathbf{m}_{0}}{\mathbf{w}}$ are integral we get

$$a_0 = \frac{m_0^{Q_1+1}}{w} \equiv O \pmod{m_0^{Q_1+1}}, a_0 \equiv O \pmod{w},$$

which completes the proof.

Lemma 5. For every integral matrix A with all the k rows linearly independent there exist unimodular integral matrices B and C such that

(25)
$$B^{-1}AC = \begin{bmatrix} e_1 & & & & & \\ & e_2 & & & & \\ & & & e_k \end{bmatrix}$$

where the elements outside the principal diagonal are zeros, $e_k \neq 0$ and $e_i \mid e_{i+1}$ (1 \leq i \leq k).

Proof. Without the condition $e_k \neq 0$ the lemma is proved in [5], §85. The condition $e_k \neq 0$ follows from the linear independence of the rows of A.

Lemma 6. Let $L_{ij} \in Z[t_1, \dots, t_r]$ $(1 \le i \le h, 0 \le j \le k)$ be homogeneous linear forms and suppose L_{1j} $(1 \le j \le k)$ linearly independent. Let $l_{ij} \in Z$ $(1 \le i \le h, 0 \le j \le k)$. If the system of congruences

(26)
$$\sum_{j=1}^{k} x_{j}(L_{ij}(t_{1},...,t_{r}) + L_{ij} \frac{m}{w}) =$$

$$\equiv L_{io}(t_1, \dots, t_r) + l_{io} \frac{m}{w} \pmod{m} \pmod{m} \pmod{1 \leq i \leq h}$$

is soluble for all moduli $m\equiv O(mod\ w)$ and for all integer vectors $[t_1,\ldots,t_r]$ then there exist integers ξ_j $(1\leqslant j\leqslant k)$ such that

(27)
$$\sum_{j=1}^{k} \xi_{j} L_{ij} = L_{io} \quad (1 \leq i \leq h)$$

and

(28)
$$\sum_{j=1}^{k} \xi_{j} l_{ij} = l_{io} \pmod{w}.$$

Proof. Let

(29)
$$L_{1j} = \sum_{s=1}^{r} a_{js} t_{s} \quad (0 < j < k), \quad A = \begin{bmatrix} a_{js} \end{bmatrix}_{\substack{1 < j < k; \\ 1 < s < r.}}$$

In virtue of Lemma 5 there exist unimodular integral matrices B. C such that (25) holds. Let

(30)
$$B^{-1}\begin{bmatrix} \mathbf{1}_{11} \\ \vdots \\ \mathbf{1}_{1k} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{1} \\ \vdots \\ \mathbf{b}_{k} \end{bmatrix}, \quad C^{-1}\begin{bmatrix} \mathbf{t}_{1} \\ \vdots \\ \mathbf{t}_{\mathbf{r}} \end{bmatrix} = \begin{bmatrix} \mathbf{t}'_{1} \\ \vdots \\ \mathbf{t}'_{\mathbf{r}} \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{a}_{01}, \dots, \mathbf{a}_{or} \end{bmatrix}$$
 $\mathbf{c} = \begin{bmatrix} \mathbf{c}_{1}, \dots, \mathbf{c}_{r} \end{bmatrix}$.

Setting $[y_1, \dots, y_k] = [x_1, \dots, x_k]$ B we get from (25), (26) and (30)

(31)
$$\sum_{j=1}^{k} y_{j} \left(e_{j} t_{j}^{r} + b_{j} \frac{m}{w} \right) \equiv \sum_{s=1}^{r} c_{s} t_{s}^{r} + 1_{10} \frac{m}{w} \pmod{m}.$$

Assuming that c_s are not all zero for s > k and that $c_s = c_s + c_s +$

$$\mathbf{t}_{\mathbf{S}}' = \begin{cases} -\frac{\mathbf{b}_{\mathbf{j}}}{\mathbf{e}_{\mathbf{j}}} \frac{\mathbf{m}}{\mathbf{w}} & \text{for } \mathbf{s} \leq \mathbf{k}, \\ & \text{1 for } \mathbf{s} = 6, \\ & \text{0 for } \mathbf{s} > \mathbf{k}, \mathbf{s} \neq 6 \end{cases}$$

and get from (31)

$$a_0 \equiv 0 \mod 2 |a_0|$$

a contradiction. Therefore $c_g = 0$ for all s > k and taking $m = 2we_k$, $t'_j = -\frac{b_j}{e_j} \frac{m}{w}$ for $j \le k$ we get from (31)

$$1_{10} \frac{m}{w} - \sum_{j=1}^{k} \frac{b_j c_j}{e_j} \frac{m}{w} \equiv 0 \pmod{m},$$

hence

(32)
$$1_{10} = \sum_{j=1}^{k} \frac{b_{j}^{0} j}{e_{j}} \pmod{w^{+}}.$$

Finally taking $m = we_k$ and for a fixed $j \le k$

$$\mathbf{t}_{\mathbf{S}}' = \begin{cases} -\frac{\mathbf{m}}{\mathbf{w}} \frac{\mathbf{b}_{\mathbf{S}}}{\mathbf{e}_{\mathbf{S}}} + \frac{\mathbf{e}_{\mathbf{k}}}{\mathbf{e}_{\mathbf{j}}} & \text{if } \mathbf{s} = \mathbf{j}, \\ -\frac{\mathbf{m}}{\mathbf{w}} \frac{\mathbf{b}_{\mathbf{S}}}{\mathbf{e}_{\mathbf{S}}} & \text{if } \mathbf{s} \neq \mathbf{j}, \mathbf{s} \leq \hat{\mathbf{k}}; \end{cases}$$

we get from (31) and (32)

$$y_j e_k \equiv c_j e_k / e_j \pmod{e_k},$$

$$c_j / e_j \in 2.$$

Integers & defined by

$$[\xi_1,...,\xi_k] = [a_1/e_1,...,a_k/e_k]B^{-1}$$

satisfy (27) and (28) for i = 1 in virtue of (25), (29), (30) and (32). Take now $i \ge 1$ and consider the system of two congruences:

$$\sum_{j=1}^{k} x_{j}(L_{ij}(t_{1},...,t_{r})+L_{ij}\frac{m}{w}) \equiv L_{io}(t_{1},...,t_{r})+L_{iow}\frac{m}{w}-\sum_{j=1}^{k} \xi_{j}(L_{ij}(t_{1},...,t_{r})+L_{ij}\frac{m}{w}) \pmod{m}$$

and

$$\sum_{j=1}^{k} x_{j}(L_{1j}(t_{1},\ldots,t_{r}) + L_{1j} \frac{m}{w}) \equiv O(\text{mod } m).$$

If $[x_1^0,\ldots,x_m^0]$ is a solution of the system (26), the above system has the solution $[x_1^0-\xi_1,\ldots,x_m^0-\xi_m]$, hence it is soluble for all moduli m and all integer vectors $[t_1,\ldots,t_r]$. Since L_{11} are linearly independent we have in virtue of Lemma 4

$$L_{io} - \sum_{j=1}^{k} \xi_{j} L_{ij} = 0 \quad \text{and} \quad l_{io} - \sum_{j=1}^{k} \xi_{j} l_{ij} \equiv 0 \pmod{w},$$

thus (27) and (28) hold for all $i \le h$.

Lemms 7. In any algebraic number field K there exists a multiplicative basis, i.e. such a sequence π_1, π_2, \ldots that any non-zero element of K is represented uniquely as $\frac{\mathbf{r}}{\xi} \prod_{s=1}^{\mathbf{x}_s} \mathbf{s}, \text{ where } \mathbf{x}_{\xi} \text{ are rational integers and } \xi \text{ is a root of unity.}$

Froof: see [3].

Lemma 3. Let K be an algebraic number field, we the number of roots of unity contained in K, $w\equiv 0 \mod 4$, a positive integer,

$$G = \left(\begin{array}{c} \mathbf{w,n, l.c.m.} \\ \mathbf{q|n,q prime} \end{array} \right] \left[\mathbf{K}(\xi_{\mathbf{q}}) : \mathbf{K} \right] \right).$$

Ιſ

(33),
$$n \equiv 0 \mod(w,n) \cdot c.m.$$
 $[K(\zeta_q):K]$ $q \mid n,q \text{ prime}$

and $\alpha_1, \dots, \alpha_n \in K$ have the property that

(34)
$$> = 0$$
 $= 0$

then for any integers $c_1,\ldots,c_r\equiv 0 \mod 6$ and any c_0 there exists a set of prime ideals ϕ of $K(\zeta_n)$ of a positive Dirichlet density such that

(35)
$$\left(\frac{\varsigma_{\mathbf{w}}}{\psi}\right)_{\mathbf{n}} = \varsigma_{(\mathbf{w},\mathbf{n})}^{0}, \quad \left(\frac{\varsigma_{\mathbf{s}}}{\varsigma_{\mathbf{v}}}\right)_{\mathbf{n}} = \varsigma_{\mathbf{n}}^{\mathbf{c}} \quad (1 \leq \mathbf{s} \leq \mathbf{r}).$$

Proof. This is a special case ($\xi_4 \in K$) of Theorem 4 of [2]. In this theorem only the existence of infinitely many prime ideals φ with property (35) is asserted, but the existence of a set of a positive Dirichlet density is immediately clear from the proof based on the Čebotarev density theorem.

Proof of Theorem 1. Without loss of generality we may assume that $\xi_4 \in K$ and that α_{1j} (j = 1, 2, ..., k) are multiplicatively independent. Let us set

(36)
$$\alpha_{ij} = \zeta_{w}^{a_{ijo}} \prod_{s=1}^{r} \pi_{s}^{a_{ijs}}, \quad \beta_{i} = \zeta_{w}^{b_{io}} \prod_{s=1}^{r} \pi_{s}^{b_{is}},$$

where w is the number of roots of unity contained in K and π_S are elements of the multiplicative basis described in Lemma 7. Take an arbitrary modules $m\equiv O(\bmod\ w)$ and set in Lemma 8

$$n = m m_1$$
, where $m_1 = 1.c.m.(p-1)$
 $0 \le P$, p prime

and P is the greatest prime factor of m. Since every prime factor q of n satisfies $q \le P$ the number n satisfies (33). The condition (34) is clearly satisfied by $\alpha_s = \pi_s$ ($1 \le s \le r$). Hence for any integers $c_1, \ldots, c_r \equiv 0 \mod w$ there exists a set S of prime ideals α of $K(\zeta_n)$ of positive Dirichlet density such that

(37)
$$\left(\frac{\zeta_{\mathbf{w}}}{q}\right)_{\mathbf{n}} = \zeta_{\mathbf{w}}, \quad \left(\frac{\pi_{\mathbf{s}}}{q}\right)_{\mathbf{n}} = \zeta_{\mathbf{n}}^{\mathbf{o}} \quad (1 \leq \mathbf{s} \leq \mathbf{r}).$$

The ideals p of K divisible by at least one $q \in S$ form a set of positive Dirichlet density, hence by the assumption there exist integers x_i satisfying

$$\prod_{j=1}^{k} \alpha_{ij}^{x_j} \equiv \beta_i \pmod{\alpha} \quad (i=1,2,\ldots,h)$$

for at least one $q \in S$. It follows from (36) and (37) that

$$\sum_{j=1}^{k} x_{j} \left(\sum_{s=1}^{r} a_{ijs} c_{s} + a_{ijo} \frac{n}{w} \right) =$$

$$\equiv \sum_{s=1}^{r} b_{is} c_s + b_{io} \frac{n}{w} \pmod{n} \quad (1 \leq i \leq h).$$

Now take $c_s = wm_1 t_s (1 \le s \le r)$,

(38)
$$\begin{cases} L_{ij} = w \sum_{s=1}^{r} a_{ijs}t_{s} & (1 \leq i \leq h, 1 \leq j \leq k), \\ L_{io} = w \sum_{s=1}^{r} b_{is}t_{s} & (1 \leq i \leq h). \end{cases}$$

It follows that for all moduli $m \equiv 0 \mod w$ and all integer vectors $[t_1, \dots, t_r]$ the system of congruences

$$\sum_{j=1}^{k} x_{j} L_{ij}(t_{1}, \dots, t_{r}) + a_{ijo} \frac{m}{w} \equiv L_{io}(t_{1}, \dots, t_{r}) + b_{io} \frac{m}{w} \pmod{m}$$

is soluble in integers x_j . Since the numbers α_{1j} are multiplicatively independent the linear forms L_{1j} are linearly independent $(1 \le j \le k)$. Hence by Lemma 6 there exist integers ξ_1, \dots, ξ_k such that

$$\sum_{j=1}^{k} \xi_j L_{ij} = L_{io} \quad \text{and} \quad \sum_{j=1}^{k} \xi_j a_{ijo} \equiv b_{io} \pmod{w} \quad (1 \le i \le h).$$

It follows from (36) and (38) that ξ_1, \dots, ξ_k satisfy the system (2).

Proof of Corollary. In view of Theorem 1 it remains to consider the case when for each $i \le h$ the number α_i is a root of unity. But then either there exists a positive integer $x \le w$ such that

$$\alpha_i^x = \beta_i \quad (1 \le i \le h)$$

or the system of congruences

$$\alpha_i^{\mathbf{X}} \equiv \beta_i \pmod{2}$$
 $(1 \le i \le h)$

is soluble only for prime ideals > dividing

Proof of Theorem 2. Since here K=Q we write p instead of \mathcal{F} and denote by p_j the jth prime. We take

$$\alpha_{11} = -1, \quad \alpha_{ij} = p_{j-1} \quad (2 \le j \le k), \quad \beta_1 = -1,$$

$$\alpha_{21} = 2, \quad \alpha_{2i} = 1 \quad (2 \le j \le k), \quad \beta_2 = 1.$$

For p=2 (1) has the solution $x_j=0$ ($1 \le j \le k$). For p>2 we consider the index of 2, ind 2 with respect to a fixed primitive root of p. If $\frac{p-1}{(ind\ 2,p-1)}$ is odd, (1) has a solution determined by

$$x_1 \equiv \begin{cases} 1 \pmod{2} \\ 0 \mod{\frac{p-1}{(\text{ind } 2, p-1)}} \end{cases}$$
, $x_j = 0 \quad (2 \le j \le k)$.

If $\frac{p-1}{(\text{ind } 2, p-1)}$ is even, (1) has a solution determined by

$$x_1 = 0$$
, $x_2 \text{ ind } 2 \equiv \frac{p-1}{2} \pmod{p-1}$, $x_j = 0 \ (3 \le j \le k)$.

On the other hand (2) is clearly unsoluble.

REFERENCES

- [1] A. Schinzel: On power residues and exponential congruences, Acta Arith. 27 (1975) 397-420.
- [2] A. Schinzel: Abelian binomials, power residues and exponential congruences, Acta Arith. 32 (1977) 245-274; Addendum ibid. 36 (1980) 101-104.
- [3] Th. Skolem: On the existence of a multiplicative basis for an arbitrary algebraic field, Norske Vid. Selsk. Forh. (Trondheim) 20 (1947) no 2.
- [4] L. Somer: Linear recurrences having almost all primes as maximal divisors (to appear).
- [5] B.L. van der Waerden: Algebra II Teil. Berlin, Heidelberg, New York 1969.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, OC-950 WARSZAWA
Received December 17, 1984.