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Some years ago I have proved the following theorem ([1],
Theorem 2). Let K be an algebraic number field, Oy,..e,%, 8
non-zero elements of K. If for almost all prime ideals » of K
the congruence

k xj
[T oy 3=p(moaz)
J=1
is soluble in integers xj then the equation
k
X
J
(o4 =
[Toyj3=p
3=1

is soluble in integers. I have shown by an example that this
theorem does not extend to systems of congruences of the form

k
X
(1) O(ij jEﬁi(mOd?) (i = 1,2,0.0,h)
3=1

even for h = 2, k = 3,
Recently L. Somer [4] has considered systems of the
form (1) for k = 1. The study of his work has suggested to
ma that the connection between tas leocal and the global solu-
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2 Ae Schinzel

bility of (1) may hold if for some i<h the numbers x4 &re
maltiplicatively independent. The aim of this paper is to
prove this assertion in the form of the following thsorem,

Theorem 1. Let X be an algebraic number field,
“ij’/ai (1 = 1,2y000983 J = 192,00044,k) non-zero elements of K
and assume that for some i<h

k
b 4
[Teyy 3 =1, xs¢ 2 implies x; = O for all j<k,
J=1
If for almost all prime ideals » of K in the sense of the
Dirichlet density the system {1) is soluble .in integers x.j
then the system of equatiops

k
b 4
(2) H O(lj j =/31 (i = 1,2,ooo.h)
J=1
is soluble in integers.

The following corollary is almost immediate,
Corollary. I£ the system of congruences

af=plmod2) (i=1,2,.00,h)

is soluble 1n integers x for almost all prime ideals
of K then the system of equations

d¥=/51 (i= 1,2,000,h,

is soluble in integers.

Somer [4] has proved the above corollary uader the
assumption that either none ‘of the ai’s is a root of unity
or all the ai’s are roots of unity.

The next theorem shows that Theorem 1 cannot be extended
further,

Theoream 2. For every k>2 there exist non-zero
rational integers Aiqs By (1 = 1,25 §J = 1,2,400,k) suck that
Cyprees sy are multiplicatively independent, the system {1)
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Systems of exponential congrusnces 3

Qitn h = 2 is soluble ior all raiional primes %, but the
system (2) is unsoluble in integers, ’
In the sequel ;Q denotes a primitive ¢ th root of unity.
For a rationasl matrix M den M denotes the least common
denominator of the elements of M and MT the transpose of M.
The proofs. are based on sight lemmata,
Lemma 1. For every rational square matrix A there
exists a non-singular matrix U whose elements are integers
in the splitting field of the characteristic polynomial of A

sucn that
-
A, W
4z
(3) u=lau = .
- An_
with A, a square matrix of degree ¢,:
Ay 1 ]
Ay 1
(4) Av = * .. . (v=1,2’000’n)
Ay 1
Ay
— —

where the empty places (not the dots) are zeros.

Proof (see [5], § 88). The elements of U can be
made zlgebraic integers, since the left hand side of (3) is
invariant with respect to thne multiplication of U by a number.

Lemma 2. ILet Ly,Lj,M € Z[t1,....tr] (3=152,000,k)
be homogeneous linear forms and Mj (J=142,000¢,k}) linearly
independent. If the system of congruences

k

(51) ijbj(t‘]'.."tr)z Lo(t1’ono,tr)(mod m)
3=
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4 A, Schinzel

k
(52) Z ijj(t1,...,tr) = O(mod m)

I=1
is soluble in x; for all moduli m and all integer vectors
[ﬁ1.aoo'tt]. then LO = O,

r
Proof. LetLj-Z:l

& et (0<y<k), My =

r
=3 myats (1<j<k). Taking if necessary lyp = myg = 0

s=x1
for s>k we can assume that r> k., Since Md ‘s are linearly

independent we can assume also that the matrix

= [mjs] J,e<k

is non-singular, Put

N - [mﬂa] j<k

k<s<y

L= [133]1sjossk o 17 [ljs]1s.jsk ’
k<s<r

[0 = [101,‘..’10k]’ l; = [10k+1’...’10r].

Let K be the splitting field of the characteristic polyno-
mial of IM 1. In virtue of Lemma 1 there exists a matrix U
whose elements are integers of Ko such that

A, 'l
Ay

(6) vl = .

[ An

where 4, of degree ¢, is given by (3) (v = 1,2,...,n).
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Systems of exponential congruenoces 5

We proceed to show that !/ = O and l; =0, Let us write

-1
(7) LOM U= [_11,000,11(].

Suppose that [’o # 0 hence LOM'1U # 0 and let the least #z <k
for which 1, # 0 satisfy

(8) 6v=29,‘<rs;9#~

M<y
et p be a prime which factorizes in Ko into distinet prime
ideals of degree one which divide neither den M"1 nox the
numerators of 1, and of ), and 1, for k>,

Take the modulus m = pSv and let t := [t, ,...,tk]
satisfy the congruence

7k

o= Qeee O

(9) vt = (mod 2%v),

(X X ]

9, =1

C o

oo

Lo

where » 1is a prime ideal factor of p in K N ulnce Z 1is
unramlfied of degree one and dces not divide den ‘JI"' the con-
gruence is soluble in ratiocnal integers., Take further

¥ = 0.

(10) o= [ty esensty

YT L ¥.e.eg%, U wa can rewrite ths
H i - W



6 A+ Schinzel

yiv- o) (o tue) = LOM'1U(U'1Mf)(mod p %)

y(UMt) = o(mod pov),
hence by (6) - (10)

6'11
Y+
3=G~1  J-6 %=1
(1)) Z 7y <2vp T ep >+-y6v L P =
3= 6,41 +
G
v+1 J=Gy=1 0
1,p (mod 2°V),
J= 641
Gya1 §=06, =1
(112) Z_. T3P = 0{mod }9").
J=6,+1

The left hand side of (11,) is congrusnt mod 25 to the left
hand side of {11,) multiplied by (A,+p). Since ;7 % O(mod )
it follows that

Sy, 3=6,=1

ljp
J=6,+1

= 0(mod #%),

hence 1, = O{mod #) contrary to the choice of » ,
Therefore lo = 0 and it remains to prove that l; =0,
Assume without loss .of generality that

lor # 0.
Choose a rational integer 2 # Ay (V=1,2,.e4,n) and take
den(L-—%i\;I)"'1 >0,

{12) m = ?.llor]

t*= [0 0,d =1
= peee Uy en(L“ah.) ] .
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Systems of exponentisl congruences i

With this choice of #* we can find a fe 2% such that

(L-AM)# = AM*#* - L¥¢*

and then the system (5) gives for x = [x1,...,xk]

x (Mt 6¥+) = 1 den(L-2M)~'(mod m),

x{il t+ N**) = 0(mod m),

hence

-1
1or den{L-AM)" "' = O(mod m).

The obtained contradiction with (12) completes the proof.

Lemma 3. Por every rational square matrix A there
exists a non-singular integral matrix U such thet (3) holds
with 4, a square matrix of degree ¢, {in general no% the
same as in lemma 2),

[ =y 1 ]
=%y 1
(13) Ap = . .
L ~XVoy 1]
Qv 0y -3
where “vge ¢ and x5V + Z:l qu X Y is a power of a poly=-
3=

nomial irreducible over Q.

Proof (see [5], § 88). The form of the matrix 4 Has
been changed by applying central symmetry (matrices symmetric
to esach other with respect to the common centre are similar).
U can be made integral via multiplication by & suitable in-
teger.,

Lemma 4, Let LO,Lj,I:Eje Z{tyreeestn] (321,2,000,k)
be homogeneous linear foras, Mj s linearly independent., Let

B.€Z2 {(j=1,2,e00,k) and w be a fixed positive integer,

8078570
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8 A, Schinzel

If for all moduli m = O(mod w) and for all integer vec-
tors [t1,...,tr] the system of congruences
k
m
(14) ) xy(Ly(tg,ennstydvay B) = Lo(ty,ene,ty)va, B (a0d a),
J=1

M=

(14,) x5 (M5(t,000yt) +05 g) = Olmod m)

J=1

is soluble in integers xj then Lo = 0 and a, = O(mod w).
Proof., When m runs through all positive integers
divisible by w, m/w runs through all positive integers, hence
applying Leamma 2 we infer that Lo = O, In order to show
8, = 0 mod w we adopt the meaning of L, L*, M, ™ from the
proof of Lemma 2.
In virtue of Lemma 3 there exists s non-singular integral

matrix U such that

(15) vty = .

where A4, of degree ¢, is given by (13). We can assume without

loss of generality that oy, = 0, 4 = ¢, for y<n, and

Ayo, # 0 for v >ng (n, may be 0). It follows from the condi-

Sy
i Qy=J
tion on x°° + ZEL .. X Y that
j=i ¥
1
1
{16) Ay = .. (1<v<ng),

3

1
4

where the empty places are zeros as before., Now put
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Systems of exponential congruences 9

a, ay b1 b1
(17’ U-1 . = . 9 U-1 . = . ’
ay oy by by |
Whel‘e for y = 1,2,...,!1
av1 bv1
* 0‘
(18) Gv= . Py bv= . .
avo, byo,
Take
(19) m, = w den ¥~ den u~? l.com, den A;1
n <y<h
(o}
and put
?,.+1
{20) m=m ,
()
t Uq Yie
(21) t=|. {=atul. |, #=|. =0,
by Un th
where
mQ1+1
-1 0
(22) uy= AT @, —— (ny<v<n)

and for v<n, u,is a vector with ¢y components and the j-th
coordinate

1A 9 =i+]
Z mo (ayi - mobvi) (1-‘J$Qy)o
1=3

s

uvj =
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10 A. Schinzel

Since by (19) u,=0 mod den u~? (1<v< n) the vector ¢
defined by (21) is integral. Moreover by (16), (18) and above
we have

Py+1 91+1
lnO mo
(23) 4y up+a,—p—=m (uy+ b, —4— (1<v<ng ).

Setting
[x1’aoo,xk]u = [x1,000'xn] ’

where x, is a vector with ¢, components and using (15),.
(17), (20) and (21) we can rewrite the system (14) in the

form a Q4+t Qq+1
mo _ mo ( Q1+1

E XylAp Up+a, —0— j=a, — 4 \mod m,. ).
v =1

n Q1+1 1

m P4t
E o - 1
X, (“v"'b» w >=0 (mod o, )
V=1

In virtue of (22) this gives

. n, m(;1+1 lnQ.‘+1 0141
(24,) Z xy <Av upy+ a, —> < >sa° 9 - (mod m°1 >,

y=1
n, m:1+1
(24,) E x»(“v* by — 0 |=
y=1
?,+1
_ } n: /41 ay 91+ 1\
= Xy (Av ay -b,,) w  \mod @ .
v=n,+1

In virtue of (23) the left hand side of (241) equals the left
hand side of (242) multiplied by m . Hence
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_Systems of exponential congruences 11

91+1

n
o Q.+1 o @+
s 1 -1 ) 1
8w =% 2::. Xy (A" ay = b,) w (mod To >‘

v=n°+j

m
Since by (19} the vectors (A;“' a, - bv) ;ro are integral we

get
@1+1

m Q.41
o _ 1
a, w = (mod m >

o Of{mod w),

il

» 8,

which completes the proof,

Lemma 5, For every integral matrix 4 with all
the k rows linearly independent there exist unimodular
integral matrices B and C such that

%
92
(25) Blac = .. ,

where the elements outside the principal diagonal are zeros,
&y # 0 and eil°i+1 (1<i<k),

., Proof . Without the condition e, # O the lemma is
proved in [5], §85. The condition ey # O follows from the'
lineer independence of the rows of A.

Lemma 6, Let Lyye Z[t1,...,tr] (1<i<h, 0<j<k)
be homogeneous linear forms and suppose L13 (1< j<k) linearly
indepandent. Let li;je Z (1<i<h, Osjsk).*_lf the system of
congruences :

-~

(26) Z Xy(Lygltqecesty) + 155 D=
3=

=Ly (tyyeeesty) + 1, o (mod @) (1<is<h)
is soluble for =2ll moduli m = O(mod w) and for sll integer
vectors [$1,...,tr] then there exist integers Ej (1<j<k)
such that
- 387 =



12 Ao Schinzel

k
(27) Z EJLiJ = Ly, (1<i<h)
=1
and
k
J=1
Proof. Let
r
2 L = t 0 <k A = o
(29)  Lyy 22; 8jsts (0<d<kl, [aga]}sjsk;
<8<Te

In virtue of Lemma 5 there exist unimodular integral matri-
ces B, C such that (25) holds. Let

1491 104 % *
(30) V. | =|. |, . [=]. |

[ 3 [ ] L ] L

11 k bk 1=r t:L‘

|:a°1,....a°r] C = [Cyeeees0p]e

Setting [yqseeesTy] = [XyseeeyXy | B we get from (25), (26)
and (30)

k r
(31) Z yj e 1: + b;j w = Z eBt' + 110% {mod m),
J=1 8=1 ’

Assuming that ¢  are not all zero for s>k and that 6 is
the least index > k such that cg # O we take m = 2w e, |cg],
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Systems of exponential congruences 13

- b
-1 & for s<k,
3
t = 1 for 8 =6,

0O for s>k, 8 6
and get from (31)

G = 0 mod 2|ogls -
a contradiction, Therefore Cg = O for all s>k and taking

b

@ = 2we,, ts = -331% for j<k we get from (31)

k b,c

110—:—- Z -—g—iigso(mod m),

=

hence
k b,0

(32) 0= Z—g-d—l(nod wh.

J=1
Finally taking m = we, and for a fixed j<k

b e
k
(-%;:}»,q it 8= J,
b
| 0 it s>k,

we get from (31) and (32)
Vjex = °j°k/°j (mod ey,

°3/°3 e 2.
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14 ~_he Schinzel

Intogers.gJ defined by

I:E10"' ,gk] = [01/01.000'°k/ek]B-1

satisfy (27) and (28) for i1 = 1 in virtue of (25), (29), (30)
and (32). Take now 1> 1 and consider the system of two con-
gruences:

.

m, __ [}
Z xd(Lij(t."oot,tr)"'lij 'j'j") = Lio(t1'o,.o.tr) + liow F -
J=1

k
- 2:,53(Lij(t1""’tr) + 113 %H (mod m)
J=1

and
k
2{; xj(L1j(t1"°"tr) +'l1j-£)55 0{mod m).
J=1

if [xﬁ;...,x:] is a solution of the system (26), the above

system has the solution [x$—§1,...,xg-§m], henoe it is soluble

for all moduli m and all integer vectors [t1,...,tr]. Since
L13 are linearly independent we have in virtue of Lemma 4

k k
L J=1 3=

thus (27} and (28) hold for all i<h,
" lLemms 7. In any algebraic number fisld K there
exists a amultinlicative basls, i.e8. Buch a sequence ﬁ1,ﬂé,...

that any non-zero elemsnt of K 1is represented uniquely as

SR X ) A

5 T ng°, where x, are rational integers and 5 is a root
s=1 b

of umity,
Froof: see [3].
Leama 3 Let A be an algebraic rumber fisld,

w the nambsr of roots of unity contained in x, w = 0 mod 4,
n 2 cositive integer,

-390 -



Systems of exponential congruences 15

G = ,.10.0 . K( )K)O
(wea almg th'imeL 5 K]
If
(33) . n= 0 mod(w,n)l.c.m. [K(gq):K]

q|n,q prime

and Xqpeens0n € K have the property that

r
x x
(34) 5w° H Otss = 3“‘/6, 7€k implies XS Xp= see=Xp= O{mod n/s)
8=1

then for any integers Cqseceslp = O mod 6 and any S, there
exists a set of prime ideals ¢ of K(;n) of a positive Di-
rie¢hlet density such that

5 ° ¢
(35) (38) - 5@mr (58, = 52" G=s<n.

‘Proof. This is a special case (§4e K) of Theo~-
rem 4 of [2]. In this theorem only the existence of infini~
tely many prime ideals ¢ with property (35) is asserted,
but the existence of a set of a positive Dirichlet density
is immediately clear from the proof based on the Cebotarev
density theorem,

Proof of Theorsm 1, Without loas of generality
we ‘may assume that §4_eK and that 13 (i = 1,2,...,k) ars
multiolicatively independent. Let us set

aijo 5 aijs bio £ bis
(36) oy4 =8y TT Ts e By =Sy FT Tg s
s=1

where w is the number of roots of unity contained in K
and g are elemente of the zultiplicative basis described
in lemma 7. Take &n arbitrary modules m = O{mod w) and set
in Leama 8§

n = o a,, wiere m, = leceme(p=1)
p<r, b prime
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16 A, Schingel

and P is the greatest prime factor of m, Since every prime
factor q of n satisfies q<P the number n satiafies (33).
The condition (34) is clearly satisfied by «, = 7, (1sssr),
Hence for any integers Cq100090 =0 mod w - there exists

p~set S of prime ideals ¢ of K(;n) of positive Dirichlet
density suoh that

8 b o
(37) <—'¥> =3 —s-> =5 8 (1<s<r),

%/n " \G/y B
The ideals » of K divisible by at least one ¢ ¢S form a set
of positive Dirichlet density, hence by the assumption there

exist integers xy 'satiafying

k

X
Hdij jEﬂi (mdq) (i‘1,2,.0t’h)
3=1

for at least one (e S. It follows from (_36) and (37) that

k T
Z. %3 <Z. 8138% * 81ij0 %E
J=1 g=1
T
= Z bya0g + by {;— (mod n) (1<i<h),
8=1

Now take o = wm,t, (1<s<r),

r
I‘ij = W Z aijsts (1<i<h, 1<j<k),
8=1
(38) 1
r
Lyg =% ) bty  (1<i<h).
| B8wu1i

It follows that for all moduli m = 0 mod w and all integer
vectors ('_t1....,tr] the system of congruences
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Systems of exponential congruences 17

k
ij I‘ij(t1"“'tr)+ai;jo % = Lio(t1,...,tr)+bi°% (mod m)
J=1

is soluble in integers x.. Since the numbers x44 8Te multi-
plicatively independent the linear forms L.I are linearly
independent (1<j<k). Henoe by lLemma 6 there exist integers
§1,...,Ek such that

k k
Z'gjLiJ =L;, and Z_g;laijo = b, (mod w) (1<is<h),
J=1 J=1

It follows from (36) and (38) that Eqvecesd) satisfy the sy-
stem (2). .
' Proof of Corollary. In view of Theorem 1 it remains
to consider the case when for each i<h the number &y is

a root of unity. But then either there exists a positive in-
teger x<w such that

x .
« ¥ = By (1<1i<h)
or the system of congruences
0‘115/31 (mod 2) (1<i<h)

is soluble only for prime ideals 2 dividing

I
8eCode (G‘ix "‘/51)0
X1 1<i<h
Proof of Theorem 2. Since here K = Q we write p
instead of p2 and denote by p‘j the jth prime. We take

(111 = -1, aij = pj_1 (2Sj$k)’ /51 = "1,

xXpy = 2, gy =1 (2stk),ﬁ2=1.
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13 4. Schingel

For p = 2 (1) has the solution x, = 0 (1<j<k). For p>2
we consider the index of 2, ind 2 with respect to a fixed pri-

mitive root of p. If 1343 ;:p-1 is odd, (1) hes'a solution
determined by

1(mod 2)
Xy= . xj=0 (2<i<k).

-1
0 mod 1355 2,5-1]
If 1 E,p-1) is even, (1) has a solution determined by

x, = 0, xehﬂ2a-%g(mmipd),xj=()(3$jskh

On the other hand (2) is clearly unsoluble.
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