

Hanna Matuszczyk

INDUCING AND COINDUCING OF ANALYTICAL PREMANIFOLDS
BY MAPPINGS*Dedicated to the memory
of Professor Roman Sikorski*

In the present paper the concept of analytical premanifold (a.p.) is examined. This concept being related to Sikorski's concept [3] (cf. [1]) of differential space (see [4]) and to Postnikov's concept of premanifold [2] was introduced by W. Waliszewski [6]. The present paper contains constructions related to the ones in Waliszewski's paper [5] of the a.p. induced by a set of mappings, the coinduced one, and the universal characterizations of them.

0. Generating of a.p. and restricted mappings

We adopt all concepts and denotations as in [6]. There is proved there that for any set G of real functions the set $(\text{an } G)_G$ is the smallest among all a.p. containing G . This a.p. is called the a.p. generated by G . We have $\text{Top } G = \text{Top}((\text{an } G)_G)$.

Proposition 1. If M and N are a.p. and N is generated by a set G of real functions then for any function f which maps the set M into N we have smooth mapping

$$(1) \quad f: M \longrightarrow N$$

if and only if $\beta \circ f \in M$ for $\beta \in G$.

(For any functions g and f without restriction for domain D_g of g we have well defined the composition $g \circ f$ on the set $f^{-1}[D_g]$ of all points $p \in D_f$ such that $f(p) \in D_g$ by the usual formula $(g \circ f)(p) = g(f(p))$).

P r o o f . Assume that $\beta \circ f \in M$ for $\beta \in G$. First, we remark that we have a continuous mapping $f: \text{Top } M \rightarrow \text{Top } G$. Let $B \in \text{Top } G$ and $p \in f^{-1}[B]$. Then there exist sets B_1, \dots, B_s open in R and $\beta_1, \dots, \beta_s \in G$ such that $f(p) \in \beta_1^{-1}[B_1] \cap \dots \cap \beta_s^{-1}[B_s] \subset B$. Hence, $p \in (\beta_1 \circ f)^{-1}[B_1] \cap \dots \cap (\beta_s \circ f)^{-1}[B_s] \subset f^{-1}[B]$, where $\beta_1 \circ f, \dots, \beta_s \circ f \in M$. So, $f^{-1}[B] \in \text{Top } M$. Let φ be a real analytic function on an open subset of R^n and $\beta_1, \dots, \beta_n \in G$. We have then $\varphi(\beta_1, \dots, \beta_n) \circ f = \varphi(\beta_1 \circ f, \dots, \beta_n \circ f) \in M = M$. Now, let $\gamma \in N$. Set $\alpha = \gamma \circ f$. Let $p \in D_\alpha$. Thus, we have $f(p) \in \gamma$. Therefore, there exist $\beta \in G$ and a set $V \in \text{Top } G$ such that $V \subset D_\beta$, $f(p) \in V \subset D_\gamma$ and $\gamma|V = \beta|V$. Setting $U = f^{-1}[V]$ we have $U \in \text{Top } M$, $U \subset f^{-1}[D_\beta] = D_{\beta \circ f}$, $p \in U \subset D_\alpha$ and $\alpha|U = \beta \circ f|U$. So, $\alpha \in M_{\underline{M}} = M$. Q.E.D.

P r o p o s i t i o n 2. For any smooth mapping (1) and any sets A and B such that $f[A] \subset B \subset \underline{N}$ we have the smooth mapping $f|A: M_A \rightarrow N_B$.

P r o o f . First, we assume that $A = \underline{M}$. Let $\beta \in N_B$ and $p \in \underline{M}$. We have $f(p) \in B$. Thus, there exist $\alpha \in N$ and a set $V \in \text{Top } N$ such that $V \subset D_\alpha$, $p \in V \cap B \subset D_\beta$ and $\beta|V \cap B = \alpha|V \cap B$. So, $\beta \circ f|f^{-1}[V \cap B] = \alpha \circ f|f^{-1}[V \cap B]$. From the inclusion $f[A] \subset B$ it follows that $f^{-1}[V \cap B] = f^{-1}[V]$. Therefore, $\beta \circ f|f^{-1}[V] = \alpha \circ f|f^{-1}[V]$, $\alpha \circ f \in M$, $f^{-1}[V] \in \text{Top } M$ and $p \in f^{-1}[V] \subset D_{\beta \circ f}$. Thus, $\beta \circ f \in M_{\underline{M}} = M$. Now, remark that for $A \subset \underline{M}$ we have a smooth mapping $\text{id}_A: M_A \rightarrow M$. So, $f|A = f \circ \text{id}_A: M_A \rightarrow N$. Hence it follows that $f|A: M_A \rightarrow N_B$. Q.E.D.

P r o p o s i t i o n 3. If $f: \underline{M} \rightarrow \underline{N}$, N is any a.p., $Q \subset \text{Top } M$ covers the set \underline{M} , and for each $A \in Q$ we have a smooth mapping $f|A: M_A \rightarrow N$, so we have a smooth mapping (1).

P r o o f . Take any $\gamma \in N$ and set $\gamma = \gamma \circ f$. For any $A \in Q$ we have $\gamma \circ id_A = \gamma \circ f|A \in M_A$. Let $p \in D_\gamma$. Then, $p \in A$ for some $A \in Q$. Setting $\beta = \gamma \circ id_A$ we have $\beta \in M_A$. So, there exist $V \in \text{Top } M$ and $\alpha \in M$ such that $V \subset D_\alpha$, $p \in V \cap A \subset D_\beta$ and $\beta|V \cap A = \alpha|V \cap A$. Taking $U = V \cap A$ we have then $U \in \text{Top } M$, $U \subset D_\alpha$, $p \in U \subset D_\gamma$ and $\gamma|U = \alpha|U$. Therefore, $\gamma \in M$. Q.E.D.

By an easy verification we get

P r o p o s i t i o n 4. If M is a.p. and $A \subset \underline{M}$, then for any $\alpha \in M$ such that $D_\alpha \subset A$ we have $\alpha \in M_A$. If $A \in \text{Top } M$, then $M_A \subset M$.

1. The a.p. induced by a set of mappings

Let N be a.p. and F be a set of functions with values in \underline{N} . For any functions β and f we set $f^*(\beta) = \beta \circ f$. Then for any $f \in F$ we have the set $f^*[N]$ of real functions. Denote by F^*N the a.p. generated by the union of all sets $f^*[N]$, where $f \in F$. F^*N will be called the a.p. induced from N by the set F of mappings. The following theorem gives a characterization of F^*N .

T h e o r e m 1. The a.p. induced from N by the set F of functions with values in \underline{N} is the exactly one a.p. M satisfying the following conditions:

(i) $f: M_{D_f} \longrightarrow N$ for $f \in F$;

(ii) $\underline{M} = \bigcup_{f \in F} D_f$ and $\text{Top } M$ is the induced topology to the set \underline{M} from $\text{Top } N$ by all the functions $f \in F$, i.e. $\text{Top } M$ coincides with the smallest topology on \underline{M} containing all sets $f^{-1}[A]$, where $A \in \text{Top } N$ and $f \in F$;

(iii) for any a.p. L and any continuous function c from $\text{Top } L$ into $\text{Top } M$ we have the smooth mapping $c: L \longrightarrow M$ if and only if we have smooth mappings

$$(2) \quad f \circ c: L_{c^{-1}[D_f]} \longrightarrow N$$

for $f \in F$.

Proof. Let us take $f \in F$. We have then

$$D_f = f^{-1}[N] = f^{-1}\left[\bigcup_{\beta \in N} D_\beta\right] = \bigcup_{\beta \in N} D_{\beta \circ f} = \bigcup_{\alpha \in f^*[N]} D_\alpha.$$

So, $D_f \in \text{Top } F^*N$. For any $\beta \in N$ we have $\beta \circ f \in f^*[N] \subset F^*N$. By Proposition 4 we get $\beta \circ f \in (F^*N)_{D_f}$. So,

$$(3) \quad f: (F^*N)_{D_f} \longrightarrow N \text{ for } f \in F.$$

To prove that (ii) is satisfied for $M = F^*N$ remark that for any $f \in F$ and $A \in \text{Top } N$, by (3), we have $f^{-1}[A] \in \text{Top}(F^*N)_{D_f}$.

So, $f^{-1}[A] \in \text{Top } F^*N$. Let $\alpha \in \bigcup_{f \in F} f^*[N]$ and B be open in R .

We have then $\alpha = \beta \circ f$, where $\beta \in N$, $f \in F$, and $\alpha^{-1}[B] = f^{-1}[\beta^{-1}[B]] = f^{-1}[A]$, where $A \in \text{Top } N$. So, $\text{Top } F^*N = \text{Top} \bigcup_{f \in F} f^*[N]$ coincides with the induced topology to the set F^*N from $\text{Top } N$ by all functions $f \in F$.

Assume that a continuous mapping $c: \text{Top } L \longrightarrow \text{Top } F^*N$ gives smooth mappings (2) for $f \in F$. Taking any $\beta \in N$ and $f \in F$ we have, by Proposition 4, $\beta \circ f \circ c \in L_{c^{-1}[D_f]} \subset L$. Hence, by Proposition 1, it follows that

$$(4) \quad c: L \longrightarrow F^*N.$$

Now, assuming (4), by Proposition 2, we obtain

$$c|_{c^{-1}[D_f]}: L_{c^{-1}[D_f]} \longrightarrow (F^*N)_{D_f} \text{ for } f \in F.$$

So, by (3), we get (2).

To complete the proof of Theorem 1 take any a.p. M satisfying (i) - (iii). By (ii) we have $\text{Top } M = \text{Top } F^*N$. Setting $L = M$ and $c = \text{id}_M$ from (iii) we conclude that $f: M_{D_f} \longrightarrow N$ for $f \in F$. So $f^*[N] \subset M_{D_f} \subset M$ for $f \in F$. Thus, $F^*N \subset M$. On the other hand, (3) yields (2) for $f \in F$ where $c = \text{id}_M$ and $L = F^*N$. From (iii) it follows that $\text{id}_M: F^*N \longrightarrow M$. So, $M \subset F^*N$. Q.E.D.

2. The a.p. coinduced by a set of mappings

Let M be a.p. and F be any set of functions defined on M . The a.p. generated by the set of all real functions β with domains contained in $\bigcup_{f \in F} f[M]$ and such that $\beta \circ f \in M$ for $f \in F$ will be called the a.p. coinduced from M by the set F of mappings and denoted by FM . The following theorem gives the characterization of FM .

Theorem 2. The a.p. coinduced from M by the set of functions defined on M is the exactly one a.p. N satisfying the following conditions:

(iv) $f: M \rightarrow N$ for $f \in F$;

(v) $M = \bigcup_{f \in F} f[M]$;

(vi) for any a.p. P and any function $g: N \rightarrow P$ we have the smooth mapping $g: M \rightarrow P$ if and only if

$$(5) \quad g \circ f: M \rightarrow P \text{ for } f \in F.$$

Proof. For $N = FM$ (v) directly follows from the definition of FM . For $N = FM$ (iv) follows from Proposition 1.

Let us take $g: FM \rightarrow P$ such that (5) holds. Taking any $\gamma \in P$ we have $\gamma \circ g \circ f \in M$ for $f \in F$. Thus, $\gamma \circ g \in FM$. So, $g: FM \rightarrow P$.

To end the proof assume that N is any a.p. fulfilling (iv) - (vi). Taking $g = \text{id}_N$ and $P = N$, by (vi), we get (5). Hence it follows that $\text{id}_N: FM \rightarrow N$. Thus, $N \subset FM$. From the fact that $f: M \rightarrow FM$ for $f \in F$ it follows that

$$\text{id}_N \circ f: M \rightarrow FM \text{ for } f \in F.$$

This yields $\text{id}_N: N \rightarrow FM$. Therefore, $FM \subset N$. Q.E.D.

REFERENCES

[1] S. Mac Lane : Differentiable spaces, Notes for Geometrical Mechanics; Winter 1970, p.1-9 (unpublished).

- [2] M.M. Postnikov : *Vvedenie v teoriu Morsa.*
Moskow 1971 (Russian).
- [3] R. Sikorski : *Abstract covariant derivative,*
Coll. Math. 18 (1967) 251-272.
- [4] R. Sikorski : *Wstęp do geometrii różniczkowej.*
Warszawa 1972 (Polish).
- [5] W. Waliszewski : *Regular and coregular map-*
pings of differential spaces, *Ann. Polon. Math. 30 (1975)*
263-281.
- [6] W. Waliszewski : *Analytical premanifolds,*
Zeszyty Nauk. Politech. Śląsk. Gliwice (to honor of
Professor Zygmunt Zahorski) (to appear).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WROCŁAW,
50-370 WROCŁAW

Received September 10, 1984.