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0. Introduction

In 1967 R. Sikorski [6] introduced the con-ept of diffe-
rential space as a generalization of C* ~differentiable ma-
nifold. Independently, S. MacLane [4] introduced the same
cvoncept of differential space in his lectures on modern thes-
"etioal mechenics. W. Waliszewski in [9] "ntroduced the cor-
nept of Jet in the category of differentisl spaces. The pre-
sent paper contains two other definitiens of jets based on
some concepts of tamgency of mapoings at a point, There are
axamined some connections among the above definitions.

1. Tarminology and notation

Let T ba any set and let C be a set of real functions

Tined on S, Denote by o the weakest topology on S such
r:hau all functions of C ara continuous, Let C,o AC Sy be the
8t of all real functions o defined on A such that for any
S € . sher: exiots a set Berc with pe B and a function BeC
~nilrliying the equality o |AYB =A| i1 B, We sz (et. [47)
2. T i oles2d with maspeet tu locelizatior 0T . e

n

v o2 'apots tes get of all ! anetisns of uie i.pm

4.
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S3prrplu,(pliaglplyeesyagipll,

where B is arv positive intsger, a1'Q2,ooe’UB€§C and

pe C*{R®), Any set ¢ setisfying scC = C ie said to be closed
with respact to superposition with all reel C™ -functions
{cf. [8]). For en arbitrary set C of real funotions defined
on S we have Teel = ‘¢ = ch. Moreover for any AC S the te- -
pology TCA is the restrieti;n of 75 to 4.

C is said to be = differantiml structurs on the set &

Aff C is non-empty and scC = C = Cgs 4ny pair {S.,C}, where 8
is a set and C i3 a dfiferential struoture on S we call a dif-
ferential space. For any set ¢ of real funetions defined on S
the set (scC)s is the smallest set containing C and closad
with respect to superpositior with all C™ -functions and lo-
calization., If C is non-ampty then the pair (S,(scc)s) ¥orme

a differential space. (scc)s ig ¢alled the structurs generat-
ed by C. By a subspace of a diffsrential space {S,() we msan
any differsntial space of the form (A9CA), whera A is a subset
of S.

Lat us conuider s differential space M of the form (5,C1.
The sat S will pa also denoted by PolintsM snd called the set
of all points of M. Similarly. the set ¢ ig oalled ths sat
of 21l real smcoth functions nn M and dencted by F{H).

4 mapping f:PoinisM - FointsiN is sald (o e & smooth
mapping from M to N iff for any Be F {N) we have Bof e F{M}.
This fact is denoted in 3he form f:M — N, ‘

Let us take any point p of M, The union of all sets of
the shape Cy, where pele7,, C = F (M), will be denoted by
F(M,p). The set of all derivations (see [5]|, [7!) on F{M,¥)
together wita natursl operations of addition and multiplica-
tion by resls is calied the tangent space to M at p angd
denoted by T I,

By [a4p]y where p iz a2 peint of ¥ end oe F(H,P), we
denote the germ of « at p. By s (i,p} we denote the algebrs
of all germs of functions from F{ik,p), whouse values at o
ars 2ero. By ka(m,p}, where: k i@ a poeitive intsger, ws
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On jets in differential spaces 3

denote the ideal of #v (M,p) generated by all germs of the
form g,8p.++8)s WHOTe &,,8590¢0448, 8@ olements of w(M,p).
It is well known (see e.g. [1]) that the mapping defined by
the formula v ([ ,p] +4w2(n,p)»—a-v(a)) is correctly de-
fined isomorphism of Tpu onto @#(H,p)/mz(m.p))*.

By the tangent bundle to the differential space M (cf.[5])
we mean the differential space TM which struoture is generat-
ed by the set {o oy e F (MU {dyajaer (M)} of real functions
defined on the set PointsTM of all pairs (p,v) with p in M
and v in T _M, where Ty and dll°‘ are the mappings
PointsTM >{p,v)— pec PointeM and PointeTM s(p,v) ——v(x)eR
respactivaly, We will identify (p,v)e¢ PointsTM with the vec-
tor v tangent to M at p.

We have 7y:TM —M and for any «e F{M) dyo:TM — R, where
R denctes the differential space (R,C™ (R)).

Let M,% be two differential spaces and fi:¥ — N. Then we
have Tf:TM —= TN, where.Tf is the mapping suoh that for any v
T£{v) is of tha shaps F(N,f(p))3f r—=v(B - £f) and the follow-
ing tondition mgo Tf = £ory is fulfilled. By T, we mean
the rsstristion of Tf to TpM.

By ¥ (E) we denote the set of all smooth mappings X from
M intc T¥ satisfyiag the condition o X = idM. Suoh mappings
era cailed smenth veotor fields, shortly: vector fields,
tangent to ¥, if ZeX(M) and oe F(M) then by 3x™ we denote
the function PointsMsp — X(p)lx)eR.

put 10 = M, 7 = 1dy, TF = £ and dfo = o, where M is

a differential spmce, f 13 a smooth mapping defined on M
into a differentiasl space and e F(M). For any positive inte-
ger k and M,i, o as above put TXM = T(TYy), # ¥ .

ke K
=T o 77
¥ =1y’

]

; _ mmk=1gy - k=1
f = T(T f} and ducx- d _1M(dM «)o Lot

pk
-1

o omke ok Ko _ (mKey|mk
for p ini TgE = (ry) (p) end TSF = (T f)]Tpm.

It is eazy to verify the Tollowing four propositions.
1.1, P> nosition. Let M be a differential
space, we F{M) and Xe¥(M)., Then we have the equality

[a%)

ot e dy 0t Xa
X M
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4 Jo Wréblewski

12 Proposition, If £iM—=N and BeF(N)
then d:(ﬁot) = d%/so ka. where k 1is any positive integer.

1430 Proposition, Let £:M — N and
g:N —— P, Then for any positive integer k we have Tk(gof) =
= T¥go ke,

%4 Proposition. For any differential
space M,oe F (M) and X;yX5,0e09X, e ¥ (M) we have

PR akao pk=1x o 00 0 TTxp0x, .

2. The first kind of tangenay of mappings

The following definition extends to the oategory of diffe-
rential spaces the concept of tangency of smooth mappings of
differentiable manifolds (see [2]).

2.1, Definition: Let

(2.1) £:M—=—N, giM—N

and p be a point of M, We say that f 1is tangent to g
of order 1 at p (in the first sense), what we write in the

form f—‘=-<l ’pg iff

(2.2) f(p) = glp)
and Tpf = Tpg. For any integer k> 1 we write

(2.33k) 2ay o8

iff (2.2) and for v in 'I‘pu Tfék_1 vI8e We say that £ is
tangent to g of order k at p lin the first sense).

2.2 Lemma s Let us take mappings (2.1) and p
in M, If (2.33k) holds, where k is 8 positive integer, then
for any 1<k (2.3;1).

Proof, To prove the lemma it sufficies to consider
the case 1 = k=1, We use the induction with respect to ke

Let k = 2, If (2.3;2) then according to Definition 2.1
for ary v 1in TpM we have Tfé1 ’ng, which ilauplies T T{ =

= T,Tg. idence for any w in TVTM we have
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On Jets in differential spaces 5

Tf(V) = Tf(”Tu(')) =WTN(TTf(')) b
= Tl TGTE(W)) = 7y (T Tg(w)) = Telv).

Henoe Tpf = T g, which gives (2.331).
Now let k> 2 be such integer that for any mappings (2.1)

and p 1in M the condition (2.3;k) implies (2.3;k-1). From
(2433k+1) by Definition 2,1 it follows that

(2.4;k) Tfék’ng

for v in T M, what, as we have assumed, implies (2.,4;k-1)
for v in TpM. Then (2.33;k). QED.

243 Theorem, For any mappinge (2.1) and any
positive integer k the condition (2.3;k) is eguivalent to
the formula

K, _ mk
(2.53k) Tpf = Tpg.

Proof. For k = 1 the proof by a direct verifica=-
tion.

Lat k Dbe such positive integer that (2.33k) is equivae~
lent to (2.53k) for any M, N, £, g, p ae above. For any Vv
in TM the condition (2.33;k+1) implies (2.4;k), which is by
the induction hypothesis equivalent to the condition

(2.6) Ere - kg,
Since TXTf is the restriction Tka|T§TM = 1|7 ang

tNJ{TsTM;ve.T;M} - Tg+1M we get Tk+‘f]Tg+‘M = Tk+1g]Tg+1M,
which gives the formula (2.5;k+1). Thus we have proved that
(2.3;k+1) implies {2.5;k+1). To ocomplete the proof of the theon-
rem it sufficies to prove the inverse statement,

Assume that f, g, p satisfy (2.53k+1). For ary v in
Tpm we have (2.6). Hence (2.43k). Moreover
K1 sk ok O kel nk4d k+1,
7, T r(Tp M) = 7o f(Tp

g i) -
R L !
o et = {2(0)]
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6 ~ Jo Wréblewski

Similarly, setting g instead of £, from (2.5;k+1) we get
(2.2). Now, by Definition 2.1 we have (2.3;k+1).

3. The second kind of tangency of mappings

331« Definition (see [9]). Let us take any
mappings (2.1), p in M, and let k be a positive integer.
We say that f is tangent to g of order k at the point p
{(in the second sense), what we write in the form

(301) f%k’pSO

iff (2.2) holds and for any differential space L, B¢ F(N),
@:L ~— M, X1,X2,...,Xke:¥(L), te PointsL such that p(t) = p
and for any positive integer l<k

(302) a 3 oeca ( ofo@)(t) = 3 a oo.a ( o go )(t)o
X, 0%y 0o 0x, (P fo x,2x,0 00k, Pogey

3e2. Theoremes, For any mappings (2.1), any point
p of M and positive integer k, satisfying (2.3;k) we have
(3e1)s

Proof. Let us suppose the condition (2.33;k). By
Definition 2.1 we have (2.2). Moreover, by Theorem 2.3, we
have (2.53k). Let L,8 ,9, XysXoreoesXyy 1 be as in Defi-
nition 3.1. We have to prove the condition (3.2). By Lemma 2,2
end Theorem 2,3 we have (2.5;1). Moreover, by Proposition 1.4,
we have

. © = 1 [«] o] 1-1 o [e] 1 Q

whioh is equal to
(3.3) FTRE or S RN Sudb MUNRES B % X;(t).
Since

riorlge pl=lx e (oL 01Xy 0 X (%) =

1 T1-1

=po T o T Ko aae oT‘xzo'x1(t) =p(t) = p
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On jets in differential spaces 7

pid. Henae Tlf nay be

replaced in (3.3) by T][;f, which is equsl to Ttg. Now we obtain
(3.2}

The following example shows that the inverss of Theo=
rem 3.2 is not true.

3.3 FEex ample, Let ¥ be the differential sub-
space of R suoch that PointsM = {1/n;neN} U {0}. Put for
x € PointsM f(x) = 0 and g{x) = x. It is easy to verify that
f:M -——R and g:M —R.

Because v(f) = 0 # 1 = v(g), where v(h) = lim n.(a(1/n)-h(0))

n~—oe

for heF (M,0), we r?mark that'fé1 ,08 is not fulfilled.

We will show that fé1 ,08° It suffices to show that for
any differential space L, y¢ F(R), ¢p:L — M, Xe%(L) and ¢
in L such that ¢(t) = 0 we have 3;(¥ogop)(t) = O, Let
L,y7y9sX,t be as above. We have 3,(Fogop)(t) =

= (dgr o Tgo Tpo X}(t) = (dp7 o Tg)((Tpo X)(t)). We shall prove
that .

we have T1pom™1x.0 viu o 2lx, 0 X () 7}

(3.4) (TpoX)(t) = 0.

Let us suppose that (Tgo X)(t)e 20U\ {0}. We have dyge F(TH)
and (a,g)”" (R\{0}) = Tlu\ {0}, Hence, 204\ {0} 1s open in
TM. Let us take neighbourhood U of ¢t in L such that

(TpoX)(x)e T\ {0} for xc U. Hence p(x) = O for xeU. This
implies T, ¢ = 0, which ends the proof of (3.4).

4. k~-derivations

4,1 Definition. By ak-derivation (ke~n)
on a differential space M at a point p of M we mean any
mapping FiF(M,p) — R such that for any o:,,B,o(1,0(2,...
oo sl g€ F(M,p) and ac R we have

(401) F(“"‘ﬁ) = F(CX) + F(ﬁ)y F(BOl) = aF(G),
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8 J. Wréblewski

(402) F(d1'°( ‘moo’o(k_."‘) =
= E (_1)1+#AF< I'T 0(1> « [T eylpd,
GAAGN 14 LeNy, )\ A iea

where N]“_1 = {1,2,...,k+1} and # A stands fdr the cardinal
number of the set A.

Acoording to above definition by 1-derivations on M at p
we call vectors tangent to M at p, because for k = 1 (4,2)
can be written as F(a1oor2) = F(ozq)'orz(p) + F(0(2)°0(1(p).

42 R emark, Let F be 8 k~derivation on M at p,
For any o ¢ F(¥,p) equal to O on a neighbourhood U of p we
have P(x) = 0,

To prove the remark it suffices to put in (4.2) xq =
and o, = X3 = eee =0p 4 = Iy

Denote by F(M,p) the set {aeF(M.p);a(p) = 0}

4.3, T heorem. Lot the mapping F:F(M,p)— R sa~-
tisfy the condition (4.1) fer o, 8¢ F(M,p), ac R+ Then F
is a k-derivation on M at p iff F“Pointsm’ = 0 and for any
*q90ppeee g 4 € FO(M,p) F(ox10(2...ak+1) = Qe

Proof by an easy verification.

4.4. Corollary. If k<1 and F is a k-deriva-
tion on M at p then F is an l~derivation on M at p.

The set of k-derivations on M at p 1is & linear space
with respect to addition and multiplication defined as fol-
lows (F+G)(x) = Plx) + G(x), (aF){(x) = a(F(x)) for xe F(M,p)
and a ¢ R. This space we will denote by D:M. According to

Remark 4,2 and Theorem 4.3 DM is canonically isomorphic to

p
(m(ll,p)/mk+1 (M,p))*. The isomorphism is given by the formula

Fr— ([, o]+ (M, p) —=F(e)).
Then, it is related to the concept of k-jets used in the
theory of singularities of smooth mappings (see e.g. [10] Ye
4.5 Definition., Let f:M-—~1L and k be
a positive integer. By Dgf we denote the linear mapping of
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On jets in differential spaces 9

Dgx into D‘if(p)m defined by the following formula Dgf(P)(ﬁ) =

Ky and 8e F(N,£(p)).

= F(Bof) for P in Dy

5. The third kind of tangency of mappings

5¢1e Definition, Let us take any mappings
(2.1), a point p in M and a positive integer k. We say
that f 1is tahgent to g of order k at p (in the third
sense ), what we write in the form

{5.1) fEK’pB'
12¢ (2.2) holds and DEf = Dfs.

S5e2s Corollary. We have T M = D;M and
Tpf = D;f. Thua tangency of order 1 (in the first sense) is
egquivalent %o vangency of order 1 (in the third sense).

5.3 Proposition., For any [x,p] in4wk(M,p).
where k>2, ari any v in T
ment of4»k'1(TM,v)‘

F-of by en easy verification,

5.4 Cerollary. Let p be & point of a dif-
i'erential epace M and k Dbe a positive integer. For any v
in Tgﬁ ths wmapping ViF(M,p) — R defined by the formula

M the germ [dyxsv] is an ele-

¥{a) = dﬁa(v} is & k-~derivation on M at p.
5:5 Lermae Let M be a differential space, which
sgtructure is generated by a set C c:RP°int°n. Then we have
{ =
(5.2)  F(Th) = (sc({dyogaeClu{o ompz e F (M)} 1) pys nepmue

if, moreover, k is a positive integer then

(543) FIT5H) = (sc({dfujoc C}U
k=1 |
U ket-d i
U N e (oo goe F(TTM))) .
g) Uity Tl ' PointsT¥u

- 311 -



10 J. Wréblewski

Proof of (5.2) by an easy verification. (5.3) we obtain

from (5.2) by induction,

56 Pr oposition, Let ¥ be a differential
space, which structure is generated by a set CC RPointall.
For any p in M and any v,w in Tpl( suoch that v(x) = w(x)
for « € C we have v = w,

Proof by an easy verifiocation,

57 T heorem., Let f,g be mappings (2,1) and p
be ‘a point of M, For amy positive integer k the condition
(5.1) implies {2.33k). ,

Proof. Theorsm holds for k = 1 by Corollary 5.2.
Let us take any integer k > 1 and suppoae that theorem holds
for k - 1. For amy v in T, 1c{0,1,2,000,k-2} and
Be F(TiN) we have

k k=2-1 . ke2=i ,  pk=2-1 .
T f(v)(dTi+1N(/soJTTiN)> T r(w(aTiN Bot JTTiN)

- v(d";z‘i/s o2, | . '.r“"f) -
iy iy

km2-i, pke2ei 141 >
= vid Bol g oT : ¢ =
( iy ( iy )

kew2-1 ke2=i(, 1 )
= vid BoT Tf o7 =
<T1N ( Til>

- (dki-z-i Bonk=2¢ , pk=2-1_ N > .
TN M

- Tk-1f<Tk-1-iﬂTj'“(V)> (d:;§-1ﬁ> =

. pk=1 8<Tk-1_iﬂfrin(v ’> < d;;;-:l /5> .

The last equality follows from the induction hypothesis
k=g . T§'1g. If moreover (5.1) holds, we have for Be F(N)

te(v)(ak~1p) = aEHEE(v)) = agpo TEE(V) = d(Bo £)(v) =
= 7(po £) = DE2(F)(p) = DEE(F)(R) = Ma(v)(a58). Moreover,
- 312 -



On jets in differential spaces 11

1%2(v) is an element of T 7k=1N, which is equal

T:'1f(ﬂ(v))

% 1X-1N, Now, by Lemma 5.5 and Proposition 5.6

® Prklg(mv))
we have ka(v) = Tkg(v) for v in Tgﬁ, whioh ends the proof
of (2.3;k). For k=1, by Corollary 5.2, the inverse of
Theorem 5,7 holds. The following example shows that for k=2
the inverse of Theorem 5.7 is not true.

568 Example. ILet M, f and v be such a8 in
Bxample 3.,3. Define the mapping h:M —R by the formula
h(x) = x? We have Tf = Th. Henae T3f = T2h which yields
féz,oh.

However we have f;z’oh, because

D22(F)(1dg) = F(£) = 0 # 1 = P(h) = DZn(P)(1dp),

where F(g) = lim n2(3(1/n)-g(o)?v(s)) for g ¢ F(M,0).

B-—-oco

6. The case where Tpl is smooth of finite dimension

61 Proposition. Let W be a linear space
of finite dimension and let V be a subspace of W, Let
81900500098, be a basis of V and let f1,f2,....fm be such
elemente of W that f1+V,f2+V,...,fn+V form & basis of W/V.
Then the elements 31,02,...,an,f1,f2,...,fm form a basis of W,

Proof by a direct verification.

6.2, Proposition. Let p be a point of
8 differential space M and k be 8 positive integer, Let Z
be such set of elements of » (M,P), that the eet{x-t-mz(l,p);xez}

generates1u(M,p)/m2(M.p). Then the set {x1x2...xk+m¥+1(m,p);

k+1(m’p).

Xy9XpseeepXpe Z} generatea'mk(M,p)/m
Proof by an easy verification,
6.3, Defini1ition. By asmooth basis of tan-

gent space to a differentisl space M at a point p we mean

any system of veotor fields on neighbourhoods of p, 8such

thet their values at p form a basise of Tpﬂ. We say that
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12 Jo Wréblewski

Tpm is smoothly of finite dimension 1ff it has & smooth fi-
nite basis,

64 Lemma., Let (11,12....,xn) be a smooth ba-
sls of T M and let k> 1, Conelder the set of mappings
X . of the form FIM,p)ocxr= 38, 3y eesdy «
1idgeeely ’ e T L

2 k

where 1< i1s 125 cea < iks n. Then the mappings 11112."11‘

are k~derivatione on M at p and the elements xi i 1k “
1720

+ D‘;"u, 1<1,€1,< veus i< n, form a basis of the space
D:M/D‘;"u. '
Proof, It is easy %o verify that Y ool is
a k=derivation on M at p. 172
The space Diﬁl(/Dﬁ""l is canonically isomorphic to
»H

(wE(u,p) /wE*1(,p))"s The isomorphism is given by the formula

F+Dg'1llr——4-(u +mk+1(M.,p)i-—-F(0()) + Wo may identify those spa-
ces without anxiety of misunderstanding.
By assumption, X1(p).X2(p),...,Xn(p) form a basis of

DIM. Lot (o;+#2(M,p)s 121,2,0.,n) be the dual basis in
m(M,p)/m2(M.D)o Then, by Proposition 6.2, the set

B = {O(i ui XN +mk+1(li,p); ‘gj.si“’: izg ocoéikfzf n} genel‘&teﬂ

1%2  *x
mk(M.p)/mk”(M,p). Moreover, for 1<i,<i,< se0<ip<n and
1\<31\< 32\< ...Sijn we have

X (o, & seetry ) =
1112.-oik 31 32 jk

k
d~ 9 eesd Ay Az soelX (p) = l 3 o (pf) =
X X X 3 X J
1 M,y e ;Sk 1=1 ( 1y Je(1)

L]

0 for (11,i2,ooi,1k) # (31,j2’.-o;jk)

= ﬁ ((#{me Nk;im=1}> '>

fof i1=31, 12=32"0.'ik=jk,
- 314 -
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On jets in differential spacee’ 13

where Sk denotes the eet of all permutations of the set Nk‘
Henoce the elements of B are linearly independent and B is
a basis of «+k(u,p)/uf+1(l,p). Its dual basis is

/ K1 .
\xi112...ik/3“i112...1k + Dy My 1<i <, '"éiﬁ")'

Thus, so (xi 12"";‘1: + pg"‘u; 194,< 1< cve <t < n> is a

1
basis of D:M/D';"n.
Applying Proposition 6.1 to Lemma 6.4 we get

6e5e Coroalliary. The mappings X a
141500014

= (\qr—»&xi{axi ...ax 1a(p)> y 1<1<k, 1<1,<i,<.00<1;<n
form a basis of ng.

6,6, Theorems. Consider mappings (2.1) and let
us suppose that p is such point of M that TpH is smoothly
of finite dimension. Ior any positive integer k the condi-
tion (3.1) implies (5.1},

Proof. Let (X 1 Xppees Xy ) be a smooth basis of
T M. Assume (3.1). By Deflnition 3.1, for any positive inte=-
ger 1<k <‘$i1 126 ...\i1 n, and B¢ N(N) we have

5] 3 se e [ (ﬁcf)(p) = 9 9 ss e [E} (/308)(D)o
X X, X, X X, X,
11 i, i, 11 i, i,
k -
Hence we have Dpf x111n00011> (Xl 12...1 ) when
1$'i1$ iz> ces \1,Sn. The mepoings Dkf and ng are equal on
k

the basis listed in Corollary ¢.5. ﬁence we have Dpf = ng,
which ends the proof, __

The hypothesis in Theorem #.6 thet Tpm is smooth of
finite dimension is satisfied in the cese where M is of fi-
nits dimension (ses [7]). The enample of 4., Kowalczyk (see [3])
indicates that there exists a rather wide class of differen-
tigl epaces of finite dimensiocn: which are not differentiahble
aapifolds. Then, by THMeoren 5.6 the three concepis of tangency
57 mappirgs at tns point for zoaces of finite dimension are
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equivalent. Of course, sach differentiable C”™ -manifold is
a differential space of finite dimension, too,
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