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1, In general we follow the terminology of Harary [6].
In particular, by & graph we always mean a finite, simple graph
and we denois by V{G), B(G) and e(G) the vertex set, the edge

s8t Br. the sire {the number of edges) of a graph G, respec=~
tively. By dG(x} we danote the degree of a vertex x in G

and by A {0} we dsaote the maximum vertex degree in G. If
YCV(GY thee b, £]Y)] we denote the subgraph of G induced by
the verticas i Z,

In this paper we deal with problems related to graph de-
sonpocitions, By a decomposition of a graph G we mean a family
of adgs disjolnt subgraphs of G whose union is G. We shall
write G = H,UHyU 0o UHp to denote that {H,,H,,eeo,H,} 18
a dzeomposition of i, For a positive integer p, we define
& p-desomposition o be a decomposition into subgraphs with
maximum dsgree lsss than or egual to p. Y. Caro [3] and Bialo-
stocki and Hoditty [2] solved for r = 2 and 3 the following
dscompoeition probizm: deternmine all those graphs G whioh have
a 1=dscompoeibion conslating of isomcrphic copies of rK2
{by r¥, wo mzan ihe disjoint anion of r copiss of KQ).
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2 Z, Lono, M. Truszozyiski

Clearly, the following two conditions are necessary for suoh
a decomposition to exist

(1) e(G) = 0 (mod r)
(2) A{G)<e(G)/r.

Let us oall a graph which satisfies (1) and (2) and do not
have any 1-decomposition into isomorphic coples of rK2 an
exeaption. Caro [3] determined the set of exceptions for r =2
(there is exaotly one exeception in this case) and Bialostooki
and Roditty [2] determined the set of exceptions for r = 3
{there are 26 of them). Those results were an inspiration for
our investigations. Since the number of exceptions inoreases
rapidly with r, determining sets of exceptions for r>4
seems to be hopeless. Therefore we asked easier guestion:

Is it true that for every r the set of exceptions is
finite? To answer it we consider in the paper the following
more general question: '

Given positive integers TyseeesTys does a graph G have

a p-decomposition G = H,U .sc UH, such that e(H;) = r,,

1<i<k,

Partial answer to this question is given by Theorems 2 and 3,
proved in Section 2, which contains some sufficient conditions
for such a p-decomposition to exist. It turns out that this
condition dependes on the value X' (G) being the minimum number
of graphs in a p~decomposition of G. Let us note that X;(G)
coincides with X'(G), the chromatic index of G. Morsover, it
follows easily from celebrated Vizing ‘s Theorem that

{3) M(G)/pkx’p(a)s fae) + 1)/p].

In the last part of Section 2 we determine X (G) for a
certain class of graphs and we use this result, together with
Theorems 2 and 3 to prove that only finitely many graphs sa-
tisfying conditions (1) and

(2"} A{G)< pee(G)/r
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(which i1s an extension of the ccndition {2) to the case of
arbitrary p) do not heve any p-deccmposition into graphs
of size r, In particuiar, for p = 1 thia answers positively
our initial question.

Recently, we have laernt ¢hat the cese p = 1 was solved
independently by ilon [1]. However, as cur results concern
a more general situation, we desided to publish thsam. It
should bs noted here thet in the preaf of Lemme 4 we follow
Eﬁ]. Qur original proof of this lemns wes much longer,

2+ We start with an observation that saoch p-deecomposition
of a graph G corresponds to a p-bounded colouration of edges
of G (but not conversely), the notion introduced and investigat-
ed bj de Werra [7'. Hence some of methodsz he used can almost
iiterally be applied in our caps. First we state a technical
lemma,

Lenma 1o Let & and 3 be sdge disjoint graphs with
sizes a and b, respectively, having maximum degress less than
or equal to pe. Supposs that a + 1<b and let G = 4UB, Then
for every d, 0<sd<b - a, G Las a dacomposition into graphs A’
and B’ with sizes a + 4 and b -~ 4, respectively, and having
maximum degrees lsss than or equel to p. (Note that & can
bs equal to O i.e. & can have size C!l.

Proof. Clearly it suffices to prove the assertion
for d = 1, By an alternating walk we shall mesn, as usual
8 walk whose edges are alternatively iln A and B, We shall de-
compose the graph AUB intc alternating walke as follows. For
an arbitrary edge u of AUB let W be & maximal alternating
walk in AUB containing a, We remove the edges of W from G
and 1f there are any edges laft wa repeat this prpcedure as
many times as necessary., Lst W be the collection of walks
obtained in this way. Since a + 1<n thsre is a welk W' in W
which starts and ends with adgss from 3. et x and y Dbs
its end vertices. It follouws from tine constructicn that there
is no walk in W which stsriz in x with the sdge from 4,
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Hence d,(x) <dg(x) and similerly d,(y)<dp(y). Let W, (res-
pectively WB) be the set of those edges of W' which are in A
(respectively B). We define A’ (respectively B') to be ths
graph spanned in AUB by the edges in {E{A)\ WA)U Wy (reapac~
tively (8(B)\ Wz)UW,). Clearly o(4') = a + 1, e(B') = b = 1,
AMa' )< p and A(B)< p.

Now, we are ready to gilve a‘suffioient condition for the
existence of a p-decomposition of & graph G into graphs having
prescribed sizes.

Suppose 8, >see> 84 >0 We call a sequence (81,...,Bt}
{G4s0004G} such that e(Gy) = sy, for 1<1i<t. Let
r1> ...?—rk:) 0 and 512 cee> B> (O bes two sequencss of inte-
gers, We say that (r1,...,rk) is less than or equal to
(81,...,st) ((r1,...,rk)<(s1,...,at) in short) if the follow-
ing conditions hold:s

Yk_’ :
(4} ya 'rizédsi'
i=1 i=1
min(k,n) n
(5) T, £ T 8, for every 1<n<t,
i Lo 7
i=1 i=1

It could be noted here that the relaticn introduced i& indesd
a partial ordering. Let us observe also that (4) and (5) iuwply
that k>1t.

Theorem 2. Lat (51,.,.,81:) be a p~-fessible si-
guence for a graph G and let (r1,.«.,rk)é(s1,...,st). Ther
(ryyeeeyry) is a p-feasible sequence for G. (It should be not-
ed that in the case p = 1 this asszertion appsared already *a
the paper by Folkman and Fulksrson [5]).

Proof., First we shall prove the ssseriion in ti-
case when 8, - g <1, S0, let {H‘i*""ﬁt} ba a p-decomposil. i
of G such that e(H;) = 8y, for 1<1<¢, Clearly, (5) implisc
that

(6) ry < 8y for every feist,
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Let G, be an arbitrary subgraph of H, which has size r, (such
e graph exists singe 1< 31} and’ let A, be the graph obtained
from H.l by removing the edges of G‘l‘ Define moreover-n, = 1.
Assume that we have already defined graphs G; and A; and a po-
sitive integer n;, i<k, such that the following conditions
hold

{(7) A(Gi)SPQ
(8) e{G;) = ry,
{9) A(Ai)é Py
(10) n; <t,

(11} {E(.G")’.."E(Gi) ,E(ai)} is a partitiﬂn Uf-E(H.] onl.UE{Hni]l
Clearly, 61, A.l and n, satisfy all these conditions. We define
Gyyqe 43,9 804 n; , as follows, If riﬂseui}, then we takse
for Gy 4 an erbitrary subgraph of 4; which has .size r, 1 and
define A; +1 to be the graph obtained from A; by Temoving all
edges of Gy .. Finally we put n; , = nje If ri+1>a(.lti} then
1t follows from (11) that T4 + «es + Pieq” 8 toeee # sni.

This implies that n; < t. Moreover, by (6) we have
Ty doeee # T3 45T + eoe # rni, which yields i+1>ni. Henae

Bn1+1;‘°i+1;ri+1‘ By Lemma 1 it follows that there are

edge-disjoint graphs A’ and B’ such that A'U B’ = A;UH .,
a

Ma')<p, A(B')<p, 8(h') = x; , end e(B’) = e(4;) + e(H, )=
i

- 2y 40 Wo define Gy . = &', Ay, = B’y Ny 0 = 0y + 1u. One
cen readily verify that Gy,qy 45,9 BRA 0., satiefy (7)-(11),
So, by (7), (8) and (11) (r.!..._a,rk} is e p-feasible sequerce
for &, as olaimed.

Let us also ohsawrvé that the asscrtion.is trivially true
when t = 1, S0, now 18t ve sssww fhag the theorem fails for
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some graph G, Let s = (81,...,st) and = (ry,e.c,r)) be se~
quences such that r<s , s is p~feasible and r is not., We

can aBssume that G, r and s are choeen so that t 1s the least.
possible, Moreover, we can assume that r and s minimize
l{q: r<gqs<s}. Clearly we have r #s, t>2 and By - By>2.
Let {H1,...,Ht} be a p-decomposition of G such that e(Hi) = 84,
for 1<i<t, Suppose first that there is n, 1<n<t, such

n n
that ry = 2 84. Then (8,,...,8,) is p-feasidble for
i=1 i=1

HiU oo UH,, (r1,...,rn)s;(s1,...,an) and n <4, hence
(1‘1,.-.,rn) is p-feasible for H1U ecoUHno Similal‘ly
(rn+1,...,rk) is p-feasible for H  ,U ... UH;, consequsntly r

is p~feasible for G, which contradicts the way s and r were
n

n

chosen, So, for every n, 1<n<t, we have 3 _ T, <)} 5ye
i=1 i=1

Consider a sequence 51-1, BosesesSe 49 st+1 and relabel it

4 ’

SiseeesBy in an nonincreasing order and put s’ = (sa,...,s%).
Clearly r < s'’<s . Moreover s’ is p~feasible which follows
from Lemma 1 applied to H1 and Ht' But this egain contradicts
the way the sequences r and s were chosen., Hence the proof
is complete.

Now it 1s clear that to exhibit large sets.of p-feasible
sequences one needs to have p-fessible sequences which 1lie
high in the partial order of sequances introduced zbove. It
seems to be difficult to determine all mesximal p-feasible
sequsnces, The theorem below gives only very poor answer to
the problem outlined.

Theorenm 3. Let t = X' {G) and let @ = e(G) {a0d t},
O<m<t. Put 8, = eoa = 5y = [e(G)/t] and s, 4 = vcc = 5y =
= |a(G)/t]+ Then (84400048;) is p-feasible.

Proof., The assertion follows easily by repesated
application of Lemma 1.

Let us return to p-decompositions into graphs of aequal
size., To this end let

gr p = {G:[x(G):kp and e{ijskr, for soms vosltive itntager K}.
, !
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Lemma 4. For every pailr of integers p,r >1, there
are only finitely many graphs in §, 5 satiafying xb(G]:>
-t *
>[a(6)/pls
Proof. Consider Ge€ §, p* If kEBSr/P2 then a(G)<
<:g-(3{atGJ)2 + 65(G) = 1)s So, X'(G) =4(G) (see [4], pe119)

which implies XEIG} = [A(G)/ple

Remark Se It should be noted that if p is
even then stronger result holds, namely KE(G) =[A(G)/p] for
.every graph G. It follows easily from the fact that every
2d-regulsr graph hes a 2-factorization.

48 a corocllary.of these results wa obtain the following
theoram which rives the positive answer to our inigial que=
gtion about ¥ nitenses of the set of exceptions.

Theorasm 6., The set of graphs which satisfy (1)
and (2') and 7, not have a p-decompeosition into graphs of
size r is finite. Moreover, if p 1is even, then this set
is sapty.

Pro ofa. By (3) and Lemma 4 it follows that there
are only finitcly many grephs G satisfying (1) and (2') such
that xb(G}b-efd}frm So, the first part of the assertion fol-
lows from Thoo.rems 2 and 3. The second part follows from Re-
mark 5 and Theorems 2 and 3 agsain.
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