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In general we f o l l o w the terminology of Harary [ 6 ] , 
In p a r t i c u l a r , by e graph we always mean a f i n i t e , s imple graph 
and wc denote by V(G), S(G) and e(G) the v e r t e x s e t , the edge 
s s t ar; the s i r e ( the number of edges) of a graph G, re s p e c -
t i v e l ^ . By we denote the degree of a v e r t e x x i n G 
and bj a [ C ] m da note the maximum v e r t e x degree i n G. I f 
X c v(G> t h - ; b̂  G [x] we denote the subgraph of G induced by 
ths v e r t i c e s ic. X. 

In t h i s paper we deal w i th problems r e l a t e d to graph d e -
conpop i t ionc . By a decomposit ion of a graph G we mean a family 
of adgs d i s j o i n t subgraphs of G whose union i s G. We s h a l l 
w r i t s G = l-^OHgU , , . 0 H n t o denote that {H1 , H 2 , . . . ,Hn} i s 
a dacompositioi? of 0» For a p o s i t i v e i n t e g e r p, we d e f i n e 
e p-daooiaposltlon to be a decomposit ion i n t o subgraphs w i t h 
maximum degree l e s s than or equal to p. Y. Caro [3] and B i a l o -
s t o c k i and Roditty j_2] so lved f o r v = 2 and 3 ths f o l l o w i n g 
decomposit ion problem: determine a l l those graphs G which have 
a l-deeompcsi&ioii c o n s i s t i n g of isomorphic c o p i e s of rKg 
(by rK,j wo ma an the d i s j o i n t union of r c o p i e s of Kg). 
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Clearly, the following two conditions are necessary for suoh 
a decomposition to exist 

(1) e(G) s 0 (mod r) 
(2) A (G)«e(G)/r. 

Let us call a graph which satisfies (1) and (2) and do not 
have any 1-decomposition into isomorphic copies of rKg an 
exception. Caro [3] determined the set of exceptions for r » 2 
(there is exaotly one exception in this case) and Bialostocki 
and Roditty [2] determined the set of exceptions for r * 3 
(there are 26 of them). Those results were an inspiration for 
our investigations. Sinoe the number of exceptions increases 
rapidly with r, determining sets of exceptions for r 4 
seems to be hopeless. Therefore we asked easier question: 

Is it true that for every r the set of exceptions is 
finite? To answer it we consider in the paper the following 
more general question: 

Given positive integers r1,...,rj£, does a graph G have 
a p-decompoaition G » H 1U ...UH^ such that e(H^) = r^, 
1 ^ i ^ k . 

Partial answer to this question is given by Theorems 2 and 3, 
proved in Section 2, which contains some sufficient conditions 
for such a p-decomposition to exist. It turns out that this 
condition depends on the value x'p(G) being the minimum number 
of graphs in a p-decomposition of G. Let us note that X^(G) 
coincides with X'(G), the chromatic index of G. Moreover, it 
follows easily from celebrated Vising's Theorem that 

(3) rAU)/p]<X' p(GU T(MG) + 1)/p]. 

In the last part of Section 2 we determine x'p(G) for a 
certain class of graphs and we use this result, together with 
Iheoreais 2 and 3 to prove that only finitely many graphs sa-
tisfying conditions (1) and 

(2') A (G)^ p«e(G)/r 
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(which is an extensile of the condition (2) to the case of 
arbitrary p) do not hcve an? p-d«eeaposition into graph« 
of size r. In particular, for d • 1 thia answers positively 
our initial question. 

Recently, we have learnt that the oase p » 1 was solved 
independently by Alon [l]. However, as our results concern 
a more general situation, we decided to publish tham. It 
should bs noted here that in the proof cf Lemma 4 we follow 
[ij. Our original proof of this lemma we« much longer. 

2. We start with an observation that eaoh p-deoomposition 
of a graph G corresponds to a p-bounded colouration of edges 
of G (but not conversely), the notion introduced and investigat-
ed by de Werra [?j» Hence some of methods he used oan almost 
literally be applied in our case. First we state a technical 
lemma. 

L e m m a 1. Let A and 3 be edge disjoint graphs with 
sizes a and b, respectively, having maximum degrees less than 
or equal to p. Suppose that a + 1<b and let G = A U B. Then 
for every d, 0 < d ^ b - a, G has a decomposition into graphs A' 
and B' with sizes a + d and b - d, respectively, and having 
maximum degrees less than or equal to p. {Note that a oan 
be equal to 0 i.e. A can have size 0). 

P r o o f . Clearly it suffices to prove the assertion 
for d = 1. By an alternating walk we shall mean, as usual 
a walk whose edges are alternatively in A and B. We shall de-
compose the graph A UB into alternating walks as follows. For 
an arbitrary edge u of AUB let W be a maximal alternating 
walk in A UB containing a, We remove the edges of W from G 
and if there are any edges left we repeat this procedure as 
many times as necessary. Let W be the collection of walks 
obtained in this way. Since a + 1<b there is a walk W' in W 
which starts and ends with edges fron D. Let x and y be 
its end vertioes. It follows from toe construction that there 
is no walk in VV which, starts in s with the edge-, from A. 
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H9nce d A ( x ) < d g ( x ) and s imilarly d A ( y ) < d g ( y ) . Let WA ( r e s -
pect ively Wg) be the set of those edges of W' which are in A 
(respectively B). We define A' (respectively B ) to be tha 
graph spanned in AUB by the edges in (E(A) \ WA)UWg (respec-
t ive ly (B(B)\ Wfi)UWA). Clearly e(A') = a + 1, e (B ' ) = b - 1, 
A ( A ' ) < P and A ( B ' ) 4 p . 

Now, we are ready to give a s u f f i c i e n t condition for" the 
existence of a p-decomposition of a graph G into graphs having 
preeoribed s i z e s . 

Suppose s 1 ^ . . ._> e^ > 0. We c a l l a sequence ( s . j . fa.£j 
a p-feas ible sequence for a graph G i f G has a p-deoomposition 
| G 1 , , . . , G t } such that e ^ ) = s i t for l ^ i ^ t . Let 

. . . i - r ^ O and s . ^ . . . > s t > 0 be two sequences of in te-
g e r s . We say that ( r ^ , . . . , ^ ) i s l e se than or equal to 
( s 1 , « . . t s t ) ( ( r ^ . . , r , J ( s 1 , . . . f 8 t ) in short) i f the follow-
ing conditions hold* 

k t 

i='i 

minikin) n 
(5) y r i ^ X L s i * f o r e v e I > 3 ' 1 « i n < t . 

i=1 i=1 

I t could be noted here that the re l a t ion introduced i s indeed 
a par t i a l ordering. Let us observa also that (4) and (5) i-apl,y 
that k > t . 

T h e o r e m 2. Let ( e 1 , . i , . , e t ) be a p-feas ible se -
quence for a graph G and le t i r 1 , , , , , r J [ ) € ( a 1 , . . M s t ) , Ther 
( r 1 t . . . , r k ) i s a p- feas ib le sequence for G. ( I t should be not-
ed that in the case p = 1 this a s ser t ion appeared already in 
the paper by Folkman and Fulkarson [5])» 

P r o o f . F i r s t we sha l l prove the assert ion in th-
oase when s^ - s t s ; 1 . So, l e t [ H ^ , , . . , H t | be a p-decooposi:i.oxj 
of G such that e(H i) = s i t for K - i ^ t . Clearly , (5) rzclL. 
that 

(6) r i ^ 3 i 9Ver'3' l ^ i ^ t . 
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Let G.j be an arbitrary subgraph, of Ĥ  whioh has size r1 (suoh 
a graph exists since s^} and'let Â  be the graph obtained 
from H1 by removing the edges of Define moreover-n.j «= 1. 
Assume that we have already defined graphs G i and A i and a po-
sitive integer r^, i < k , such that the following conditions 
hold 

(7) A t G j U p , 

(8) e(G±) * r i 9 

(9) A (A ± ) <p , 

(10) 

{11} {B(G1 ) , . . . ,S(G i ) , lS(A i ) ) is a partition of ;B(H., )U. ..UEiH^), 

Clearly, G^, Â  and n^ satisfy a l l these conditions. We define 
Gi+1* Ai+1 a n d ni+1 a s f o l l o w e » I f t h s n w e t a k a 
for G i +1 an arbitrary subgraph of A^ which has size r i + 1 and 
define A i + 1 to be the graph obtained from A^ by removing al l 
edges of G i + 1 . Finally we- put n i + 1 » n i . I f r i + 1 > e( A i) then 
it follows from (11) that r 1 + . . . + r i + 1 > s 1 + . . . + 

2Chis implies that n^ < t . Moreover, by (6) we have 
r^ + . . . + r i + i : > : ! ? i + ••• * » which yields i+1 > n i . Hence 
sn +1 > s i +1 Lemma 1 ^ follows that there are 

edge-disjoint graphs A' and B' such that A'U B' = A^U HQ + 1 , 

A ( A ' ) « p t AiB' ) < p* e(A' } end e(B') = e(A±) + e(H .,) -

- r ± + 1 . We define G i +1 « A' »,A1+1 B' > n i + 1 » n± + 1». One 
can readily verify thai.* G ^ , ¿ i + 1 and n , ^ satisfy (7)- (11). 
So, by (7), (8) and (11) (r.j, „.»»r^} is a p-feasible sequence 
for G, as claimed* 

Lat us also observe that live assertion -is trivially true 
when t - 1» Soj now .let as n&oucte th*c the theorem fa i l s for 

~ 299 -



6 Z. Lone, M. Truszczynski 

some graph G. Let s= (b.j , . . . ,s.jJ and r = ( r . j , 1 ^ ) be se-
quences, such that f ^ s f s is p-feasible and r is not. We 
can assume that G, r and 5 are chosen so that t is the least 
possible. Moreover, we can assume that r and 5 minimize 
|{<7 : r^q<is}\. Clearly we have r 4 s , t > 2 and s1 - s t > 2. 
Let be a p-decomposition of G such that = s i t 

for 1«£iiSt. Suppose f i r s t that there i s n, 1 < n < t , such 
n n̂  

that JZ r-i = H I 8-i • Then ( s 1 f . . . f s ) is p-feasible for 
i=1 A i=1 1 1 n 

^ U UHfl, ( r ^ , . . . f r n ) iS ( s 1 , s n ) and n < t , hence 
) is p-feasible for H^U . . . U H n . Similarly 

( r n + - j • • • • is p-feasible for U . . . U Ht, consequently r 
is p-feasible for G, which contradicts the way s and r were 

n n 
chosen. So, for every n, "liCn^st, we have J7, r. < XH s . . 

i=1 1 i=1 1 

Consider a sequence s.j-1, Sg, . . . ,s t_.j, st+1 and relabel it 
in an nonincreasing order and put s' = ( s ^ . . 

Clearly r sg s' < s . Moreover s' is p-feasible which fo l lows 
from Lemma 1 applied to Ĥ  and H^. But this again contradicts 
the way the sequences r and s were chosen. Hence the proof 
is complete. 

Now it is clear that to exhibit large sets.of p-feasible 
sequences one needs to have p-feasible sequences which l ie 
high in the partial order of sequences introduced above. It 
seems to be d i f f icu l t to determine a l l maximal p-feasible 
sequences. The theorem below gives only very poor answer to 
the problem outlined. 

T h e o r e m 3. Let t = X' (G) and l e t m = e(G) Uod t ) , p 
0 ^ m < t . Put s.j = . . . = sm = [e(G)/t] and sm+1 = . „, = s t = 
= [e(G)/tJ. Then ( s . j f . . . , 8 t ) is p-feasible. 

P r o o f . The assertion follows easily by repeated 
application of Lemma 1. 

Let us return to p-decompositions into graphs of equal 
size. To this end let 

= | G: A (G)=kp and e(G}-<ki% for soma positive integer k'r. 
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L e m ai a 4. For every pair of integers p , r ^ 1 , there 
are only f i n i t e l y many graphs in s a t i s f y i n g X ' jG ) > 
> i A ( G ) / p l . 

P r o o f s Consider Ge I f k>3r/p 2 then e ( G } < 

< 1 ( 3 ( A ( G ) ) 2 + 6A(G) - 1). So, %'(G) = A (G) (see [ 4 ] , p.119) 
whioh impl ies X' (S ) = [A (G )/p ] , 

R e m a r k 5« I t should be noted that i f p i s 
even then stronger resul t holds, namely . (Gi = r £(G)/p ] f o r 
every graph G. I t f o l l ows eas i l y from the " f a c t that every 
2d-regular graph has a 2 - f a c t o r i z a t i on , 

As a c o ro l l a r y .of these resu l t s we obtain the f o l l ow ing 
theorem which l ives the pos i t i ve ansv/er to our i n i t i a l que-
st ion about f:niteness of the set of exceptions. 

T h e 0 r 9 m 6. The set of graphs which s a t i s f y (1 ) 
and (2') and do not have a p~decompcsition into graphs of 
s i ze r i s f i n i t e . Moreover, i f p i s even, then th is set 
i s empty. 

P r o o f , By (3) and Lecima 4 i t f o l l ows that there 
are only f i n i t e l y many graphs G s a t i s f y i n g (1 ) and ( 2 ' ) such 
that %' (G ) >e (G ) / r . So, the f i r s t part of the assert ion f o l -
lows from The rams 2 and 3. The second part f o l l ows from He-
mark 5 and Theorems 2 and 3 again. 
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