

Zbigniew Lonc, Mirosław Truszczyński

DECOMPOSITION OF GRAPHS INTO GRAPHS
WITH BOUNDED MAXIMUM DEGREES*Dedicated to the memory
of Professor Roman Sikorski*

1. In general we follow the terminology of Harary [6]. In particular, by a graph we always mean a finite, simple graph and we denote by $V(G)$, $E(G)$ and $e(G)$ the vertex set, the edge set and the size (the number of edges) of a graph G , respectively. By $d_G(x)$ we denote the degree of a vertex x in G and by $\Delta(G)$ we denote the maximum vertex degree in G . If $Y \subseteq V(G)$ then by $G[Y]$ we denote the subgraph of G induced by the vertices in Y .

In this paper we deal with problems related to graph decompositions. By a decomposition of a graph G we mean a family of edge disjoint subgraphs of G whose union is G . We shall write $G = H_1 \dot{\cup} H_2 \dot{\cup} \dots \dot{\cup} H_n$ to denote that $\{H_1, H_2, \dots, H_n\}$ is a decomposition of G . For a positive integer p , we define a p -decomposition to be a decomposition into subgraphs with maximum degree less than or equal to p . Y. Caro [3] and Bialostocki and Roditty [2] solved for $r = 2$ and 3 the following decomposition problem: determine all those graphs G which have a 1-decomposition consisting of isomorphic copies of rK_2 (by rK_2 we mean the disjoint union of r copies of K_2).

Clearly, the following two conditions are necessary for such a decomposition to exist

$$(1) \quad e(G) \equiv 0 \pmod{r}$$

$$(2) \quad \Delta(G) \leq e(G)/r.$$

Let us call a graph which satisfies (1) and (2) and do not have any 1-decomposition into isomorphic copies of rK_2 an exception. Caro [3] determined the set of exceptions for $r = 2$ (there is exactly one exception in this case) and Bialostocki and Roditty [2] determined the set of exceptions for $r = 3$ (there are 26 of them). Those results were an inspiration for our investigations. Since the number of exceptions increases rapidly with r , determining sets of exceptions for $r \geq 4$ seems to be hopeless. Therefore we asked easier question:

Is it true that for every r the set of exceptions is finite? To answer it we consider in the paper the following more general question:

Given positive integers r_1, \dots, r_k , does a graph G have a p -decomposition $G = H_1 \dot{\cup} \dots \dot{\cup} H_k$ such that $e(H_i) = r_i$, $1 \leq i \leq k$.

Partial answer to this question is given by Theorems 2 and 3, proved in Section 2, which contains some sufficient conditions for such a p -decomposition to exist. It turns out that this condition depends on the value $\chi'_p(G)$ being the minimum number of graphs in a p -decomposition of G . Let us note that $\chi'_1(G)$ coincides with $\chi'(G)$, the chromatic index of G . Moreover, it follows easily from celebrated Vizing's Theorem that

$$(3) \quad \lceil \Delta(G)/p \rceil \leq \chi'_p(G) \leq \lceil (\Delta(G) + 1)/p \rceil.$$

In the last part of Section 2 we determine $\chi'_p(G)$ for a certain class of graphs and we use this result, together with Theorems 2 and 3 to prove that only finitely many graphs satisfying conditions (1) and

$$(2') \quad \Delta(G) \leq p \cdot e(G)/r$$

(which is an extension of the condition (2) to the case of arbitrary p) do not have any p -decomposition into graphs of size r . In particular, for $p = 1$ this answers positively our initial question.

Recently, we have learnt that the case $p = 1$ was solved independently by Alon [1]. However, as our results concern a more general situation, we decided to publish them. It should be noted here that in the proof of Lemma 4 we follow [1]. Our original proof of this lemma was much longer.

2. We start with an observation that each p -decomposition of a graph G corresponds to a p -bounded colouration of edges of G (but not conversely), the notion introduced and investigated by de Werra [7]. Hence some of methods he used can almost literally be applied in our case. First we state a technical lemma.

Lemma 1. Let A and B be edge disjoint graphs with sizes a and b , respectively, having maximum degrees less than or equal to p . Suppose that $a + 1 < b$ and let $G = A \cup B$. Then for every d , $0 \leq d \leq b - a$, G has a decomposition into graphs A' and B' with sizes $a + d$ and $b - d$, respectively, and having maximum degrees less than or equal to p . (Note that a can be equal to 0 i.e. A can have size 0).

Proof. Clearly it suffices to prove the assertion for $d = 1$. By an alternating walk we shall mean, as usual a walk whose edges are alternatively in A and B . We shall decompose the graph $A \cup B$ into alternating walks as follows. For an arbitrary edge u of $A \cup B$ let W be a maximal alternating walk in $A \cup B$ containing u . We remove the edges of W from G and if there are any edges left we repeat this procedure as many times as necessary. Let W be the collection of walks obtained in this way. Since $a + 1 < b$ there is a walk W' in W which starts and ends with edges from B . Let x and y be its end vertices. It follows from the construction that there is no walk in W which starts in x with the edge from A .

Hence $d_A(x) < d_B(x)$ and similarly $d_A(y) < d_B(y)$. Let W_A (respectively W_B) be the set of those edges of W' which are in A (respectively B). We define A' (respectively B') to be the graph spanned in $A \cup B$ by the edges in $(E(A) \setminus W_A) \cup W_B$ (respectively $(E(B) \setminus W_B) \cup W_A$). Clearly $e(A') = a + 1$, $e(B') = b - 1$, $\Delta(A') \leq p$ and $\Delta(B') \leq p$.

Now, we are ready to give a sufficient condition for the existence of a p -decomposition of a graph G into graphs having prescribed sizes.

Suppose $s_1 \geq \dots \geq s_t > 0$. We call a sequence (s_1, \dots, s_t) a p -feasible sequence for a graph G if G has a p -decomposition $\{G_1, \dots, G_t\}$ such that $e(G_i) = s_i$, for $1 \leq i \leq t$. Let $r_1 \geq \dots \geq r_k > 0$ and $s_1 \geq \dots \geq s_t > 0$ be two sequences of integers. We say that $(r_1, \dots, r_k) \leq (s_1, \dots, s_t)$ (or $(r_1, \dots, r_k) \leq (s_1, \dots, s_t)$ in short) if the following conditions hold:

$$(4) \quad \sum_{i=1}^k r_i = \sum_{i=1}^t s_i,$$

$$(5) \quad \sum_{i=1}^{\min(k, n)} r_i \leq \sum_{i=1}^n s_i, \quad \text{for every } 1 \leq n < t.$$

It could be noted here that the relation introduced is indeed a partial ordering. Let us observe also that (4) and (5) imply that $k \geq t$.

Theorem 2. Let (s_1, \dots, s_t) be a p -feasible sequence for a graph G and let $(r_1, \dots, r_k) \leq (s_1, \dots, s_t)$. Then (r_1, \dots, r_k) is a p -feasible sequence for G . (It should be noted that in the case $p = 1$ this assertion appeared already in the paper by Folkman and Fulkerson [5]).

Proof. First we shall prove the assertion in the case when $s_1 - s_t \leq 1$. So, let $\{H_1, \dots, H_t\}$ be a p -decomposition of G such that $e(H_i) = s_i$, for $1 \leq i \leq t$. Clearly, (5) implies that

$$(6) \quad r_i \leq s_i \quad \text{for every } 1 \leq i \leq t.$$

Let G_1 be an arbitrary subgraph of H_1 which has size r_1 (such a graph exists since $r_1 \leq s_1$) and let A_1 be the graph obtained from H_1 by removing the edges of G_1 . Define moreover $n_1 = 1$. Assume that we have already defined graphs G_i and A_i and a positive integer n_i , $i < k$, such that the following conditions hold

$$(7) \quad \Delta(G_i) \leq p,$$

$$(8) \quad e(G_i) = r_i,$$

$$(9) \quad \Delta(A_i) \leq p,$$

$$(10) \quad n_i \leq t,$$

$$(11) \quad \{E(G_1), \dots, E(G_i), E(A_i)\} \text{ is a partition of } E(H_1) \cup \dots \cup E(H_{n_i}).$$

Clearly, G_1 , A_1 and n_1 satisfy all these conditions. We define G_{i+1} , A_{i+1} and n_{i+1} as follows. If $r_{i+1} \leq e(A_i)$, then we take for G_{i+1} an arbitrary subgraph of A_i which has size r_{i+1} and define A_{i+1} to be the graph obtained from A_i by removing all edges of G_{i+1} . Finally we put $n_{i+1} = n_i$. If $r_{i+1} > e(A_i)$ then it follows from (11) that $r_1 + \dots + r_{i+1} > s_1 + \dots + s_{n_i}$.

This implies that $n_i < t$. Moreover, by (6) we have

$r_1 + \dots + r_{i+1} > r_1 + \dots + r_{n_i}$, which yields $i+1 > n_i$. Hence

$s_{n_i+1} \geq s_{i+1} \geq r_{i+1}$. By Lemma 1 it follows that there are

edge-disjoint graphs A' and B' such that $A' \cup B' = A_i \cup H_{n_i+1}$,

$\Delta(A') \leq p$, $\Delta(B') \leq p$, $e(A') = r_{i+1}$ and $e(B') = e(A_i) + e(H_{n_i+1}) -$

$- r_{i+1}$. We define $G_{i+1} = A'$, $A_{i+1} = B'$, $n_{i+1} = n_i + 1$. One

can readily verify that G_{i+1} , A_{i+1} and n_{i+1} satisfy (7)-(11).

So, by (7), (8) and (11) (r_1, \dots, r_k) is a p -feasible sequence for G , as claimed.

Let us also observe that the assertion is trivially true when $t = 1$. So, now let us assume that the theorem fails for

some graph G . Let $s = (s_1, \dots, s_t)$ and $r = (r_1, \dots, r_k)$ be sequences such that $r \leq s$, s is p -feasible and r is not. We can assume that G , r and s are chosen so that t is the least possible. Moreover, we can assume that r and s minimize $\{|q : r \leq q \leq s|\}$. Clearly we have $r \neq s$, $t \geq 2$ and $s_1 - s_t \geq 2$. Let $\{H_1, \dots, H_t\}$ be a p -decomposition of G such that $e(H_i) = s_i$, for $1 \leq i \leq t$. Suppose first that there is n , $1 \leq n < t$, such that $\sum_{i=1}^n r_i = \sum_{i=1}^n s_i$. Then (s_1, \dots, s_n) is p -feasible for $H_1 \cup \dots \cup H_n$, $(r_1, \dots, r_n) \leq (s_1, \dots, s_n)$ and $n < t$, hence (r_1, \dots, r_n) is p -feasible for $H_1 \cup \dots \cup H_n$. Similarly (r_{n+1}, \dots, r_k) is p -feasible for $H_{n+1} \cup \dots \cup H_t$, consequently r is p -feasible for G , which contradicts the way s and r were chosen. So, for every n , $1 \leq n \leq t$, we have $\sum_{i=1}^n r_i < \sum_{i=1}^n s_i$. Consider a sequence $s_{t-1}, s_2, \dots, s_{t-1}, s_{t+1}$ and relabel it s'_1, \dots, s'_t in an nonincreasing order and put $s' = (s'_1, \dots, s'_t)$. Clearly $r \leq s' < s$. Moreover s' is p -feasible which follows from Lemma 1 applied to H_1 and H_t . But this again contradicts the way the sequences r and s were chosen. Hence the proof is complete.

Now it is clear that to exhibit large sets of p -feasible sequences one needs to have p -feasible sequences which lie high in the partial order of sequences introduced above. It seems to be difficult to determine all maximal p -feasible sequences. The theorem below gives only very poor answer to the problem outlined.

Theorem 3. Let $t = \chi'_p(G)$ and let $m \equiv e(G) \pmod{t}$, $0 \leq m < t$. Put $s_1 = \dots = s_m = \lceil e(G)/t \rceil$ and $s_{m+1} = \dots = s_t = \lfloor e(G)/t \rfloor$. Then (s_1, \dots, s_t) is p -feasible.

Proof. The assertion follows easily by repeated application of Lemma 1.

Let us return to p -decompositions into graphs of equal size. To this end let

$$\mathcal{G}_{r,p} = \{G : \Delta(G) = kp \text{ and } e(G) \leq kp, \text{ for some positive integer } k\}.$$

Lemma 4. For every pair of integers $p, r \geq 1$, there are only finitely many graphs in $\mathcal{G}_{r,p}$ satisfying $\chi'_p(G) > \lceil \Delta(G)/p \rceil$.

Proof. Consider $G \in \mathcal{G}_{r,p}$. If $k \geq 3r/p^2$ then $e(G) < \frac{1}{8} (3\Delta(G))^2 + 6\Delta(G) - 1$. So, $\chi'(G) = \Delta(G)$ (see [4], p.119) which implies $\chi'_p(G) = \lceil \Delta(G)/p \rceil$.

Remark 5. It should be noted that if p is even then stronger result holds, namely $\chi'_p(G) = \lceil \Delta(G)/p \rceil$ for every graph G . It follows easily from the fact that every $2d$ -regular graph has a 2-factorization.

As a corollary of these results we obtain the following theorem which gives the positive answer to our initial question about finiteness of the set of exceptions.

Theorem 6. The set of graphs which satisfy (1) and (2') and do not have a p -decomposition into graphs of size r is finite. Moreover, if p is even, then this set is empty.

Proof. By (3) and Lemma 4 it follows that there are only finitely many graphs G satisfying (1) and (2') such that $\chi'_p(G) > e(G)/r$. So, the first part of the assertion follows from Theorems 2 and 3. The second part follows from Remark 5 and Theorems 2 and 3 again.

REFERENCES

- [1] N. Alon : A note on the decomposition of graphs into isomorphic matchings, *Acta Math. Hungar.* 42 (1983), 221-223.
- [2] A. Bialostocki, Y. Roditty : $3K_2$ -decompositions of a graph, *Acta Math. Acad. Sci. Hungar.*, 40 (1982), 201-208.
- [3] Y. Caro : The decomposition of graphs into graphs having two edges, unpublished paper.

- [4] S. Fiorini, R.J. Wilson : Edge colorings in graphs, in Selected Topics in Graph Theory. London 1978, 103-126.
- [5] J. Folkman, D.R. Fulkerson : Edge colourings in bipartite graphs, Combinatorial mathematics and their applications. University of North Carolina Press, Chapel Hill, 1969.
- [6] F. Harary : Graph Theory. Reading, 1969.
- [7] D. de Werra : Equitable colorations of graphs, Rev. Fr. Inform. Rech. Oper. R-3 (1971) 3-8.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA

Received July 13, 1984.