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The meinod of finite elements generally is used for the
boundary value problems, In some papers concerned with its
appiicatici to teohnical problems this methed is also used
for initlisl value problems but without any theoretical expla=-
nstions oi une convergence of the approximative solutions to
the exact cne (see esg. [2], [3])s To this aim the latter
problem will be studied in this paper. The results of this
work generalise to the nonlinear case the results of [4], [5].

1e Let T>0 be a fixed constant and f: <O.T>xR2——-—R
be a Lipschitz continuous function, i.e. there exists some
L>0, such that for any t,,t,€ {0,T> and for any
X19Xp97¢9¥5 € k
(1) 1808, xq00q) = £085,%5,75) < LUty =ty | +]x4=%Xp] +]74-F5| e
For syy ¥,,%¥q¢ R 1ot us consider the Cauchy problenm (for

0
A r{.\,“) .
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2 ___ K. Litewka, J. Muszydski

(2) x = £(t,x,x)
and
(3) x(0) = x,, x(0) = x4,

By assumptions made on the function f problem (2), (3)
has exaotly one solution existing on < 0,T).

2, Lemma., For any te<0,?> and any 3¢ R such that
t+7¢ {0,T)> the solution x of (2), (3) satisfies

(4) x(t+7) = x(t) +7x(8) + 32%(%) + oz,

Proof. The solution x of the (2), (3) is of the
class 02(<0,T>). Thus the functions x and X are bounded

K, = x(t)| , = x(t)|.
1 <6n?;> |x(¢)], K, <3?;> |x(t)]

By Taylor s rule

(5) x(t+7) = x(%) + 7 x(¢) + %ﬁi(uez)

for some S¢(0,1). For the solution x we have (for 6 =087)
by (2) and (1)

|X(t+6) - Z(t)] = | £({t+s, x(t+6), x(t+s)) - £(t, x(t), x(%))l<
<L(|6] + | x(t+6) = x(¢)] + |x(t+6) - x(¢)]) =

= L(|6] +|%(£+6,6)]| 6] + | Z(t+8,8)|[6] )<

< L(1+4K +K5) |8] <L(14K,+K5) | 7]

for some 84, 65 € (0,1)s Then x(t+87) = x(t) + 0(z) and then
from (5) we obtain (4).
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Finite elsments meihod 3

3+ Now let us introduce the finite elements method by
the standard procedure. Choose any natural integer N, let
h =3 . Let 9" he the functions given for ps0,1,e..,N by

f.p+1 for te(pa-h, ph>
hy,, t
(e) gap(t; =s{~p+Pp+1 for te(ph, phth),

[ 0 for te<0,T>\ {ph-h,ph+h},

For p = 0 and p = N the funotions gah are considered only on

{0,T The fuactions gog are differentiable for all te<0,T)
sxcept somz of the points ph, p = 1,2,+4.,8~1, where they havs
the left snd xight derivatives.
We will look for approximate solution xh of the form:
¥
(7) ) = ) apelit),

k=0

where o teR, k = 0,1,2,000,8 are unknewn conetants, Let us

notice that for any aﬁe R the funotion xh ig differentiable

for all te{0,T) except perhapes for points kh, k = 1,2,e4e4N=1
where it has left and right derivatives, From now on Szh(t)
will denote the right derivative in t. Observe that

(8) ap = 2 (kn),

The function x of the form (7) is said to be an approxi-
mate solution if it satisfies the initial conditions

(9) £(0) = x (0} = x,

o'
and the "Galsriin rule? of the foram

m
L
4 * N N . N ‘> N
{50} J [ih(t)¢1(t)+i'(r.,xh{t;,xh'(t),w,_z.’ﬁ;fdt = 0y I=1,2,000 i1,
0
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4 K. Litewska, J. Mussytdski

The firast condition gives ah

o ® xo.ozocpo(()) +o<1go1(0) - x,

and thus
h of -og
(11) ao - xog '——r'—' = x1.

Let us examine the equations (10). The functions o, have
support on { lh-h, lh+h>, and thue

lh+h
(12) S [#05,00) + 26,2808),80))py(0)] s = o,
lh-h
l = 1,2,00e, =1,
Inserting x2 from (7) into (12) and taking into acoount that
in the interval {lh-h, lh+h) only three funotions: P1.12P10
9141 are not identically equal to zero we obtain

(13)

lh+h [ 141
{ aleBie)pB(t) +

lh-h

1+1 141
£ (t, E k<pk(t). E O(k¢k(t)> cptll(t)} dt = 0,
N\ k=l=1

k=1=1

k=1-1

l= 1,2,00.,“"1-

Dividing the intervel of integretion into two parts: {lh-h,lh>
and < 1h,l1h+h) and using (6) we get
h A h

o - 207 + O
1+1 1 1=-1 _
(14) B =

1h
= f f<t’°‘k11-19p}i-1(” + 308 (8) o] 4974 (8) +
1h-h

+o<lgol(t)> Soil(t)dt +
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Finite elements method 5

lh+h

¢ f <'°‘1§"1“"+°‘1+1‘P1+1(“'°‘1‘P1(”+°‘1+19"1+1(“> (t)at,
1h
1= 1,2|.00'N"1¢
To the integral given in (14) we apply the trapezoidal rule
of integration, hence

h h,_h
%141 7 %01 * %1
(15) h2 =

1 n
= E{f\lhv"l' § fad-od 1’) + 2(1n,08, 1 (of, -0 ’)}

l-= 1,2,.0..N-1-

The received systeam (15) with the conditions (11} will be
treated as difference schemsa for the problem (2), (3), For
the system (15) and (11) we will prove that for sufficiently
small h all the coeffioients<x?, 1l = 0,74ece,N can be found,
and that the corresponding approximate sclutions (7) converge
to the solution of (2), (3).

4, The proof of solvability of the system (11}, (15) (for
suffiociently small h) will be presented for the more general
case. let £, € R, k = 0y1,00.,N, and consider the system

By = By
Bo = Xg * Eoo h =Xt &g
Prer ~ 28 + Py
(16) | n?

= %{f(lh'pl’ (By-Bi. 1’\ + £(1h,8y, & (/31+1"/31’>} *Ey4e

l = 172|0.a,N"10

The system (11), {15) can bs obtained from the aystem {16)
by taking b = O, XK = Usly+:5,0. For the proof we uss tha
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6 K, Litewska, J, Muszyiski

method of mathematioal induction, Suppose that we have alrsady
found ,60,/31,...,11‘1. F‘orfs_.“1 we have the equation

2
(17) /31.._1 - 2/3]_ = /31-1 + %— f(lh’ﬂl’ 111_ (ﬁl-ﬁl-‘l )) +

2
h° 1 2
+ 3 (1808, § (814978)) + 0%y

Consider the operator 7 ; R — R given hy

2
Ty=2py = Byoq +5- £(1008s § (8181 4)) +

2
b 1 2
+ 3 £(2n,pys § (5-81)) + 0Py g

For two given numbers j and 7 we have

2
|78"' T §~|= !21_ !f(lhoﬁlo '}T (3"'1310 - f(lh,ﬁl, ‘g‘ (?-ﬁl))li
2 ~ ~
<Zrliz-Fl-21ir-5.

If we assume that h<%then the operator 7 will be confrac-

tive, henoe the existence of a unigue solution of the equa~-
tion 7y =17, 1.6. a unique solution B, 4 of the sguation (17)
results from the Banach principle.

5« To prove that the received approximate solutions cuc-
verge to the solution of (2}, (3) we show that the correspond-
ing interative schema (see (8}, (11) and (15))

b h
(18) (o) -x, =0, XLh) -x(0) 4 .o
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e Finite elements method 7

(19) {(1+1)8) - 2(38) » P(2=1)8)
h

- —;—{ £(1n, (1n), 1(x"(2n) = xP{i2-1)n)) +

+ £(am, B, L (PULen) - 5 z'u}))} = 0,

1= 1,2,.-.,“"1’
.sory:imates the problem (2), (3) and is stable (sse [1]).

;. Inserting to the absolute values of the lef% sides of

the zuuations (18) the valuss of the solution x .f the prob=-
lem (%), {3) instesd of ¥, we obtain

|X(0) - xol b 01

x(ad=xt0) 2| 2| L i(on)n ~ 2(0)| = | %(6,n)6n|< Koh,

where 9,9, € (0,1) &nd K, is the conmstant trom the ssction 2.
“ancts by A the corresponding expression sbteined from the
2quations from (19) (with =z insteed of zh), i,e.

A ‘=| x((1+1)h) - 2x(1n) + x((1=-1)h) _
02

- %—{f(lh, x(1n), & (x(1b} - x((1=1)n)}) +

)
+ £(1n, x(1n), ¢ (x((1+1)B) - =(W))| .
sy the lenma we havo

x{{1+1th) - 2x{ik) » z{i 13k}
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hence

4<% | £(1h,x(1h),x(1h)) - f(lh.x(lh),<%-(x(lh)-x(ﬁl-1)h)»| +

+
-

N

N

+
=

[ MBS

N =

]f(lh,x(lh),i(lh))-f(lh.x(ln), % (x((1+1)h)-x(1h))ﬂ-ﬂ1hﬁs

L| x(18) - x(lh)-X£(1-1)n)| .

L | %(18) - x((1e1)h)=x(1h)| | n(y) «

Llx(1h)~x(1h-0.h)| + & LI%(1h)-%(1h+8,h}| + O(h) =

L h|#(1h-85h)| + 3 La|%(1h+6,h)| + O(h)< K,Las0(h) = 0(h)

for some 84, 6y 64 @465(0.1) and K, from the lemma. Thus we
have verified that the iterative schema (18}, (19) approxima~-
tes the problem (2), (3) with the order 1.

7. Now we want to show that the sohema (18), (19) is
stable, Together with the schema (18), (19) we shall examine
the perturbate schema of the form

(20)

\

#(0) - x

o = for

) - o) |
E 1

= &4

B((1+1)n) - 2:”:“(%11) + #((1-1)h) _
h

- 3{e(an, @),  P(wm) - B1-00)) +

+ £(20,8(10), L (B((240)8) - P} = 6y,

1= 1,2,0..,N-1o
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Finite elements method 9

From the section 4 we know that from the system (20) we
can find all values ih(kh), k= 0,1,000,Ne

Let ¢ = 48LT(T+1). In the following we restrict ourselves
to integers =0, In RN+1 we introduce a special norm: if
y = (yo,y1,...,yN)6RN+1 then

Iyl = max  {|3yl¢(k))
where k
'I-‘f°
(P(k) = 8 .

To show that the schema (18), (19) is stable we must prove
that there exists such K¢ R that for all N>c and for the
corresponding vectors

£ = (0),x8(h), 0.0, x2((N=1)k), (1)),
2 (3801, (h),0.. 0 ((§~1)h),53(T))

(where h = %) from (18), (19), (20) and for 5=(s°,a1,...,eN)

we have |lx® - ¥l <K el
Por simplicity we introduce new variables 7,, ?i,
1l = 0,1,....N, takins a"o ] O' 'a\;'o = 0 and

. ie XH(10) - 2P((1-1)h)
1 B

~ ~h ~h
(21) NOF e ¥"{(1h) - g ({(1-1)h)

L 1l = 1,2,00.,N0

Then
1 1
(22)  ¥1m) = P(0) 40 ) g, F1a) = B(0)en ) FL
€ aecxumed 134
o=1 =1
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10 K. Liteweka, J. Muszyhiskl

In these new variablse the schemas (18), (13) and (20) have
the forms

30 = 0,
Ty = X
, k
(23) | Oypq = T+ 3 n{f(kn,xom > zrl,:fk) +
) 1l=1
\ + f(“’xo"'h Z Wl'”kﬂ)}
=i
and
F, =0,
~1 = Xq+Eq,

k
(24) | 3k+1 =y + Jz“.h [ f(kh,x°+£°+h Z '3:1’?]!) +
1=1

k
+ f<kh,x°+5°+h Z a”*l,'é‘k“)} + Ep,qBe
la

By summing up the last equations in (23) and (24) in k
from 1 to p-1 we receive

3’030' 3”1 =x1,

k
2 f(kh,x°+h Z 3’1’3“1:) +
=1 1=1

k
k
h
‘2" f(kh,xo'i'h Z‘ 3l’$k+1>
k=1 1e=1

7

n
o
-
+

+
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11

and

¢ Foo.% .8

f(kn,xo+co+n Z ‘a“rl,&‘kH) +h
s

Por p = 2,3,4.2,8 we have

k
Y" T

- I(k 2 X -(-h
1=1

11

By thr iipz-:-:;h:i.tz cundition we obtain

Fup l<|Fow
|77, < | §y-t
p=1 p=1
+ 31 ) |Een
z=1 k=1
p=1 k
= hL(p-1) ic L+ le,| + %L
=1 1=1
et p
t % 3 > PRE NI “)__‘ eyl +
k=7 k=2

k
(kh,xo+ eoth Z 5’1.7,:) +

1=1

. !.; iy j+ 4 Z l (kh,x°+eo+h Z a~1,a"k>
'1*‘71: tY i l £ "‘o“%‘“h Z. a’1’7f1=c+1> -

X P
- 3&%&1)! +h Y eyl
k2

# | +aL i (l& |+hZ Ia‘l~8‘1|>
|+ 80 1 =T | + hZ el =

x h N % ;
LS AR 3¢ Y 1 Fend

+
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But N>03>TL, then for h = & we heve h<l ana 1 -8 1>1,
thus

w] k
~ 2 ~
ARSI 2{ BL(p=1) | 6g) + &4 +4%L S: PREEAR
kw1 1=1
n p=-1 _ b p~1 p
k=1 ke2 k=2
But
p=1 k p~1 p=1 .
PN ECAED IS A G D IR LR
k=1 1=t 1=1 I=1
hence |~ -
a*p-a“pl
Pl p
éZ{hL(p-ﬂ|e°|+|51|+(h2L(p-1)+hL> PR AR DN Iekl} .
1=1 k=2
If p=~1< N and hN = T we recelve
=1 p
|77l < 2 {LT|s°l+|e1|+hL(T+1) {V_: |F,=7;] + b ; 1&&1] ,
=1 =2

p = 2,3)4,0.0’N0
Multiplying the inequalities by ¢(p) and using the norm for

the veotors §= (5‘0,5"1,....53]), = (8‘0,3"1,0-0,3'1\]},
¢ = (50,51,...,£N) we observe that

1-apl0(p) <2 {LT lelolp)+leqlolp) +

p=1 p Y
+ BL(+1) {V_: oo | )~ lo(1)+h Z_:z %&%,L eyl oli) | <
=1 -

p=1 P

<2f tap(o)lel + o1el wbutrer) > SOLuz-ypor 37 2{Rfee
1=1

R=
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Finite elements method 13

Observing that ¢(p)<p(1)<1 and that

p=1 p=1 -1 J &
E gé’{_P-)y=Z‘e,-(p-l)clNgz:a11\1< 1
il = 9
1=1 1=1 1=1 1 -6 ¥
we obtalin

lﬁ“p-a'pl¢(p)§2{ LT leh+ lell + —2 5 lEl+hL{T+1) ! < 7=,
1-0 N 1=

=

p = 2,3,.0.,N.

Now we can see that this inequality holds also for p = 0,1,
Then (h = %)

—r - }nen+-391211%2—n?-am.
N(1-e N) N (1-9 N)

x;;—x for xe{0,1>4 by our proposition
9

we have N>c¢, then <1 and 1-311;1 S ———1———4

N e N )

n?-zpus_z{ IT+1+

Accordingly 1-s8”

=6

Thus, N (1 -2

17 - rlic2(z+1+e 3) fg) + 20 IR y7_ gy
T 15
= 2(LT+1+e 3) lef + Z 1F -7

and
IF - rl<a(LT+1+8 2) [lc]] &
(Fp - 7,) =

1
But ¥*(1h) - xB(1a) = ¥0) ~ #0) +h I
p=1
i
0 b:—.‘l (a‘p - Ep)o then
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14 K. Litewska, J. Muszyidski

1

~n ~
BR(10)-x"(20)9(1) < 65 9(1) + B ) 1F =7, lp(1) <

1 p=1
<lel+ h ) L yFarl<

p=1
<lell+ =2 iF-rl<lel + o ¢ [F=7ll<(4Lr+4+5¢ 1) Jic ]

N

1-8

for l = 0.1,.00’N. Thus' foI' K

+ 2 __
AL{T+17

4LT + 4 + 50 2 = 4(LD + 1) +

1% - Pll<k ey,

what we wanted to prove.

8 Remark, If the initial proble= {2}, (3) is
given for f: <0,oo)><R2——-R and f wsatisfies the inequzli-
ty (1) for all tirt, e < 0,%) we can introduce the functions

(as in the section 3), but for ke N u{o} and approximate

solutions of the form xh(t) Z_, Otktpk(t) in "Galerkin rulet

we take f). Observe that for any aheﬁ the given seriss con~
0

verge for any te <0, o), In this case we have the same condi-
tions (&), (11), (15) for the constants at; {the conditions
(15) are given for 1 e A'). For the system (11), (15) for

le¢ N the same proof as in the section 4 shows that it is
possible to find all °‘§.1’ le NU{O}. The proofs given in sec~
tions 5-7 show that approximate solutions xh tend to the 85~
lution of {(2), (3) on every interval <0,T>. Thus we have the
convergence on full interval <0, o},

- 292 -



-
(4]

Finte sletionts method

REFERENCES

[1] Cele TTOXYHQB, BeCo PAOGeHDPKUH s DPaz-
HOCTHHE CXeMil. NOCKBa 1977.

[2] 2. Kaczkowski: The method of finite space-~ti-
me elements in dynamios of structurss, J. Tech. Phys.

16 {1975) 69-84,

[3]2. Kaczkowski, M. 2y szko: Drgania
gletns preta metcds czasoprzestirzennych elementdw skon=-
czonych, Arch. Inz. Lad., 24 (1) (1978) 59-78.

[4]Ke. Litewseska, Jo. Muszyndaskiz: On the
convergence of the finite siements for some initial probh-
lem, Abh, Deutsch, Akad. ¥iss. DDR, Abt. Math, Natur.
Tech., 2N, (1981}, Proc. of VII Intern., Summer School,
Berlin, 1979.

[5]K. Litewska, J. Muszydski:
CXOZUMOCTH METOXA KOHEUHHX 3JEMEHTOB NJAA HeKOTOpo# Ha-
yanpuof zsxauu, Demonstratio Math., 15 {1982} 935-945.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA
Received Juiy 12, 1984,

- 293 o






