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1e In almost all papers devoied to Goursat problems for
partial differential equations of order m greater than 2,
the boundary conditions have been given either on iwo curves
(surfages) or on the characteristics of the equation consider-
ed or, finally, on the characteristics and one non-characte-
ristic ourve (see [6], [9] and the references in [3] and [12]).
The case of a greater number of non-characteristic curves was
eramined in the papers [10] of 0.Sjéstrand, [11] of Z.Szmydt
and [3]. [4} of the present zau;ttl‘lmn-‘I » Let us note, however,
that the method applied in [3] and [4] did not make possible.
finding formulss for the solutions nor proving the unigqueness
of these solutions.

1) In B(}] a problem with tha boundary conditions set on
four straight half-lines is considered in the class of analytic
functions. In [11] the existence is provec of a solution of a
non~linear problem for a system of equaticns of arbitrary order
m _with the boundary conditicns given aon o curves. Papars
| 3] and [4] concern an ecustiom of oréer 2p, celled a polyvi-
brating equation of D.¥angeoun, aad cre devoted o -ourcat prube
lems with tne boundary corditions of 3he 1ype ciffc.snt from
that in [11], given on 2p stieight hualt-lines znd . curvsas,
regpectively.
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2 A, Borzymowski

In paper [5] we formulated a theorem concerning the exi-
stence and the form of a solution of a Goursat problem for
the polyvibrating equation of arbitrary even order 2p in a
Banaoh spaces, with the boundary conditions given on a set of
2p curves emanating from a common point.

The aim of this paper is to prove this theorem,

Like in papers [3] and [4] we reduce the problem to a sy=-
stem of funotional equations but then we examine this syatem
in a way different from that in the said papers., The present
method makes it possible both to find the solution in the
form of a series and to prove its uniquenecss,

‘2. Let @ be the rectangle

Qa{(xq)eR230<st;0<ysBL

where 0 <A,B<oo, and consider a system of 2p curves, where
p>2, given by the equations y = fi(x) and x = hi(y)
(£;3€0,4>~<0,B>; hy 3 {0yB> —=<0,A> for i=1,2,440,p), res-
pectively, passing through the origin 0(0,0) of the coordina-
tes system and not interseoting elsewhere. In"What follows Y
denotes a Banach space with norm Il !,

Let us consider the following partial differential equa-~
tion

(1) LPu(x,y) = c(x,y)
(called the polyvibrating equation of D. Mangeron), where

L= 5%35—, (x,9)e2 and c1Q—7Y 18 a given funotion,

By a solution of equation (1) in Q we mean a fumction
u:1 2 —7Y that possesses continuous derivatives Dpu (whexe
p__a®
B
ax'%ay 2
tisfigs (1) at each point of Q,
Lenma 1. Let ¢ : @ —-Y be a continuous function.

If us: 2 —Y is of the form

D 3 IBl=By +Bo3 0<Byy Bp<p) in @ and sa-
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Goursat problem 3

p
(2)  ulx,3) = R(x,3) + ) [ Mg (x) + "Ny (3)] + o,
> =1

((x,y)e ), where

x|y
(3) Rix,3) = [(p=1)]72 [{ [ [(x-5)(3-p)]*" c<§-y)d?} az,
0{0

9, 30,4> —Y and y,1<0,B> — Y are funotions of olass CP,

and o, €Y is a constant, then u 1is a solution of equation
(1) in Q. And conversely, for a given solution u of equation
{1) in @ there are funaotions ¢ :<0,A> —= T and y,:{0,B> —=Y

(x=1,2,e00,p) of class CP, fulfilling the conditions
g}(m)(o) .wo((ﬂ)(o) =0 (0( = 2.3....,9) L= O.1.ooopa-2). and

a constant ¢, c Y such that relation (2) is satisfied for
(x,3)eQe.

The proof of Lemma 1 is elementary.

We examine the following Goursat probleu.

(G)-problem. Find a solution u of equation (1) in @
satlsfying the boundary condltions

(4) { u[x.fi(x)] = Mi(x) for x e {0,A),

u[hi(y).ﬂ = Ni(y) for ye <0,B>

(L = 1,2,0004p), where lliz<0,A>—-Y and Ng:{0,B> — Y are
given funotions.

Bach funotion u having the aforesaid properties will
be called a solution of the (G)=-problem,

We make the following assumptions:

I, The functions f,3{0,A> —~<0,B> and h;1{0,B) —< 0,4
(L = 1,2,000,p) are of olass CP, fi(o) = hi(o) = 0, and the
inequalities
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4 A. Borzymowski

min{£3,h3)> 0,

* % *
- o
(5) max(fp,hp)s 1; 8 1= ¢ hD< P
»* » _1 *
min f,=f > 1+ £
2eicp ( i 1_1) [P( 5)] F_”

* % -t
min {(h,=h, .)>[p{1+¢)] " 'h
2515[) 1 1-1 [ J p
are fulfilled, where f, = £3(0), by = By(0) (i=1,2,0u.,p)

and % and ¢ are given numbers satisfying the conditions
¥,¢€ (0,1> and

(6) 0<e<(\p"\[§,)1/1-p - 1,

respectively., Moreover, f, and h, (1=1,2,0c0,p) satisfy the
conditions mentioned at the beginning of this section,

Let us note that although we assume the curves y = fi(x)
and x = hy;(y) (i=1,2,...,p) to be sufficiently "flat" at the
point O (see (5)), we do not make any assumptions concerning
the slopes of these curves at the points of ©\{0}.

II. The functions M,1<0,A> — Y and N, 1K0,B>— ¥
(L=1,2,000,p) are of class CP and fulfil the conditionse

(1) 4,(0) = Hy(0), u{®(0) = ¥{'*(0) = 0

(i.j = 1,2,...,[’; m= 1.2,...,[)-1) and

(8) P (x)| <k 2PN+ %, |NP(z)]l<k 3Pt %

(L = 1,2,0009P3 X<0,4>3 ¥ e <0,B)),where K is a positive
constant,

III, The funetion o: @ —Y is continuous,

Remark Te By Assumption II, we have

2p~1=m+%
x °

H(Mi(x) - a)(m)Hs&(p_m,!

(9)
2p=1-m+2
gty - &) < ki °,
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Goursat problem 5

(L = 1,2,000yp @04 B = 0,1,2,000op), Where x ¢ {0,4D}
e <0,B) a = W(0) = W (0) (r,s = 1,2,000,p).

We shall need the following lemma whioch is a direot con-
sequence of Assumption I,

Lemnma 2. There is a positive number 615
<min(A,B,1), such that the inequalities

ri(x) - rd(x) > [pl1+¢)] -1 fp(x),
(10)
hy(y) - byly)> o014+~ ny(3),

1< jJ<i<p, hold good for xc (0,61) and ye (0,61), respecti-
vely.

We shall also need the following lemma whose proof is
straightforward.

Lemma 3., There is a positive number 624 min({A,B,1),
suoh that the inequalities

» 7 »
(1 =g )tg<ti(x)< (1 + g)fy,

(‘1) »* ’ *
(1 - eglhy<hy(3)=<(1 + &5)hy,
where /2 ‘l/6p-3+;lao
z
()
(11") 0<gy<1 -[pp &, ]

are satisfied for xe¢ (0,62) and ye (0,62), respectively.
In the sequel we shall use the notation &= nin(é‘.‘ ,62).

3. We now attempt to find a solution of the (G)-problem.
Setting ¢, = & in (2) and imposing on funotion u the bounda~

ry conditions (4), we get the following system of functional
oquationa1

2) Here and in the sequel, o is the symbol of composition.
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6 A. Borzymowskl

i l—_(fi(x))o"1 plx) + =1 %(°-fi(x)] =

X =1

(12) = ¥;(x) - a - R[x,f,(x)],

[y Vg o hyly) + (h,_(y))“'Wq(y)] =

o =1

Ni(y) - a - REhi(y)vy]

(xe 0,65 7€ <C0,BD; 1 = 1,2,0009P)e
By setting i = 1,2,e.e,p.in the first of equations (12},
we obtain the following system of algebralc equstions

P
(13) D egtx))* g (x) = By(x)

of =1

with respect fto go.‘(x)-....,gop(x), where

P
(14)  Py(x) = My(x) - a - R([x,f;(x)] -Z; == v, £i(x).

=

The system (13) is a Cramer s system for x e (0,AD>, because
the determinant of its coefficient matrix

D(x) = | (£5(x) - £,(x))

Isa3<p

is different from zero (xe (0,A>).

Using Cramer ‘s formulas and the well known formulas cone-
cerning the Vandermonde deterainante (see [7], pp. 70 and 236),
we have

4
(15) o (x) = (-1)=1 Z ("i(x)";(x} P (x)y
i=1
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Goursat problem

where
P -1
(16) Qi(X) = [ﬂ (fﬁ(x) - fi(x))] ’
A=t
P¥L
P
(17) ellx) = [T £5(x),
B=1
p#L
(18) o;(x) = 5 , fp (x)esety  (x)
1$B1< o0 o<ﬂ p_q<P 1 p=a
Byfleeesrfp ot

{(x = 293400eyp=1) when p>3 and

(19) of(x) = 1,

(i=1.2goco,p)o
On joining (14_) and (15), we get

P
g (x) = (=11 3 () (x)My(x) - @ - R[x,2y(x)]) +

y=1

4
+ (=1 Z mk(x)e‘i(x)x?"1 yy ° £y (x)
Y, ka1

(xe (0.A>‘ X = 1,2'.oo.p)o

Evidently, by setting i = 1,2,..s,p in the second of equa~
tions (12) and by using an argument analogous to that above,

we obtain

p
Val3) = (PN 5, (3085 (3) (0, (3) = & = RBy(3),3]) +
V=1
4 P ~ ~ X Vet
+ (=1) wk(y) ek(y) Y ?VO hk(’)’
v, k=1
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8 A, Borzymowski

(¥ e (0,BD o= 1,2,000,p), Where ,(y) and &,(y) are given by
the formulas (16) and (17)=(19), respectively, with the Tre-
placement of £ by h, x by y and i by v.

Thus, finally, we can assert that for x ¢ (0,A), y e (0,B)
the system of funotional equations {12) is equivaslent to the
following one

P
@ (x) = V¥(x) + }; 65 (x) y,o £, (x),
Vo k=1

(20) p

W) =¥y« ) 873 gpehyly)
v,y ke

(xe(0,A>3 e (0,B>3 x = 1,2,000,4p), where

p
v¥(x) = (=1)%"7 Z wy (x)6} (x) (M, (x)~a-R[x,2,(x)]),

v=1
(21) 0
¥3) = (=17 Y7 5,083 (3) (Fyly)-a-R by (3),3] )4
v=1
G:k(x) = (-1)°‘wk(x)e;(x) -1,
(22)

G, (3) = (<175, 3)550) 3,

and ¢, and Yy (% = 1,2,.00,p) are the unknown functions.

Let us note that if Y = R, then the system (20) is con~-
tained by that examined in paper [1] but the assumptions made
in the said paper are not satisfied (see [1], p.194).

Using classical methods of the theory of fumetional sequa-
tions (mee [8], Chapter VI), we are going to prove that,
under the present assmmptions, system (20) hss a unigue selu-
tion. Piwst of all let us introduce the following notation
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Goursat problem 9

zi (x) =h, o f== o 2y (x),
kiog) kpg “Kogo1 E(2g-2)

F (y) =2, ° h o Zw (3)
k(25) J k25 k28-1 k(25-2) ’

{23) {

Z (x) = ¢ o 2 (x),
E(og-1) kogo1  K(2g-2)

"zt’ ( ) = h ] Z_. (y),
K(pgoq) 0 krga1 K(2g-2)

for 8 = 2,30-0;

f

2= (x) =h, ° £, (x), 2z (y) =1£, ¢ h, (3),
kia) ™ T Ty ey BT Ty Ty Y
(23') i

2,
”*
Pz

{(x) = £, (x), Z= (y) =h_ (3)
1) ky k(1) kgt
where i m) = (}(1,k?,...,km) for me N, and 1<k;<p for
i e AN { Acdenotes the set of all positive integers),
Lzeaoma 4, The sequences {zE and {ig- } {see

(2s)} {28)
i23), (23"} tead uniformly to zero on (0,A> and (0,B>, res-
pectively, whea & —» oo,
Let us cbuarve that Lemma 4 is a generalization of Lemma 3
in [2] and can bc proved by an argument similar to that in[2].
Lsmnma Se If Assumptions I-III zre satisfied, then
system (20) has a solution given by the formulas

oo

vi(x) + ) e(x),

(
I n=1
(24) 7 -
] V() + Y &%)

n=1

L
o
n

<

Q

«d
it

(x e (0,855 7 {0,855 o= 1,2,4..,p), whare
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10 Ao Borzymowski

,

3 P P, e
ap(x) = ) ) R L
\71,ooopvn=1 k1 .oo..kn=1 (n) (n)

’n
x P Yo 3y (x),
(25) | (n)
,%oz
LJ

o
() = ) ) S~ ()
91,0-0.91‘31 k1’ooo.kn'1 V(n)k(n)

L '
xF B3 _ (y)

k(p)
with3)
o [(n+1)/2]
™ v
l:,_. — (X) = Gq k (X) < ]——[ szj-zk °
% (2)E(n) Y1%4 j=2 2J=1723=1
[n/2+1] 923 3
o 7 (x) g 2d- ° 3, (x)],
k(2j-2) >< I:l V23-2K23m2 k(25-3) >
r:\ ~a
(26) CJ_Q. -~ (3)-=6, X (y)»
(n)¥(n) L
(f(nﬂ)/z'l 923 »
o T_[ Ev k ° I (:”> X
n/2+17 9 .
A TT B2 eE (3”>
j=2 2j=272j=2  K(p4_3)

3) The symbol [x] denotes the greatest integer not exceed-
ing x.
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Goursat problem 11

(—G(m) = (V1,V2,...,\>Jfor m EJV‘; o = 1,2,000) and

(n
v when n 1is even,
Yn
F =1~v
AVn when n 1s odd,
(27) {
(~"n
v when n 1is even,
§'n =]
v
V2 when n 1is odd,
(2. when n is even,
%(n)
% "
k(n) z_ when n is odd,
X(n)
{28) )
Z_ when n is even,
N X(n)
vy =
(n) ."z: when n 1s odd.
X(n)

This is the only solution of (20) in the class K of all
systems of continuous functions ¢,: (0,A>— Y and
wt (0,B>—=7T (o= 1,2,e.0,p) satisfying the inequalities

-0l L, . 2p~o+
(29) g (xlli<cC x2p ° lydslliccy ° r”.
respeotively, whers C is a positive constant,

Morsover, funotions ¢, and Yy (x = 1,2,...,p) given by
(24) are of class CP in the intervals (0,A> and (0,B>, res-
pectively.

Proof. Firgt of all we are going to show that the
series in (24) ars uniformly convergent in the intsrvals
(0,4> and (0,B>, reepectively. We will give the proof for
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12 A, Borzymowski

the series Z , a;(X); the argument for the serieas 2:: 3:(7)
n=1 n=1
is analogous.

It follows from Lemma 4 that there is a positive intesger
N such that for each n>N and each xe¢ (0,A> the relation
3. (x)e(0,6) is valid.

K(n)

Let us distingulsh the following two cases:

1° x ¢(0,6) and 2° xc{6,A>; n> N, and begin with the
first of them.

Observe that, in virtue of the relations (10) and (16),
we have the estimates

(30) loyg(x)l < [p(1+e)] PV (2 (x)) 7P

(i = 1’2,ooo’p)o
Further, by (10}, (18) and Assumption I, we get the follow-
ing sequence of inequalities.

B
6% (x)| < (£,(x))P™ ) P

1$/31< X t<ﬁ p_qsp

< pp'z(fp(x))p'a

(ot = 2y35000yp=13 1=1,2,00e,P3 P >3), whence and by (17) and
({19) we can write

(31) |63 (x)] < C, (£, (x]) P~

(y i=152,000yp3 P=2), where C, = Pp—2.
It is clear that analogous estimates can be obtained for
& (3) and 85(3).
From (22), (30) and (31) it follows that the functione
x % gatisfy the inequelities

Gy and &3
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Goursat provlem 13

[ | 65 (x)] < ¢ [l 1+e ] P~H 2 ) Vo™
{32} ¢

"w, . " $om D -
{ {G;‘k(;;r);s C,[p(1+6)}P 1{119(3.)) ¥ =1
{(VykoX = §52,000yp}y Tospectively.

Now, let us write the- expression ai(z) {ses (25)) in the
fory

p g ) P
(33; aplx) = ) Y . G, () G";“eo
V1g¢oo,3’n=1 k.iyoca.kﬂz?
Vs 9 ?
oty () 65y o ae (x)E2, o ﬁg (x) g%, o 2o (a)ee
1 F3 Ky 474 kg 575 Ky
? 9
sce Gvn;1 o Bpe {K}.F n° ;:_,.. (ﬂc}o
nn k k
(n-1} {n)

Basing on {33) and using the estimates {32} and (11} and
the inequality

v 2p=Y _+ 2
{34} | 2%, (:c)uszconst(ﬁi; (x)) noo
%(n) (a)
{ses (9), (21; and {27)1, we obtain the following sequence of
inegualitie 8‘5

y——

) We assume that n is odd; for even values of n the

Vi
iast but one factor in (33} is Gy"k? o % {x},
nTa k(n:-»‘l)

5) Hore snd in the usqueld,csund danotes & posifive cone
atank.



14 A. Borzymowski

(35) llag{x)]| <

< conat{c*[:p(Hs)] p"‘}n ) ﬁ ) ' x

\71.o-..,9n=1 k1’...’kn=1 (fp(x))

V=1
V=1 3
(£, (x)) 2 (L (x)>
hd k1 . . ka)
9 _1 LA N J

vq=1 2
(hpof:k (x)) (fp z_ o (x)
! k(2)

v =1
)"
k(n-1) 5 2p=v +2

* (x)> <
-1
(fpoz_._ (x)‘>\)n_1 < k(n)

K(pa1)

n
< const {[p2(1+.€)_]p—1(1-5°)2(1-9)} .
P P
’ *1_01 L 1 1 »*
) 4 > " fp (hpfk1’ .(fphkz) soe
91,...,Vn=1 k1,noo,kn

* 1=V 2p=1+2
oo (f Kk ) n-10<£_, (x)) oo x1-°($
P Xpaq k
(n)

- 2p=-1+2 o).
éconst{pgp(hc)p Y1eey) °(1-¢,)2(1-p)

* % (1+2°)/2}n 2p=o+ 2
*x

n
. (fphp) %< const [pp(1+c)p"1\/§“°] .
2 /2 3=4p-z_ -2
. [pp 80O (1-60) p O:I '

where const is independent of n.
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Goursat problem 15

It follows from the choice of the parameters ¢ and €o
(see (6) and (11’ )) that

- 2,/2 3-4p-¢
pP(1+e)P T ya <1, oP g% (1-¢) <1,
whence and by (35), we have
2p~u+ 2
(36) lla(x)ll< const g"x °,

(x€(0,6)3 x=1,2,400,p 8nd g i3 a number belonging to (0,1)).
In case 2° we estimate the first N faotors of the product

in (33) by a oonstant depending on N (but independent of n)

and we proceed with the remaining factors in a way analogous

to that in case 1° above. As a result we get

(37) || 8% (x)ll < oonst qn’Nxzp o

. 2p=c+®
< const qnx °,

E’os

(xe {6 8> D>N} X = 1,25000,p3 0<g<1),where const depends
on N but is independent of n.
Thus, for xe (0,A> and neA’, the following inequality

2p=c+®
(38) Ha;(x)llé const ¢"x °

{x = 1,2,0009p3 0<q<1) holds good, where const is independent

of n and hence the series Z . a:(x) is uniformly convergent
n=1 .
in the interval (0,A>, It is also clear (see (24) and (38))

that the funotions ¢ are continuous in (0,A> and satisfy the
inequality

) 2p-a+ 2,
(39) i, (x)il< const x ’

{(xe (0,003 x= 1,2,00e,p), Whence we have

(40) 9)0((0) = lim 9’}0((:) = @ (0(:1,2,no',p)o
x=0*
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16 A, Borzymowski

Bvidently, all the above cunsiderations conocerning the
functions ¢, (X=1,2,+s.,p} can bs also performed for the
functions y, (x=1,2,...,p) given by the second of formulas (24)
and lsad to analogous results,

We procesed to verify that the funotions Po BNA Vi
{x=1,2,444,p) g8iven by formulas (24) satisfy the system (2()
for xe (0,4>3 ye (0,B>,

To thies end we consider the first of relations (24) ang,
using (25)=(27), write it in the fora

p oY
plx) = v (x) + E 65 (x){v 1ofk (x) +
91,k1=1 11 1

d P P [(n+1)/2]
oy (T e e

Y
n=2 v2’000'9n=1 k2,ooo,kﬂg1 332 23 =1 23-1 k(2j 2;

[n/2+1] .
[T 293, oz (xD eF Boy (x)}.
2 2§=2723=2 k(54 _3) k(n)

On setting n-1 = 83 V= 1. 43 ky = g g (r=2,3,4.4,0),
and on substituting j=-1 = m in the second of the productsii,

we get
P (9
(41) glx) = v¥(x) + ) G31k1(x)i v 1ofk1(x) +
Yy ek,=1

o0

S I B SR ANT R

821 1 ,eeeglg=l G peen,a,=]

/ [(s+1)/2] 1o \

' ’ 2m- : R .
. K (_] GlZm-1q”m~1‘ zg | fki(xl/

AN m=2 © (2m=2} ‘



Goursat problem 17

FB/2+11 23 3 1
. G = o;_. of (x)>f°°3i of, (x)t.
A

Bquality (41) together with the second of relations (24)
imply the relation

P
e (x) = vix) + v;1 00,51]:1(1)'#91 ofk1(x)
1"

identiocal with the firet of equations (20). In a similar way
we verify that the functions ¢, and y,(x=1,2,...,p) given
by formulas (24) satiafy the second of the said equations.

We are going to prove that the solution given by formu-
l1as (24) is the only solution of {20) in the class K (see
pe11)s To this purpose let us note that if some functions ¢,
and Y, (x=1,2,...,p) satisfy the system (20), then, for each
positive integer mys the equality

(42) g (x) = Vix) + ZE: ap(x) + rﬁo(x)
n=1

(x (0,003 cx-1,2....,»p) bholde good, where a:(x) is given by
(25) and

P P
(43) ©3 (x) = ) ) ) (x)x
o V.‘,ooo.vm +1-1 k1’ooo’kn +1-1 ™
0 [+]
r(mo+1)/21 ¥23-2
X r—[ G9 = o3 . (!,> .
ju2 23=1%23-1 E(23-2)
l'n°/2+ﬂ
( T &2-3, o5 m) .
Ju2 23-2°2§=2 K55 3)
m WS
-Ev° X °3 (x) # ° 03 {x)

B+l m k(mo) k(“o’”
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18 A, Borsymowski

G, ° when m_ 1is even
vn°+1kn°+1 ° *

0
\ Ilo+1 I°+1

O

when n, is odd;

¥y when n, ig even

?, when m, 1s odd.

Basing on the estimates (32) and the imsquelities (11),
and using an ergument similar to that in the proof of (38),
we obtain the following inequality

| 2p=- SLEA
(44) llr (x)||< const q x

{x e (0,A>3x=1,2,000,p), WheTe 0O<q< 1 and const is independent
of ﬂ .

1t follows directly from (42) - (44) that g (x)

(xe (0,403 %= 1,2,000,p) satisfy the first of equalities
(24). In a similar way we show that y,(y) (y € (0,B>;
o=1,2,000,p) 8atisfy the second of the said equalities,

Thus, in order to complete the proof of Lemma 5, it 1s
snough to show that the funcsions ¢, and y, (x=1,2,e.e,p).
given by (24) are of class CP,

We first consider the case 1° (see p.12). Let us begin
with some suxiliary estimates. We assert that the following
relations

s .
(45) B wglx)|< cg [p(146)] P~ 1*2(2 (x))}=P="

and _
. . (fp(x”p-aa for 0O<s<p-o
(46) }i—ae;(x)lé C,

ax 1 for p-o<s<p
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(xe({0,A>3 8 = 0,1,60eyP} Ky & 1,2,4.0,p) hold good, where
Cc, and 5. are positive constants depending on 8.

We will give an inductive proof of (45) (the argument for
(46) is similar).

If 8 = 0, then M%) is true (see (30)). Suppose that it
is true for 8 = 0,1,2,000,8, (Osaos p=1) and observe that

%o P | 4% [op(x)(eilx) ~ £.(x))
h| k
1250 Qk(x) JZ{ so [ fd(x)-fer) ] =
X -
ok
qu /;)( ) a5 “klx) I— (fa(x)-fk(x)) (£ (x)-fk(x))
ék

Hence (mee (10)), we have

B_+1

d o
dx ©°
p %
P8, “P=8y 0 A
< [p(1+¢)] (£,(x)) Y. Z(ﬂ > Co -8 <
J=1 B=0
J#k
p=1+(8_+1) 1-p~-(8_+1)
scam"_1 [p(1+e)] ° «(£,(x)) °

where 6/5 (A= 0,1....,30) and C, ., are some positive con-
°

stants, and as a consequence we oan oconclude that (45) is
velid. Q.E.DO
Based on (22), (45) and (46), we have

g% m}:n(m'v-” 1 (@~u) 1
M\ (V= o] - v P
';}i G x| = e <F>(«“ )t | [0 (=) (x)] (a4 =1
nin(m,y=-1) [mir(m-g, peo) _
. LA <m\ (\7-1\ ,)-1..,u ! (ﬁ.;;)cv 6 .
U= (4] [ a“o .
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20 A. Borsymowski

[
[~ TS
. (1+£)p'1+."“'7(fp(x))1"""""“+ ) ' (3.“ )°-,1.,,'

7=ain(m-u, p-or):H

. 57(,,&,9-“!-#-3' (fp(x))"""”“"?]
and henee
B
(47) ':—x; Gf,‘k(xll < cglp(1+¢)] P"“"(zp(x))"“"x"" ,
(xe(0,A>; B,V km1,2,000,sP)y whox;o c: is a positive ocon-
stant depending on m,
In a similar way we obtain

(e |45 G;“k(v)l < OF¥ [pl1+e)] P14 R(n () 170y

(ye (0,B>3 myox o,V ,ke1,2,0004,D)y Where c::is a constant of
the same type as C; in (47).

In further Treasoning we shall use the following formula
for the m-th derivetive of a composite funetion Hoz (where
meN, seCI,R), and He C®(2(I),E)3 ICR being an interval
and B a Banach space)

[}
(49) (o 2)®(x) = Y al(x)(ale 6)(x)
1s1
with
Y =1
(50) A‘;(x) - E (v;1> 2l 'r)(x)Axi'_,(x)
reim

for 1,vef ; 251 <v< my A’,(x) = z(”(x) for veAp v < ma
We omit an inductive proof of this formnla,.
We shell also need the following estimate

M
(51) & .. (x) < (2m)PP
ax’ k(2s) l 28
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év = 1,2'.co’:\3‘; 8 = 1,2,..-)’ where

8~-1 ]
2 x *
(52) 528 = Mel1455) s<ﬂ fkgr+1> < ] hk2r>

r=0 r=1

with ¥, being a positive constant not depending on n, which
saslily results from (23), (23'), Assumption I and Lemma 3.

Formulas (47), (49) and (51) will be applied to the esti-
mates of the derivatives of Gg o B . Aocording to (49),
Jve have ko Kiog)

[
> la"i'(x)l'ic\fi’o . (x)]

m
(53) |9 ¢ oa. (x)lé
i=1 k(25)

B v,
l dx L k(2s)

(B = 1,2,00097) 8 = 1,2,000), and based on (50), (51) and
using mathematical induction we can prove that the inequality

(54) |a%(x)|< & (20)P(2=2) 5 )2
{i = 1,25ee04m) holds good, where M is a positive constant

independent of s,
Thus (see (47), (53) and (54)) we get

o
a® & o g (x)l < oconst b (x) Z (2s)p(m'i)'(z__ (x))-i'

26 (5-1 % ]—ST * '
* (1+¢_)<8 [ £ > h ﬂ
o \IEL Kore <r=1 kop
with

/
(55)  E(x) = [p1+6)]P (£ 0a_ () %(a. ()T,
\"r k(2q) > b E(2g) )

const being indepandent of n,
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A8 a consequence,we obtain

n
(56) i—n ¢% o g (x)‘s const € (x)(28)PB(1.¢ )=208, 4B
ax® vk k(,g °

(m,a,v,k = 1,2500epP; 8 = 1,29000)0
In a similar way one can derive the estimate

m ~
4 _ G* o g (x)|<

(57) -
dy” vk K(pa.9)

< const E (x)(2s8-1)PR (1-60)"“(25'1)'1'",

(m'q'v= 1’2"’.'p‘ 8 = 1,2,000),'her.

(58) £(x) = [p(1+¢)] p'1<hpo z_ (x)>1"°"<§, (x)>"'1.
' k(2g-1) k(2g-1)
Finally, by (21), (27), (49) and (51), we have the ine=-
quality

a® n =
(59) ”E F % z_i(n)(x)”s

2p=y _+2 _
< const nP® <z_, (x)> ao (1-50) e
X(n)

(m= 1,2,0009p), where const is a positive constant of the
same type as those above,

Basing on relations (25), (56), (59) and ueing an argument
analogous to that in the proof of (36), we obtain the follow-
ing estimate

6) From now on we assume that n 1is odd; the argument
for even values of n 1is analogous.
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2p~o=m+ CA

(60) H::n ‘32(*)”5 const nP®x
n
[P T 50 8 1) ]

(m = 1,2,000,p) and as (se8 (6) and (11" )) the equality

3-6p-2,

: %, /2
P1+e) PN Vag< 1,  pPgy” (1-¢) <1

hold good, wa have

(61) ”:—:.7 a‘;(x)”s const nP® g2 x2p-0(-n+a°°

{em = 1,2,0004p)y Where xe (0,0). The extension of this
result to the case 2° is straightforward (see the substantia-
tion of (37)).

Thus, the series obtained by the term by term differen-
tiaticn of order m (1<m<p) of the firast series in (24)
are w:iformly convergent in the interval (0,A> and hence
the fusotions ¢ {x = 1,2,.4s,p) are of class cP in this
inter-al., It is also easily sesn that

2p~o=
(62) ]I;oq(m)(x)lls const x |0

(xe(O,A>; X ,@ = 1,2,000.9). Setting

(63) %(m)(O) t= lim g)o((m)(x) =0
x-0*

{x,@ = 1,2,004,p) and using (40), we can assert that ¢
{x = 1,2,004,p) 8Te of class CP in the interval (0,AD.

By & similar argument one can show that the functions
Yy (X=1,2,04.,p (se8 (24))) are of class GCP in the interval
<0,BD with vl ®1(0) 1= 0 (X = 1,2,000,05 @ = Oy1p0ee,p)e
This complstes the proof of Lemma 5.
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24 A. Borzymowski

Ae a result of the aforegoing considerations we can for-
mulate the following final theorem.

Theorem, Under the Assumptions I - III, ths
Goursat problem (G) has a solution u given by formula °2)
with cx = a (see p.5), where the functions ¢, and vy,

{x = 1,25004¢4p), given by the series (24) for xe (0,4A>,
ye(0,B> and by the equalities ¢ (0) = y,(0) := O,are ot
class CP in the intervals <0,A) and {0,BD, respectively. The
said solution is the only solution of the (G)-problem ir the
set of all solutions of equation (1) (see Lemma 1) suoch ihat
the system of functiome ¢ , v, (o = 1,2,e4.,p) in formula (2)
with o, = a belongs to the class K (see p.11).
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