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1.1. The notion of var ia t ion with p-th power, called 
p-variat ion was f i r s t introduced by V* Wiener in [14]. Next, 
L.C. Young developed t h i s idea in [15] and other papers and 
defined the $p-variation of a real-valued function of r e a l 
argument. By we understand here a continuous, non-deoreas-
ing funotion (uj t < 0 , °° ) —— < 0, , taking 0 only for u >» 0 
and tending to 00 when u —~oo. Any such <p w i l l be re fe r red 
to in t h i s paper as a y - func t ion , These are the ones that 
gave r i s e to Orlica spaoes. Let x ( t ) t <a ,b>—- R. Throughout 
the paper i t i s assumed that x takes f i n i t e values and 
x(a) a 0« 

Let tt be a fixed pa r t i t i on of <a,b>, n ta » t <t.j<:.. ,< t n «b , 
Ve c a l l the var ia t iona l sum on n 

n 
6 - 9 ( X , j t ) . ^ y ( | x ( t i ) - x ( t ± - 1 ) | ) . 

i - 1 
The number 

v (x) = sup ffy,(x,jr) 
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2 J, Ciennoogotowskl, W. Orllcz 

with supremua taken over all partitions n of the interval 
<a,b>, is called the ̂ -variation of x. Lette*r I ia going 
to denote an interval I -<cx ,/3>c<a,b> and oaloulated 
over I will be denoted v^(x,I) « v<p{x,cx„6). When v^(x) < 
the function x ia said to have bounded (or finite) ̂ «-varia-
tion or to be of cp-BV. These functions found numerous appli-
cations and proved to be of independent interest. cp-BV func-
tions are bounded, have both one-sided limits at each point 
of (a,b) and right-Bided at a, left-sided at b. 

1.2» For a (^-function <p the following condition will be 
needed: 

93is said to satisfy condition A« (for small u) if there 
exist k>l. u > 0 such that ' 0 

cp (2u) k$o(u) for Oiguiiu0. 

An equivalent formulation of oondition Ag is the followingi 
for ever; o>0 there exists a constant dfl > 1 such that 

<p(ca) d0p(u) for 0^u«u Q. 

We can express the oondition Ag analogously for large values 
of u and all u. If cp satisfies the condition Ag for 
0<us£u0 it satisfies it also for any other finite uQ, with 
the constant k suitably changed. 

1.3. Consider the vector space 
tr * = jx: x(a) = 0, v^x)<oo for some constant 
i/!le called the spaae of functions of <p-BV. 

* * 
Vy » |x:x(a) = 0, v^(x)<oo| is called the class of 

functions of cp -BV. Whenever in the definition of we take 
Vp(x,<x,>0) instead of v^(xfa,b) = v^fx), this fact is denoted 

,/3>. v^(x) is a modular and for cp -convex cp function v* 
is a modular space in Musielak-Qrliez sense [9]» L10D • 

Por^(u) = up, psti we get the Wiener-Young classes. It 
is easy to see that functions satisfying the Holder condition 
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Functions of bounded v a r i a t i o n 3 

with , p > l are properly included in Riazanov i n [)3] 
es tab l i shed a theorem being to some axt#nt the converse of 
t h i s fac t» Theorem 6 of our paper i s a gene ra l i za t i on of Hia-
zanov s r e s u l t . 

1 .4 . Let <pt y be a r b i t r a r y 9 - f u n c t i o n s , A a nonempty sub-
se t of <a ,b> . We say x i s of c l a s s H^(A,K) i f the fol lowing 
inequa l i t y i s s a t i s f i e d 

{*) p { I x ( t ' ) » x ( t " ) | t ' - t " I ) f o r t ' , t " e A . 

When <p{a.) = u we wr i te H^(A»K) ins tead of H^(ASK), Other 
symbols are changed s i m i l a r l y . I f <p(a) - u, y(ii) - a p , 0 < p « - 1 t 

then HY(AfK) i s replaced by H P ( A , K ) and we are ge t t i ng the 
Holder c l a s s e s , p = 1 - the Lipechi tz c l a s s e s . I f A * < a , b > 
we wr i t e shor t H|(K) to denote the c l a s se s introduced 

T if 
above« 

Functions of c l a s s A,K) ere boundad on A. Let us assums 
<p iB s t r i c t l y increas ing and i t s inverse func t ion <p* s a -
t i s f i e s condi t ion Ag f o r small u. Then, with some constant K 

! x ( t 2 ) - x i t ^ U K>( | t 2 - t ^ ) where y «-50 

i . e . xeH-J(K). 
Mote a l so tha t i f 3-{u)/11 —• 0, u — 0 x has i n < a , b > 

the de r iva t ive =0S so i n th-is ease h|(K) c o n s i s t s only of 

constant f u n c t i o n s , f o r example Hp(K), p > l . 

2» (**) Let A c ( a , b ) ba a nonempty closed set containing 
a ,b , Let ( a i » b i ) denote d i s j o i n t i n t e r v a l s with andpoints 

a i » b i e A, such tha t U ( a j , b i ) « < a t b > \ A . 

Define the fol lowing func t ion F 

f x( t ) f o r t e A 
F( t} . \ 

{ l i n e a r on every <( 

From now on F ( t ) i s ca l led the func t ion corresponding t o x 
and the sa t A. Two theorems fo l low. 
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4 J . C l e m n o o z o t o w s k l , W . O r l i e z 

T h e o r e m 1 » L e t < p , s a t i s f y t h e c o n d i t i o n s * 
( а ) ^ ( t t v ) ^ c . , v ^ ( u ) 0 ^ v < 1 , 

3 *1 ifi) v ( a v ) o 2 ^ . v V ( u ) ^ > 0 , 

Car i 
( б ) c p ( 3 u . ) * c e ^ p i u ) f o r u > 0 ( i . e . f o r a l l u ) . 

( I t f o l l o w s 0 ^ 0 2 , 0 ^ > 1 ) . 
U n d e r t h e a e a s s u m p t i o n s , i f x e H ^ A ^ K ) , w h e r e t h e s e t A 

s a t i s f i e s ( * * ) , t h e n f o r t h e c o r r e s p o n d i n g f u n c t i o n F e H ^ ( C ) , 
w h e r e C - i K c - j O ^ . , 

P r o o f . F i r s t , l e t u s s h o w i i f t ' t t " e < a ^ b ^ 
t h e n 
( 1 , y ( l F ( t - ) - F ( t ; ) D ^ K f l i 0 g C 

W e h a v e 

y ( 1 1 " - t ' I ) 1 2 3 

< 0 . 

<p{ | F ( t " ) - F ( t ' ) | ) p 

V ( 1 1 " - t ' | ) 

9 Z aj !*<bi> -P(«i)|)/Vdt" -t'lU 

i t " - t ' l Y ^ b i " a i } y d ~ ) 
b i " a J y { 1 1 " - 1 ' I ) - v < b i - a i > 

i t " - t ' l V 1 - a i > 
1 V b i s a i j v d t " - f i ) 

H o w e v e r , f r o m ( o < ) w e h a v e 

M 
: v - ^¿zoyot" - f i ) . 

S o , i n e q u a l i t y ( 1 ) i s v e r i f i e d . 
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Functions of bounded variation 

We are going to consider the following three possible s i -
tuations: 

1°. t v t 2 e A then95{|P(t2)-P(t1)| U Ky( I tg-t., | ) 
from the definition of x and F, 

2°. t ^ A, tg ip ta^b^, t^<a i a Then 

9(IP(t2)-F(t 1)l )^ |P(t2)-F{a±) I +|P(a±)-P(t1 J | 

«<p(2|F(t2)-F(ai)| )+9(2|F{ai)-F(t1)| )< 

^ o3(So{|F(t2)-F(a1)| )+?){|F(ai)-F(t1)| ))« 

Ko-jOgC^yftg-a^ + Kif/faj^-t^i 

ĉ K eupd »o^g) (vf ( )+y(a i-t1 ) 

^ c ^ t i t 2 - t 1 i ) , 

where C1 = 2K ŝup( 1 . c^g)^ 2X0^020^ since c 2 ^ 1 . The 
same estimate is obtained in the case t 2 e A, t 2>b^, 
t 1 6 

3°. t 1 e (a^b.^), 1 2 s (a j .b j ) , b ^ a ^ . Then, in view of (1) 

9>(| F(t2)-F(t 1)| U9>( I F(b i)-P(t1 )| + |F(aj)-F(b±)| + 

|F(t2)-F(aj)[ )^9(3lF(b i)-F(t 1)| ) + 

+ <p{ 3lP(aj )-P(b±) | ) + p(3l F(t2)-F{ aj ) | 

« K c 1 c 2 c 3 v ( b i - t 1 ) + K c ^ f a ^ - b ^ + 

+ Ko-jCgC^yitg-a jJ iS 

^ K s u p i c ^ . c ^ g c ^ ) | v y ( b i - t 1 J+yia j -b j^) + 

+ y f t g - a ^ ) ^ C 2 \ ( ' ( t 2 - t 1 ) , 

where C2 • 3Kc^eup( 1 ,o.,c2) « 
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J . Ciemnocaoiowski, W. Orlie2 

4°. t i » t 2 6 <(a i»b i)> ihsn from (1) we have 
(p{\F(t2)-P(t1 )| 'Cypftg-t.,) where G^ = Kc.,^. If 99(a) = u r , 

y(u) = a3*1, T^ifj one can assume c1 • o2 • 1, e^ = 3^» so, 

one can put C = In the l imit ing case i . e . 95 {u) = 
= y (u) = u i t i s possible to take C = K. Indeed, i f t' , t" 
€<a i , b i > then |F(t"j - F ( t ' ) N Kit" - t'l . We get the same 
estimates when t^ , t 2 e A. If t ^ A, t 2 ^ ( a ^ , ^ , a^ then 
i t i s easy to see that the coeff icient of direotion of the 
straight l i c e connecting points ( t ^ F f t ^ ) , ( t , F ( t ) ) where 

th i s i s to say the quotient t~",T~t 

form * % • Tlxe denominator of th is ¿tomographic function r • t 8 

i s 4 0 in<a^,bj)>. So, i t assumes i t s extremal values at the 

endpoints of th i s interva l . Since 

F(t 2 ) - F( t.j) 

Fjb^ - F f t ^ 

P ( 8 l ) - F(t^) 
a i " *1 

b i ~ «1 

< K so K. We obtain the 

same estimate when t geA , tg> b^. If t^ e 

6 < b i < : a j t J b e n 

| ) | ^ )] + IPitgi-Ptbj^)!^ 

^ K({b^-t^ ) + ( t g - b j ) = Kftg-t. ,) . 

T h e o r e m 2. Let <p be a convex -function, 
F - the function corresponding to x and some closed set A. 
Then 

(*) v^F .a .b ) = v^x .A) . 

P r o o f . In the case when ^(u) » up , p>1, A i s f i -
nite - th i s theorem can be found in Musielak-Semadeni ¡ J l ] , 
in the case when f i s a convex and A f i n i t e - in Leinie-
wicz-Orlicz [6] the case of arbitrary A, <p(u) = up , 
i s in Riazanov [13]. 
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F u n c t i o n s o f bounded v a r i a t i o n 7 

We a r e g o i n g t o c a r r y o a t t h e p r o o f f o r t h e g s n e r a l c a s e 

and a r b i t r a r y c o n v c n <p a l o n g t h e same l i n e s a s i n M u s i e l a k -

- S e m a d e n i -
L e t it t a ~ t D < t 1 < o e a c t n = b to a n a r b i t r a r y p a r t i t i o n , , 

L e t u s s e t up a new p a r t i t i o n jt1 • : a = = b„ whose 
d i v i s i o n p o i n t s a r e some f r o m A and t.^ e x c e p t f o r one t ^ l e t 
t ^ be t h e s m a l l e s t i n d e x s u o h t h a t t ^ d o e s n o t b e l o n g t o A. 
C o n s i d e r two c a s e s t 

S i n c e <p i s s u p e r a d d i t i v e , i t f o l l o w s t h a t 

( 1 ) s f > i l i , ( V - 3 ? ( V 1 ) l ) + 9 > ( | , { t j + l ) ~ * ( V I U 

I ) . 

2 ° . ( F { t j ) - F ( t ^ 1 ) ) ( P ( t ; j + 1 ) - P ( t ; 5 ) ) < 0 . 
C o n s i d e r f o r i n s t a n c e t h e s i t u a t i o n P ( t . j ) > P ( t ^ . , ) 9 P ( t . / ) > 
> P ( t ; j + 1 ) 0 S i n c e t ^ d o e s n o t b e l o n g t o A s o i t iB a n i n t e r i o r 
p o i n t of some i n t e r v a l < r ' , r >, r % on w h i c h P i s l i -
n e a r . I f F(r')>F(r"), t h e n P ( r ' ) > F ( t . J and 

( 2 ) P i r ' i - P t t ^ i ^ P t t j J - P t t j . , ) . 

We h a v e a l s o 

(3) F(r')-F[t5+1)>P(tj)-P(t;j+1). 

I f P ( r ' ) ^ P ( r " ) , (we a l l o w r ' = t ^ ) t h e n t h e r e c a n n o t 
be t " > t b e c a u s e t h e s t r a i g h t l i n e b e t w e e n . p o i n t s 
( r ' f P ( r ' ^ j ( r " , P { r " ) ) i s i n c r e a s i n g and t h e p o i n t ( t , P ( t 
d o e s n o t l i e on t h e s e g m e n t s So we h a v e t . . < r"< t j . ^ » 

( 4 ) J H r - ' l - P C t ^ J ^ P t t ^ - F i t . ^ ) , 

( 5 ) r " ) t J + 1 ) » Pi t 5 ) - P ( ) . 

a r* CJ i 



8 J. Cienmoozolowskl} W. Orlioa 

So- in both cases we have for some re A, 

(6) fi\n*)-H*i_<l)\)><p{\*{*i)-*(tim.,)\), 

(?) f {iP(r)-P(tj+1) |)>f>(li(tj)-P{ti+1)l ). 

We are going to construct a new partition v out of & i n th« 
following way. 

In the case 1° we leava out the peini and let the re-
maining ones ti stand without ohanga. In the ease 2° we leave 
out tj and replaoe it with r appearing in (6), (7) without 
changing the remaining points It can be seen that in both 
cases we get a partition ^ such that 

Then, we proceed with analogously to t and delete from 
the partition another point t^, getting in this way the next 
partition jt2» suoh that 

Proceeding analogously in this way we gat finally a partition 
jt̂  such that 6"y>(P,jr) ̂  ©̂ (I'tJTjj) with all points of jt̂  belonging 
to A. So, there is 6^{P,jr) <: v^F,A) for arbitrary rt and in 
consequence 

v^F.a.b) ̂  v^x.A). 

Sinoe the opposite inequality is obvious, the proof is com-
plete. 

R e m a r k . The corresponding function P(t) defines 
a linear operator acting from the spatfe of functions x such 
that with some A > 0 and constant K both depending on x, 
^xeH^(A,K) into the space H^(C) (with a suitably chosen 
norm). The function F(t) can also be regarded to define ana-
logously a linear operator acting from the space of functions 
of <p -BV on a set A into . 

- 238 -



Functions of bounded variation 

3,1. Let f be s function defined on soma interval 
<cx,y3>. In this section ws shall make use of the essential 
supreffluffi of f on- •-.«.,••">, denotsd either sup* f or supess f , 

<cx,/3> <<x,P> 
I t is well known from the definition that sup* f » inf(sup f ) 

< a , ,S> 6 

where infimuss is taken over a l l subsets of of f u l l 
measure, sup*1 f i s always assumed on a sot »/3-<*. 

« V > ^ 

For two functions f • f - almost everywhere on<a ,yS> sup f » 

= sup* f , . Sup* on an open or halfopen interval is defined 
<C*,i5> 1 

analogously. 
In this section functions are assumed to be defined on 

aom interval {not always the same) and extended pe-
riodically on the whole real line with period r , Let x be 
such a function and moreover xe ir̂  <G»r>. We introduce here 
far x i t s x*-sterred x» I t is defined on<Q92r) as x* ( t ) « 
• x ( t+ ) . I t has the following properties» 
( i ) x* is right continuous for 0 ^ t < 2 r , Yy {x,0 t2T) < <*> . 
( i i ) x * { t - ) • x{t — ) for o ^ t ^ r . 

Define 

( * } L 7 ( x , t ) » 11« sup* y (U ( t + h ) - x(t)| ) . 
Y a-— o 0<h«? 

I f In the definition ( * } we replace sup*-by sup we w r i t e 

I \ T f t *\ „ „ „ <p(! x ( t + h ) - X ( t ) j ) {* L j x . t ) » 11« sup \uTE ] = v <5—0 0 < h - - 6 

a limsup ;, f LI • 

I t is plain L ^ f x . t ) ^ i j ( x , t ) . For^(u) « up we write 

Ly(x,t ) and for f ( u ) = uP - Lp(x,t ) . I f x is continuous 

then L*/(x,t ) - L^(x,t ) . 
3.2. L e m m a 1. Let x ( t ) be defined on <a,b>. I f 

Ly { x , t ) < ° ° for a l l te < a,b> off a set of measure 0 then 
x is continuous for almost a l l t and measurable. 
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10 J. Cismnsczoiowski, W, Orl iez 

P r 0 o f . I f L^iXitJ^oo f o r t e e , ^ ( e ) = b-a then i t 
i s plain that at every such point x i s continuous and measn-
r a b i l i t y f o l l ows . 

L e m m a 2. I f L j {x , t )<o>= f o r a l l t but a set of 
measure 0 then L j { x » t ) i s a measurable funot ion. 

P r o o f . Dsnote L + ( x , t ) , L + { x , t ) the upper and lower-
r i gh t Dini der i va t i ves of x at the point t . Let 
a, = { t e < a,b> : - k < L + ( x » t J < k ' analogously a2 and 

a • j t e < a ,b> : L ^ ( x 9 t i < k ) . Thare holds a » a^ D a^. 
According to Lemma 1, x i s measurable. By a Banach theorem 
[_2~] Dini der iva t i ves are measurable funct ions. Sof a i s 
measurable with any k > 0 and thus L ^ ( x , t ) i s measurable. 

T h e o r e m 3. I f L ] ( x , t ) « M f o r every t e < a , b > 
then x € h | ( M ) , i . e . x s a t i s f i e s i n < a 8 b > the Lipschita eoii» 
d i t i on with a constant M. 

Proof i s based on a c lass i ca l theorem of Dini which we 
quote here according to [ 5 ] « 

Let x be continuous in <a,b>, L + ( x » t } , L + ( x , t ) , L l x . t ) , 
L ( x , t ) be i t s Dini der i va t i ves at t e <a ,b> . A l l the four 
de r i va t i ves assuae in<8,b )> the same supremum K and infimum k, 
K i s at th® same time equal to the supremum of d i f f e r ence 

x ( t « ) - x ( t * ) * 
Quotients — ~ — f o r t ^ t ^ e <a ,b> and k - the infimum 

2 "* 1 1 * 
of these quot ients. 

Let us remark here that there does not hold a theorem in 
i 1 

a way analogous to Th.1 with L . j ( x , t ) replaced by L T ( x , t ) and 
Lipschitz condition by Holder one. 

T h e o r e m 4. For arbi trary 0 < 3 t < 1 there ex i s ts 
a funct ion x , with v (x t O,1 ) « °° f o r any p> 0 and in con-
sequence belonging to no Holder c lass , such that L ^ ( x , t ) = 0 
f o r t e < Q,1>. 

P r o o f . The function x i s supposed to be defined 
on<0,1> . F irst l e t us construct in the i n t e r v a l < ~ , "g^" ) ' » 

n = 1 , 2 , . . . a function in the fo l lowing way. We choose a se-
quence of powers p —~ «> and divide T > w i t h points 
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Functions of bounded variation 11 

- - a t . < t 1 < . = n into k equal subintervals /s-1 0 1 K aü" I ¿1 
1 A so as to have at the same time kn> 2 2 

.e functions xn , by taking 

0 t e i s 0 , 1 , . . . , k n 

x n ( t ) - 1 t « t ° f o r t ? = *im\* ** , i « 0 , 1 , ,n-1 

completed to l inear function in 

< t i _ 1 , t j> and <t° , t i>. 

There holds the inequality 

v_ i x 
PnV 9° ' I 0 ' 1 

>2 (n-1)pr 

1 > 24 2 n n « 2 n. 

Define in<0,1> a function x by takingi 

x ( t ) = 

t 

t 
0, 

1. 
1 

n 2 2 
for n = 1,2 , . . 

For p > p there i s n 

f o r » - I . 2 . — 

Thus, v (x,0,1) = oo for arbitrary p> 0. Sinoe for -\r ^ h^ 

there ie ^ 2d3*-
2*1-1 ftf 2 " 0 as n — oo . So, 

lim T 0> i f t>0 then x( t ) belongs to one of 
h~0 h r 

the intervals on v.bioh either x i s l inear or t i s the 
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12 J. Cieauioczoiowaki, W. Orlioz 

end point of two continuous intervals of linearity of x ( t ) . 
For suff iciently small h there i s x(t+h) - x ( t ) = ch, • 

so liin ' x ( t ) l - 0 {at t = 1, as fa — 0- ) . So 
h —0 lhl r 

L^.(x,t) = 0 in the whole interval <0,1>. 
Let us further notice that i f p = 1 then L!j(x,t)<°o f 0 r 

every t , but, as we have seen, x is not of p-BV for any p« 
L e m m a 3. Let A be a nonempty subset of <(a,b)>, 

right closed, this i s to say, having the property: i f t Q e A , 
t < tQ—— tQ then tQe A* Under this assumption A is measu-
rable. 

P r o o f . Denote A' *<a,b>\A, We claim that i f tQe A', 
a < t 0 then there exists an interval I ( t Q ) =<0(,y3> such that 
(oi,y3)cA' , having the following properties: 
(1) t Q e < « , £ ) , (2) ^eA or = b, (3) « e A or (3' ) « a ' 
where a is the leftsided point of accumulation of A. Checking 
this is l e f t to the reader. Consider now two di f ferent inter-
vals <( ot',/O, < a,/3)> satisfying the conditions given above. 
Then, i t is easy to see that ( * ) ( a ' , ^ ' ) n = 0. Let us 
take the set of a l l dif ferent intervals (a,/3). It is at most oo 
denumerable, so, of the form U (a^,/^). Let tQe A' . I t s 

corresponding interval on® the (o^,/^). So, 
t £ (a.,/3. ) or t„ = Q.. Let B denote the at most denumerable o i ' ^ i 0 1 |0o 
set of such endpoints tQ , Thus, we have shown A s U (o<i,/3i)UB 

what amounts to proving A' and also A is measurable. 
L e m m a 4* Let y be a f in i t e function on <0,2) . 

Define 

{6iv t ) - B u p I > VJ" ' " - y (h) 0<h^5 

for t 6 <0,1>, 0 <6^ 1 • Assume 
(a) y is right continuous in <0,2) , 
(b) y is non-decreasing in<0,2>. 
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F u n o t i o n s of bounded v a r i a t i o n 13 

Then l s ( y , t ) i s a measurab le f u n c t i o n i n < 0 , 1 > . 
P r o o f . Ad. ( a ) . Denote A = { t e < 0 , 1 ) : ¿ f f ( y , t ) « k j , 

A = { t e < 0 , 1 ) : <p (| y ( t + h ) - y ( t ) l ) < k i p ( h ) , 0 < h « f i } . l e t 
O ^ t < 1 , 1 > t i > t Q , t j^—^ t Q . S inoe y i s r i g h t c o n t i n u o u s 
at t Q , t 0 + h , so p d y i t j + h J - y f t J I ) ^ i P C I y ( t 0 + h ) - y ( t c ) | ) f o r 
any O ^ h ^ S . There f o l l o w s that A i s r i g h t c l o s e d and by 
Lemma 3 - m e a s u r a b l e . 

Ad. ( b ) . We c l a i m ( 1 ) ¿ f f ( y , t ) - ¿ a ( y * , t ) off a denumerable 
s e t , where y * i s the f u n c t i o n s tarred y i n t r o d u c e d i n 3 . 1 . 
( y * e x i a t B because y e t f < O t 2 > ) . For 0 4 t < 1 suoh that 
y * ( t ) = y ( t ) there h o l d s (2) y * ( t + h ) «= y ( t + h ) off a denume-
r a b l e set of v a l u e s 0 - i h ' < <5 . So, one can f i n d a dense set 
of h i n wh i ch (2) h o l d s . For a g i v e n h < £ there i s 

5p (y* ( t+h 1 ) - y * ( t ) ) <p{yit+hj - y ( t ) ) 

:> 9=>(y(t+h) - y ( t ) ) 
" V (h) 

w i t h some 0 < h < h i t hj^—~ h . Therefore ¿ 5 ( y * , t ) ^ ¿ 5 ( y , t ) off 
a denumerable set of t . Let us now take h ^ < h < < 5 " , h ^ — h > 0 
to have y ^ t + i ^ ) = y f t + h ^ f o r t suoh that y ( t ) » y * ( t ) . 
Ve have 

9 j { y * ( t + h i ) - y * ( t ) ) y f y t t + i y - y ( t ) ) 
y ( h t ) * y ( h ± ) 

< y ( y ( t + h ) - 7 ( t ) ) 
f (h ) 

Henoe 

y ( y * ( t + h ) - y « ( t ) ) p ( y ( t + h ) - y ( t ) ) t ) 
fTFJ ^ f C K T 

C o n s e q u e n t l y off a denumerable set of i . 

There i s then 1 5 ( y , t ) = ¿ 5 ( y * , t ) off a denumerable set and 
by ( a ) I s ( y , t ) i s m e a s u r a b l e . 
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C o r o l l a r y . If x is periodio of period 1, 
then for its starred function x*, L^(x*,t) is measurable by 
Lemma 4 and 3*1« (**)• In partioular if x is continuous 
then L^(x,t) is measurable. The sa&e holds for x nondeclear-
ing in<0,2>. 

T h e o r e m 5. Let x be periodio with period 1, 
* e i//o,i>. 

A* For arbitrary (p, there is L^(xttHo° almost everywhere 
in 0,1 . 

B. If 16^(0,1), (p is strictly increasing, cpsatisfies 
condition A2 for small u, then L^_.j(xft)< oo almost every-
where. 

P r o o f . Denote g(t) • v^(x,0,t)t O^t^l. The cab-
additivity of v^(x,at/3) over intervals implies 

( 1 | |x(t+h) - x(t) I ) |g(t+h) - g(t)l m ^ g 

Since g is nondecreasing, it has a derivative almost every-
where g' (t)>.0 in<0,1> so by (*1) L^(x,t)« g' (t)< °° almost 
everywhere. Assume 90 as in hypothesis B and let for soas t„ 
g' (t)< °° . Then <p(\x(t+h) - x(t)| )<: g' (t) + 6 )h for 
0<h*sh0{t). Hence 

(2) |*(t+h) - x(t)|^ 9.-,((g (t)+£)h). 

Bat condition A g implies ^^{g'(t)+e)h)^ C t^ 1(h) for suffi-
ciently small h and 0<-£<1« So there is L^ixjt)^ cy-
almost everywhere. 

This theorem is a generalisation of Th.1 from j_s] b;; 
J. Maroinkiewicz, who considered the case (pi, u) up

0 p >1. 
His method of proof is different from ours and uses the tfitaii 
covering with tacit assumption that L^(x,t> is msaeorabl«.» 
It is not settled whether this is really so, Anyway, liar lii-
kiewicz does not mention this question« An iproved varn 0« 
of Marcinkiewicz 'e theorem using an analogous taefchw? * 
outer measure can be found in Ge bring [4]. 
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T h e c r s m 6. (of Riazanov type [13]). Let (p be 
a sonvex cp -function sa t i s fy ing oondition (<5} from Th.1. Let 
x be a periodic function of period 1 f T v ( * t O , 1 ) < 00 . 

For every t > 0 there ex i s t s a closed set Ac <O t1>, 
M<0,1>\ A) < i with the following properties! 

(a) i f F i s the function corresponding to x and the set 
A (according to the definition 2 ( * * ) ) then PeH^fC) with some 
constant C, 

(b) v y (P ,0 ,1)€ * y ( x , 0 , 1 ) . 
P r o o f . F irs t of a l l » let us notice that for starred 

xp x * according to the definition 3.1 there i s v^ix^jO,! )< ° ° . 
So, by Th.5} L^U. t ) < °° in the set a c < 0 , 1 > such that 
¿¿(a) = 1. Let for n : 1 , 2 , . . . , a n « { t 6 at <p (I x*(t+h)-x*(t)I nh, 

for We have. a n c a n + 1 , a = U a n . As aQ = 

= j t& a: I ' / n ; . x * , t ) n j , so, by Lemma 4, aQ are measurable. 
We can choose n so that ¿u(a\ a ) < £ / 2 . Take two points 

o 
t i f t 0 f a„ such that | t . - t 0 l < 4 - . From the definition of 

1 ^ no ' 1 2 1 no no 
follows that 9(1 x * ( t 1 ) -x* ( t 9 ) l ) < n |t1-tC ) | . Let sup |x*(t)] = k. 

1 ^ 0 ' * <0,1> 
I f t 1 t t 2 e a I V ^ T T t h e n 

o o 

9( I x x ( t 1 ) < ^ ( 2 k ) n 0 - L « ^ ( 2 k ) n 0 ( | t 1 - t 2 | ) . 

Consequently, x*€ H:?(a ,c) where c = n sup (l,<?(2k)). 
o 

However, x * ( t ) = x ( t ) in <0,1> off a ¿enumerable se t . So, 
we can choose a closed set Ac a so that <u(a \ A)< i j 2 o o 
and for t e A, x * ( t ) = x ( t ) . Considering the fact that a=<0,1> 
but for a null s e t , we get ¿i(<0,1>\ A)<£ and xe H^(A,c), It 
i s suf f ic ient cow to use Th. 1. 

Point (b) i s a corollary from Th.2 in 2. tfiazanov gives 
in [)3j an analogous result for the case <?(u) = u^, p » 1 . 
His method of proof i s different from ours. Let us notice that 
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in the coura« of proof he makes use of measurability of some 
s e t s , which are measurable indeed but th i s f ac t i s by no means 
obvious. We mean here s e t s from Lemma 4» p . ( b ) . 

L e m m a 5. Let y be defined on < 0 , 2 ) . Set 

/ * ( y , t ) - eup.ee 9>(l y ( t » h ) - y ( t ) | ) 
0<hi?S Q 

and A(k) » { t s I * 5 ( y , t ) si k } . I f y i s continuous almost 
everywhere then A(k) i s a measurable s e t . 

P r o o f . Let A denote the set of points of continuity 
in <0 ,1> bo^(A ) * 1. Denote fo r a given t the set e ( t ) = 
= {ht 0^hc<5 , t+h i s a point of continuity of y j . By assump-
tion <u(e(t)) = <5. Denote by a ( t ) the set of such 0 ^ h < £ , 

fo r which r 5 ( y , t ) - sup POyft+h) ~ y ( * J L and I ( y , t ) = 
hea( t ) 11 

* sup ^ ' y ( t + h ) - y ( t ) i ) t I t i 8 p l f t i j | ( a ( t ) ) 0 < 5 # T h e 

hee(t) n 

def in i t ion of sup* implies I ( y , t ) > L * 6 ( y , t ) , because 
//(e ( t ) ) = 6 . Let h e e ( t Q ) . Choose a sequence of h^ suoh that 
t 0 + h i 6 a ( t Q ) , — - h and in consequence 

y(l y ) - y t y i ) y ( l y ( y h ) - y ( t 0 ) [ ) 
h ± ' h 

p d y t t + h j - y ( t j | ) 
and since h t 9 « l * S l j , * 0 ) so 

«>(1 y ( t +h) - y ( t ) | ) 
5 h — f o r h t e ( t 0 ) . Hence / ( y , t 0 N 

< ^ S ( y , t 0 ) . So, we have I ( y , t ) « I*6iy,t), th i s i s A(k) « 

= { t : I ( y , t ) < k j . Ve are going to show that A(k) i s measu-
r a b l e . Let t o e A, t 0 + h 0 e e ( t 0 ) , t ± e A(fc). 

9>(ly(t i +h) - y("tJ )| ) 
For he e ( t i ) there i s - g - 4 Sinoe 

oo 

9 = 0 e ( t i ) has measure equal to so one can choose 
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Functions of bounded variation 17 

y d y l V h J - y(t . )| ) 
h.,—• h0, h^e e and there is -— - — ^ = for 

i - 1,2,... But at the points t0+hQ, tQ the function y is 

9 > ( l y ( V V - y ( t 0 ) i ) continuous, so iS k, that is at the 

?(|y(t +h) - y(t )|) 
point tQ sup g——— <k for h'ee(t ) and in 

consequenoe A(k)n a. Ve have shown that the acoumulation 
points of the set A(k) included in A belong to A(k). Thus we 
have proved A(k) ilA « A(k)n A, where A(k) is the closure of 
A(k). Let A' -<0,1>\A. Ve have then A(k) - (A(k)nA)U 
U (A(k)n A ' ) . But A(k) is eloaed, A(k)n a' is of measure 0, 
so A(k)n A is a measurable set. At the same tine A(k)fl A' is 
of measure 0, so A(k) is measurable. 

R e m a r k . A more general theorem can be proved ana-
logously f i f y is continuous almost everywhere then A(k) » 
• j t s are measurable, where 

/ ; » ( „ . ) . z i M i i ^ i m i . 

T h e o r e m 7» Let x be periodio with period 1, 
v9(x,0,1)<°o . The function L^ (x , t ) iB f inite for almost 
al l t € <0,1>, measurable and there holds the inequality 

1 
(*) f L^(x f t )dt<v^(* ,0,1) . 

0 
P r o o f . By inequality (1) in the proof of Th.5 where 

g ( t ) = v^(x,0,1) we get (1 ) L * * ( x t t ) « L j ( x , t ) < g ' ( t ) < o o f o r 
almost al l t e <0,1>. The function x is continuous almost 
everywhere (off a denumerable set) in<0,1>. From the defini-
tion of L*9 (x,t) there follows 

l * * (x , t ) - lim ¿*1 / n (x,t ) 
H —— 00 

- 247 -



18 J» Ciemnoczotowski, W> Orlioa 

(comp. def. in Lemma 5) with ¿*1 / n (x,t ) being a nonincreasing 

sequence. Denote a = j t : L ^ ( x , t ) < k j , an=jt : )< k|. 

Hence, we have a = l̂ J . . • ) . By Lemma 5 'he esia 
n=1 a 11+1 

an are measurable, bo a is measurable for any k>Q» From 
(1) there follows 

1 1 

J g' ( t ) d t<oo 
0 0 

and further, by a classical theorem 

1 
J g' ( t )d t^ v(g,0,1) - g (U - g(O) ̂  v^,(x,0,1). 
0 

R e m a r k . J* Marcinkiewicz gives in ¡JBJ a theorem 
of this type for $o(u) • up, p>1, with Li^tx j t ) repiaoed by (p • 
L^(x,t ) and assuming tacitly i t s measurability. Thisr question 
is not settled here. I t seems i t should be settled in the 
affirmative, the way i t is for p(u) = u (see Th.3) and also 
for x continuous (right-continuous) since then L ^ ( x , t ) • (fi ' 

« L;j(x,t) (comp. Lemma 4). 
T h e o r e m 8. Let x e ir^X 0,1>. Let <p be a str ict ly 

increasing ^-function, cp^ satisfy the condition of submulti-
plicity cp^^(uv)^ c p _•,{&) p.- j iv ) , u , v »0 . Then L * ^ ( x , t ) is 
f in i te almost everywhere, measurable and 

1 

JV(o ^ ( » . « » d t ^ V x . o . D . 
0 

P r o o f . The measurability of L *^ follows from a 
remark to Lemma 5. We have, as in the proof of Th.6. 
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Functions of bounded v a r i a t i o n 19 

and hence 9>(|x(t+h)-x(t)| ) < / (h)h. i x í t + h j - x í t ) ! « ^ ,U(h)h)aS 

.< c<p^<J{h))cp^(h.), whence, es I (h) —.g ' ( t ) , L^lXft}^ 

j ( g ' ( t ) ) almost everywhere. Simultaneously L ^ ^ f x , t ) s £ 

L ^ ( x , t ) and thus 

1 1 
/ K c I y l - j U . t H d t ^ f g' ( t ) d t < ' . y x , 0 , 1 ) . 
0 0 

R e m a r k , I t can be soon that the operator U(. . ,t) = 
* 1 = L y t \ j ( x , t ) i s homogeneous and subadditive in the fo l lowing 

sense 

U(x 1 4- x 2 , t ) í . ü ( x r t ) + U ( x 2 , t ) 

almost everywhere. The theo..sm above impl iss that t h i s opera-
tor i s continuous and act inr —Lr<l>, where i s an Orlicz 
space of cp - integrable func . . ns . 

By way of appl icat ion ws are going to prove 
T h e o r e m 9. Let <p be a p - f u n c t i o n s t r i c t l y i n -

creasing and s a t i s f y i n g cond?.iio:} A 2 f o r small u. In the 
apace ^ of continuous funct ions on<(a,b> f the set of 
periodic functions with period b-a , f o r which v^,(x) «= =0 i s 
r a o i d u a l . 

P r o o f , I t i s known thav in ^ the set of perio-
1 

die functions with period b - a , f o r which l . p _ 1 ( x , t ) » 00 every-
where i s r e s i d u a l [ 3 ] (comp. a l so [|2] , Th„8), In view of Th.7 
the set of continuous funct ions from 1x^ i s of I - B a i r e c a t e -
gory, 

A par t i cu lar case of Th„9., with per iodic i ty dropped, i s 
Luxemburg's 

T h e o r e m £7]» In She apse a C^,, the set of con-
tinuous functions from ir (spac* of functions of bounded 
Jordan v a r i a t i o n ) i s of f ix 'er category of B a i r s , 
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20 J . Ciemnoczotowski, W. Priiez 

Let us remark that Luxemburg's proof i s unnecessarily 
complicated. I t i s suffiaient to apply a theorem of Mazurkie-
wioz-Banach [3] stating that the set of functions from C<,a ^ 
for whioh L] (x , t ) =00 everywhere i s residual and Th. 7 or 
simply the theorem on di f ferent iabi l i ty almost everywhere of 
a function of bounded variation. 
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