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1.1, The notion of variation with p~th power, called
p-variation was first introduced by N. Wiener in [14]. Next,
L.C. Young developed this idea in [15] and other papers and
defined the p-variation of a real-valued function of real
argument. By ¢ we understand here a continuous, non-decreas-
ing function p{u) 31<0,00)—=<0,00), taking O only for u = 0
and tending to oo when u —=—oo, Any such ¢ will be referred
to in this paper as a p=-function, These are the ones that
gave rise to Orlicz spaces. Let x(t) : (a,b> —~ R, Throughout
the paper it ie assumed that x takes finite values and
x(a) a O,

Let 7 be a fixed partition of ({a,b)>, mta= t°<t1<...<tn=b.
We call the variational sum on

n
6p(xym) = ; ollx(t;) = x(t;_,)] )

The number

v¢(x) = sup 6p(xy)
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2 J. Clemnoosotowski, W, Orlicz

with supremum taken over all partitions 7 of the interval
{a,b>, is called the ¢-variation of x. Letter I is going
to denote an interval I =(x,B)>c{a,b)> and v,(x) ocaloulated
over I will be denoted vso(x,I) = Vo(x,0.8)e When vy(x)< o0
the function x 1is said to have bounded (or finite) ¢ -varie-
tion or to be of ¢-BV, These functions found numerous appli-
cations and proved to be of independent interest. ¢-BV func-
tions are bounded, have both one-sided limits at esaoch point
of (a,b) and right-sided at a, left-sided at b,

1s2, For & p=-function ¢ the following condition will be
needed:

¢is said to satisfy condition A, (for small u) if there
exist k>1, u°>0 such that

p(2u) <kp(u) for O<us<ug.

An equivalent formulation of condition Dy is the following:
for every ¢ >0 there exists a constant d°> 1 such that

plcu) <d p(u) for O<u<u,.

We can express the ocondition A2 analogously for large values
of u and all u. If ¢ satisfies the condition A, for
O<u<u, it satisfles it also for any other finite u, with
the constant k sulitably ochanged.

1+3+ Consider the vector space

v;= {x: x{a) = 0O, v<P(Ax)<oo for some constant 7\>0}.
U’; ias called the space of funetions ot ¢ ~BV.

L 4
U‘P - {x:x(a) = 0, v¢(x)<oo} is called the class of

functions of ¢ -BV, Whenever in the definition of u; we take
vg,(x,a,,e) instead of vy,(x,as,b) = v¢(x), this fact is denoted

u*;<0( 2 e vg,(x) is a modular and for g -convex ¢ function v;

is a modular space in Musielak-Orliez sense [ 9], [10].
For gp(u) = up, p>1 we get the Wiener-Young classes, It
is easy to ses that functions satisfying the Holder condition
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Funotions of bounded variation 3

with —:; » p>1 are properly included iam v . Riazanov in [13]
established a theoram being to some extent the converse of
this fact, Theorem 6 of oux paper is a generalization of Ria-
zanov 8 result.

1,4. Let ¢, y be arbitrary p-functions, A4 a nonempty sub=-
set of (a,b). We say x 1is of class HJ(4,K) if the following
inequslity is satisfied

(*) olix(t') = x{t")] )<Ky(lt' = "] ) fort ,t"c A

When p(u) = u we write H) gl &,K) instead of H?(A K)e Other
symbols are changsd similm'ly. If plu) = u, y(u) = vP, 0<p<1,
then Hq’(a K) is replaced by Hp(a,xa and we ere getting the
I-Ioldsr classes, p = 1 = tha Lipechitz classes. If A = {a,b)
'we wrilte short Hi(h}. HP(KJ to denote the classes introduced
above,

Funotions of claas H.f{n,l{) are bounded on A. Let us assume
¢ is strictly increasing aad its inverse function ¢ _, sa-
tisfies condition A, for small ue Then, with scme constant K

|%(%,) = x(t)l < Kg(1t, = t,]) where g=gp _,(v)

io’p IEH;(K}.
Note also that if g{u)/u — 0, u —90 x hae ind{a,b)
the darivative =0, so in this case H}(K) consists only of

constant functions, for exesmple H;(K). p>1.

2 (%) Let Ac (a,b)> be a noneanpty closed set containing
a,b. Let (ai,b ) denote disjoint intervals with endpoints

84Dy € A, such that U (a;,05) =<a,b>\A.
Define the follnwing function F

x{t) for tek
F(t) =
linear on every < a;,by .

From now on F(t) ie calied the function corresponding to x
and the set A, Two theorems follow.
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4 Je. Ciemnoozotowski, W, Orlies

Theorem 1, Let ¢, v satisfy the conditionss

(x) <p(uv)so1vg,(u) o<sv<i,

() w(uv)ozzvﬁw(u) r4>0, Os<vsi,

(7) 727

(6) @(3u)<eyp(u) for ux>0 (i.e. for all u).

(It follows 04005903 > 1).

Under these assumptions, if xec H (A K), where the set A
satisfies (xx), then for the corresponding function Pe HW(C),

where C = 3Kc10203..

Proof. First, let us shows if t' # t"¢ {ay,b;>

then

olIP(t") = (3D g .
(1) (s =41 <Keq0,cy
We have

P PF(s") = Rt )])
(It - ¢])

= ¢ (',‘,—i—:,— | P(by) - F(a1)|>/xp(lt” -t'l)<

=

" /a‘ (b - ) (F(b)-F( )l)
<o, I -tl)‘*’ 1 = 8) @(F(by &

bi - 81 ll}(]t” -tl I)‘ \p—(bi - ai)
T
e |1:"-'_-'s'l>1 by - 8y)
=71 bi-ﬂi w(ltu "t,l)

However, from (x) we have

| l'a~1
t’ - ¢ R s " [
< bi - ‘i> v (bi - ai)S 02\}’” t" - t'])e

So, inequality (1) is verified,
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Functions of bounded variation 5

We are going to consider the following three possible si=-
tuations:

c

1% ty,8,¢ 4 then g ([F(t,)-F(t )| )< Ky(lt=t,])
from the definition of x and F,

2°. tye 4y 1, go(ai,bi), tjl<ai. Then

<p(2|F(t,)~Flay) | )+p(2]Flay)-F(t, )] )<
sKo10203w(t2-ai) + Ky(ay=t,)<

< oK sup(1,0132)(w(t2~ai)+w(ai-t1))s
sq1w(lt2-t1l),

where C.I = 2K38up(1,c1c2)s 2K0302c1 since o1>1. 0221. The
same estimate is obtained in the casze tre 4y t2>-bi,
t1e (ai,bi)o

3°, 1, € (ai,bi), t,e (aj,bj), bisaj. Then, in view of (1)
PUPRt,)-F(t )< (I F(dy)=F(t )} + [Plag)-F(b;)| +
+ |F(t2)-F(aj)I )é¢(3|F(bi)-F(t1)l) +
+90(3|F(aj)-F(bi)|) +¢(3!F(t2)-F(83H)§
ch102c3np(bi-t1) + KchI(ej-bi) +
+ Kc10203\y(t2-aj)s
<K sup(cB,c10203) {w(bi-t1)+w(aj-bi) +
+ \y(tz-ad)Jg Cz\y(tz-t.l),

where C, = 3Kc3aup(1,o1cz) = 3KoycCqe
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4°, t1,t2 e <ai’bi> then from {1) we have
(1 F(t,)-F(t,)] )< €3y(t,~1,) where Gy = Kejepe If glu) = u?,

¥
ylu) = u 1, 3‘23’1 One can assume c, = ¢, = *, ¢y = 33. 80,

one can put C = k3¥*1, In the limiting case i.e. p{u) =
=y({u) = u it is poesible to take C = K, Indeed, if t ,t”

€ (ag,b;> then [F(t"] - F(t')]< Klt”" = | . We get the same
estimates when t, ,t < A. If s,¢ 4, 1, e(ai,’bi), t4< 8y then
it is easy to see that the coefficisnt of direotion of the
straight line coinecting points (t.;,F(t1)), {t,F(%)) where

F(t) ~ F(i,)
8;< tsbi, this is to say the guotient A . is of the
1

form%t—t% o The denominator of this homographic function

is # 0 in(ai,bi>. So, it assumes its extremal values at the

IF(bi) - F!,t1)
endpoints of this interval. Since | bi —
: 1

‘Flay) = F(t1) F(t2) - F(t1)
—a. -3, |<K s0 % 5 < Ks We obtain the
i 1 2" "

seme estimate when t,c A, t,>Dby. If t, ¢ TP

<K,

%, ¢ < a4 ,,b3>, by < 8y then
| F(t,)-F(t,)] < |P(by)=F(%4)] + [F(t,)-P(b;)]<
< K((by=t,) + (ty=by)) = K(tp=t,).

Theorem 2. Let ¢ be a convex ¢=-function,
F - the function oorresponding to x and some closed set A,
Then

(%) Vo(Fya,b) = v,(x,4).

Proof. In the case whenop(u) =uP, p>1, 4 is fi-
pite - this theorem can be found in Musielsk-Semadeni [11],
in the case when ¢~ is a convex and A finite - in Lesnie-
wicz-Orlicz [6] the case of arbitrary 4, ¢(u) = uP, p>1
is in Riazanov [13].

- 236 =



Funotions of bounded variation T

We are going to csrry out the proof for the general case
and erbitrary conve:x ¢ along the same lines as in Musielak-
-Semadeni.

et 73 a = %,< t.'d see <ty = b be an arbitrary partition.
Let us set up a new partition 311-= 8 = Ty<Ty<see<Tpy = b, whose
divieion points are some from A and t; except for one tj. Lot
tj be the smallest index such that fj does not belong to A.
Consider two cases:

1% (F(ty) - Pty ) ) (F(35,) = F(t4))>0.

Since ¢ is superadditive, it follows that

“” QD(IF{td)-F(tj-‘l”) "'99”-?("3_._1}"1?(‘33}”4.
é?’){lF{tj_‘_-I""F{tj_-l’ | :'lo

2% (F(ty)=Flt; _q)J(F(ty,4)-F(t))<O0.
Consider for instence the sijuation F(tj}>P(tj_1l, F(tj')>
> FHJH)' Since t., does not belong to 4 so it is an inferior
point of some interval < T' T D, t3_1..<, ', on which F is 1li-
near, If F( T )>F(T"), then F(T')>F(‘b‘j) and

(2) F(7')=F(t.

We have zlso

{3]' F(TI)"F{tj_’_-‘}}:ﬁ‘(t:})'i‘(tj*_-!)t

If (7)< F(r"), (we allow 7'= tj_1) then there cannot
be T'> 1 3 because the straight line between ,polnts
(' ,F(r’?, (r",F(7")) is increasing and the point ('l'.'j”,F(th);
does not lie on the segment. So we have tj < gh< th,

(4} F{T’J)'F(t3_1}}}F(tj}"F(ta_J’J?

(5) P(T")-Fty, )2 BlE )=Fltg, )

n)
v
i



8 Jo Ciemnnozotowski, W. Orlios

So, in both cases we have for soms 7¢ A,
(6] pLIP(6)=Pty_y) 11>l P(3,)-F(ty 1)),
(7 pUR(T)-R(sy 1 = p (1 F(15)-F(ty 1),

We are zoing to svonstruct a new partition Ty out of 7 in %he
following way.

In the 2ase 1° we lsave out the poirs ¢, and let the ro=~
maining ones t; stand without ohangs. In tno case 2° we igave
out td and replace it with 7 appearing in i6), (7) without
chenging the remaining points %4o It can be seen that in boih
cedes we get a partition W& such that

Gggkp,yr) < O, (Rym,)e

Then, we proceed with ﬂ1 analogously tv 7 and delete from
the partition another point ty, gotting in thie way the next
partition m,, such that

O Byary) S G,(F,m,).

Proceeding anaslogously in this wsy we gst finally a partition
7, such that G?(F,W)$§5¢(F,ﬂk) with all pointe of 7 belonging
to 4. So, there is 6?(F,mﬂs;vw(F.A) for arbitrary 70 and in
consequence

v¢(F,a,b)s;v¢(x,A).

Since the opposite inequality is obvious, the proof is com-
plete.

Remark, The corresponding function F{t) defines
a linear operator acting from the space of functions x such
that with some 2> 0 and constant K both depending on x,
2xe»H$(A,K) into the space H$(C) {with a suitably chosen
norm)e. The function F(t) can also be regarded to define ana~
logously a linear operstor acting from the space of functione
of ¢~BV on & set A into u; .
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Functions of bounded variation 3

3.1. Let £ be & function defined on some interval
{a,p>« In this section we shall make use of the essential
supremum of f ondo,A3), denoted either sup® £ or supess f.

<oy > <oty B>
It is well known from the definifion that slzp f= 1nf{sup £)
ﬁ)

where infimum is taken over all subsets of (u,ﬁ) of full

nessure. aup> £ is always assumed on a set eo.ﬁ(e ) = B=c,

For two f::c':iiona £ = £, almost everywhers on{x ' B> sup fa=

= {:ug} f.l. Sup” on an open or halfopen interval is dsf'lned
’

analogously.

In this section functions are assumed to be defined on
soms interval <0,7) (not always the same) and extended pe-
riodically on the whole real line with peried T, Let x be
such a function snd moreover xe vp<0,7>. We introduce here
for x its x*-starred x, It is defined on<0,27) as x*(%) =
= x(t+)s I% has the following properties:

(1) x* is right continuous for O0<t< 27, vu{x,0,27) <0,
(ii) x*(t=) = x(t~- ) for O<t<T,
Define
{*) (x,t) = lin sup ™ ?(lehh} = x(t))
6-=0 O<hsy a}

If in the definition (x) we replace sup™ by sup we write

(xx) L, %(x,t) = Jm  sup sa(lx{hhq!{;]x(tm B

-0 0O<h<é

pliz(t h) - x(t)]) |

h—"O
It is plain L\ (x,t)< Ly(x,t)s For p(u) = u® we write
Lﬁ(x,t) and for y(n) = oP - Lq;(x,t}. If x 1is continuous

then L",f(x,t] w L$(x,tl.

3,2 Lemma 1. Let x(t) be defined on <{a,b>. If
Lf‘:j{x,t}*:m for all te { a,b> off a set of mwasure ¢ then
x is continuous for almoet all t and measursbls.
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10 J. CliemnoczoXowski, W, Orlicz

Proof. IfLy(x,t)<cc for tee,sle) = b-a then it
is plain that ai every such point =x is continuous and measu-
rability follows,

Lemna 2. If Li(x,t)<co for all t but a set of
measure O then L1(x,t} is a measurable function.

Proof. Denote L¥(x,t), L, (x,t) the upper and lower
right Dini derivatives of x at tha point t, Let
a, = {t e {ayb) 3 ~k<L¥(x,%)< k} analogously a, and

a={te{a,b): Li(x,t)<k}. There holds s = a,Na,.
According to Lemma 1, x 1is meagurable., By a Banach theorem
[2] Dini derivatives are measurable functions, So, a is
measurable with any k>0 and thua Litx,t) is measurabla.

Theoremnm 3. If L1(x,t)slﬁ for every t c {a,b>
then xe¢ H:(H). i.e. x wsatisfies in<{a,b) the Lipschitz con-
dition with a constant M,

Proof is based on a classical theorem of Dinl which we
quote here acoording to [5]:
- et x be continuous in (a,b>, L'(x,%), L (x,t}, L7(x,t),
I_(x,t) be its Dini derivatives at t ¢ {a,b). 4ll the four
derivatives assume in<{ a,b) the same supremum K and infimum k.
K is at the same time equal to the suprsmum of difference

) x(tz} - x(t
guotients tz = 11
of these quotients,

Let us remark here that there does not hold a theorem in
a way analogous to Th.1 with L}(x,t) replaced by L}(x,t) and
Lipschitz condition by Holder one. -

Theorem 4. For arbitrary 0<g7<1 thers exists
a function x, with vp(x,o 1) = o for any p> 0 and in con-
sequence belonging to no Holder class, such that L1{x t) =0
for te <0,

Proof. The function x is supposed to be defined
on{0,1>. First 1let us construct in the intarval(-;—n ,-2—:-1:,0,

) ,
L~ for t,,t, ¢ {a,b) and k - the infimum

n = 1,2,ese 8 function in the following way. We choose a se-

guenoca of powers p_-—= oo and divide { —, —1—*§>with peinte
n P n-1
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Functions of bounded variation 11

= to< t1< ...<'r.k = n—1-1 into k‘n equal subintervals
n 2 ™ (
Pn n-1)pn

ty>, 80 a8 to have at the same time k >5 2 ™ 2 n.

a

N
3
N

Fioq

Define the functions Y by taking

0 t = ti, i= 0,1’ooo,kn

t ‘+ t
) 1 i-1 i
xn(t) = 2n1 t ‘ti for 1:i ——— 1’0’1"“’kn

completed to linear function in
Cty_q0t3> and <t3,8.0.

There holds the inequality

{ 1 1
\

k P J
n 1,°n n
~Xn, é‘ﬁ 9 2n-1>>2 2(n_1)pn )222 ns=2 n.

v
Pyt

Define in {0,1> a funection x by takings

0O t =0,
x(t) = 0 t = 1,
an(t 513 t<2n11 for n = 1,2,e0

For Pp> P there is

1 1 1 1 ,Pn
(x)> pn vpn< n' ?“, ?1_—1>> —p'n 2 n far n = 19240
2 2
Thus, v (x 0,1} = oo for arbitrary p> 0. Since for in < hg
2

1 xth) 1 ,ny__ .
ézn_1 there is i Q——T 2 O as n oo o S0,
1im [z{0+h) ~ x{0)]
h=-0 n?

the ipisrvais on which aither x 1s linesr or t 1is the

= 0y If t>0 then x{t) belongs to one of
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endpoint of ftwo continuous intervals of linearity of x(t).
For sufficiently small h there is x(t+h) - x(t) = ch, -
so liam [x(t+h) ~ x(t)I

L) (x,t) = 0 in the whole interval<0,1).

Let us further notice that if j = 1 then L1(x,t)<oo for
every t, but, as we have seen, x 1is not of p=-BV for any p.
Lemma 3. Let A be s nonempty subsst of (a,b),

right closed, this is to say, having the property: if tnc- A,
$,< e S to then toe A. Under this assumption 4 is measu-
rable.

Proof, Denote A =<a,b>\ A We claim that if ¢ e A,
a<t%, then there exists an interval I(to) ={o,A> such that
(«y8)c A&’ , having the following properties:

(1) ty€ {xoB)y (2) Bed or B=Db, (3) xeh or (3') xecd
where o 1s the leftsided point of accumulation of A, Checking
this is left to the reader., Consider now two different inter-
vals {a’, 8>, («,p> satisfying the conditions given above.
Then, it is easy to see that (*) (o', 8 )N (x,8) = ¢. Let us
take the set of all different intervals (xyB)e It is at most

denumerable, so, of the form U (ai.ﬂii. Let t ¢ A . Its
1

corresponding interval (00./3 ) is one of the (oy,B;)s So,
t € (ui,,ﬁi) or t = Oyqe Let B denote the at most donumerablo

set of such endpoints t . Thus, we have shown A = U (ai,ﬁ .JUB

what amounts to proving A’ and also A is moasurable.
Lemma 4, Let 3 be a finite function on<0,2),
Define

5 _ sup olly(t+h) - y(%)|)
Ely.t) O<h<§ ylhj

for t ¢ (0,1, 0<6<1, Assume
{a) y 1is right continuous in <0.2),
(o) y is non-decreasing in < 0,2
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Functions of bounded variation 13

Then (°(y,t) is a measurabls function in<0,1).

Proof. Ad (a). Donote A = {te <0,1): {{y,$)<k},
a={te<0,1):pligltsn) = 3(t)l )<kylh), 0<h<6&}, Let
0<% <1, 121> to, i to. Since y is right continuous
at t , t +h, 80 ¢(Iy(ti+h)-y(ti)|)———~¢(|y(to+h)-y(t°)|) for
any 0<h<§, There follows that A is right closed and by
Lemma 3 -~ measurable.

Ad. (b). We claim (1) (%(y,t) = {%(3%,%) off a denumarabdles
pet, where y”* is the function starred §y introduced in 3.1,
(y* exists because ye v <0,2>). For 0<t <1 such that
y*(t) = y(t) there holds (2) y*(t+h) « y(t+h) off a denume-
rable sst of values O0<h<é, So, one can find a dense set
of h in which (2) holds. For a given h<& there is

p(y*(t+hy) = 3*(2))  o(y(t+hy) - 3(t))
L(y*,t)> v (5] = y(hy] >

. ely(s+h) =~ 3(t))
- y (k)

with some O<h<hy, hy— h. Therefore (’(y*,t)> (°(y,t) off
a denumerable set of t, Let us now take hi< h<¢, hi—- h>0
to have y*(t+hy) = y(t+h;) for t such that y(t) = 3*(t).

We have

ply*(t+hy) = 3%(¢))  o(ylt+hy) - (%))
28] = y (hy)

. 2(y(t+h) = (%))
< y (B] .

Hence

e(y*(t+h) = 3*(t)) _ ol(y(t+h) - 3(¢)) 5
Consequently la(y*.t)$(6(y,t) off a denumerable set of <%,

There is then la(y,t) = (% (3*,4) off a denumerable set and
by (a) ¢%(y,t) is measurable.
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14 J. CiemnoczoXowski, W. Orlicz

Corollary. If x 1is periodic of period 1,
then for 1ts sterred function x*, Ly(x*,t) is measurable by
Lemma 4 and 3.1. (x#). In particular if x is continuous
then L$(x,t) is measurable. The sawme holds for x nond=:rea: -
ing in <0,2),

Theorem 5, Let x be periodic with psriod 1,
x € V,{0,1Ds

A. For arbitrary ¢, there is L?(x,t)<cw almost everywhere
in 0,1 .

Be If x¢ v¢<(0,1>, ¢ is strictly inoreasing, ¢ _, saiisfies

condition A, for emall u, then L;_1gx,t)<:a> almest svery-
where,

Proof. Denote g(t) = v¢(x.0,t), 0<t<1. The ¢:ub=-
additivity of vp(x,a,ﬁ) over intervals impliies

(1) plix(t+h) - x(%)]) _|8(t+h) - g(t)|
B < B )

Since g is nondeoreasing, it has a derivative almost zvary-
where g’ (t)>0 1in<0,1> so by (1) Lf(x,t)< g (t)<co alncat
everywhoie. dssume ¢ as in hypotheslis B and let for soms ¢,
g (t)<oo, Then o¢(lx(t+h) - x(t)l)< g (t) + ¢)h for
0<h<h°(t). Hence

(2) |x(¢+h) - x(t)|< ¢_s((& (t)+c)h).

But conditionA , implies ¢_1((g'(t)+e)h)s Ct¢_1(h) for suffi-

oiently small b 8nd O0<¢<1, S0 thore is L;_1(x,t)s RS
almost everywhere,

This theorem is a generalization of Th.1 from (8] b3
J. Maroinkiewioz, who considered the case ¢{u) = uP, p= 1.
His method of proof is different from ours and uses the Vitaii
covering with tacit assumption that Lf(x,t} is msasurable,
It is not settled whether this is really sc. inyway, Mav.ipn=-
kiewicz does not mention this question, An imoroved var~.an
of Marcinkiewicz ‘e theorem using an analogous wmetlid w
outer measure can be found in Gehring [4]e
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Thecrsu 6, (of Riazanov typs [13]). Let ¢ be
s convex g -function satisfying ocondition (&) from Th.1, Let
x be a periodic function of period 1,v,(x,0,1)<>,

For every ¢ > O there exists a closed set Ac (0,1,
4((0,1>\ A) < ¢ with the following properties:

(a) 1f F is the function corresponding to x and the set
4 (according to the definition 2(xx)) then Fe H‘;’(c) with some
constant C,

(b} v,(F,0,1)< vo(x,0,1).

Proof. First of all, let us notice that for starred
x, x* accordiLg to the definition 3.1 there is v,(x* ,O 1)< oo,
So, by Th.5, 1 "(x,t) <o 1in the set a c <{0,1) such that
ula) = 1. Let for £31,25000, ans{teax o (] x*(t+h)=-x*(t)! )< nh,

i
for Oéhéi—f. We have.a Cap,qr 8= U 8 As 8, =

. - n 1
= {te a: { “/n(x*,t)s n}, s0, by Lemma 4, &, are measurable.

We can choose n, so that u(a\ a, )<¢/2, Take two points
o

, 1
tiat,e ano such that |1:1-1:2.|\n—o . From the definition of ano

follows that (| x*(t3)=x"(t,)] J<n,lt,-t,|. Let sup |x*(t)i =k

If t1,t2ean°, [t1-t2]>Fo then

pllx(ty)=x*(t,)1 )< p(2k)n - <pl(2k)n ([t4-t,5]).

Consequently, x*¢ Hf(an »¢) where ¢ = n, sup (1,0(2k)).
o

However, x*(t) = x(t) in {0,1> off a denumerable set. So,
we can choose a closed set Ac a, &0 that u(a \ A)<¢/2
o )

and for tec 4, x*(t) = x(t). Considering the fact that a={0,1
but for a rull set, we get x4(C0,1>\ A)<¢ and xe< Hf(A,c). It
is sufficient now to use Th.1.

Point (b) is a corollary from Th.2 in 2. Riazanov gives
in 1__‘13] an anslogous result for the case ¢{u) = up, p=1.
His method of proof is different from ours. Let us notice that
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16 J. CiemnoczoXowski, W. Orlicz

in the course of proof he makes use of measurability of some
sets, which are measurable indeed but this fact is by no means
obvious. We mean here sets from Lemma 4, p.(b).

Lemma 5. Let y be defined on <0,2). Set

l*f‘(y.t) - ‘3,‘2%‘3? <p(|y(t+ht)1-y(t)l)
and A(k) = {tz l*a(y,t)sk}. If y 1ise continuous almost
everywhere then A(k) is a measurable set,
Proof. lLet A denote the set of polnts of continuity
in <0,1> so u(A) = 1. Denote for a given t the set e(t) =
= {h: 0<h<d, t+h i8 a point of continuity of y}. By assump~-
tion y(e(t)) =6 . Denote by a(t) the set of such 0<h<¢,

for which ls(y,t) = suF ) <p(|1(t+h) = y(%)l and £ (y,t) =
]

t+h) - y(t) |
heeft) elalts )h eI | 14 10 plain u(a(t)) =& . The

definition of sup™ implies ¢ (y,t)>t*6 (y,t), because
ule(t)) =6 . Let hee(to). Choose & sequence of h; such that
t°+hie a(to), hi——h and in consequence

olly(t+hy) - 3(s)]) plly(t+h) - 3(%,)])

1
: (l3(t_+h,) = y(¢_)|)
and since ? o i B, 0 <« t*s(y,to) so

<p(|y(t°+h)h- ()]

sl"s(y,to). So, we have [ (y,t) = l*s(y.t), this is A(k) =

-.-'{t: L (y,t)sk}. We are going to show that A(k) is measu-
rable. Let t e 4, 0<t <1, t +h e e(to), ty—t,, tie_A(k).

o(ly(ts+n) = y(t;)])
For hee(t,) there is Tt | < k. Since

< l“s(y,t‘;) for he o(to). Hence ! (y,to)s

= ﬂ e(ti) has measure equal to &, ®0 one can choose
.
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Functions of bounded variation 17

plly{ey+hy) = 3(t)])
hi"’ ho' hie e and there is hi <k, for

i =1,2,ee¢ But at the points t°+ho, T, the function y 1is
<p(|:zu.",»«n,,})l - 3(85)1)

continuous, so < k, that is at the

o
ol y(t_+h) = y(t_ )I|)
point t° sup o B ° <k for he e(to) and in

consequence toe A(k)N A. We have shown that the acoumulation
pointe of the set A{k) included in A belong to A{k). Thus we
heve proved A(k) NA = A(k)N A, where A(k) is the cloeurs of
a(k), Let A" =<0,1>\ A, We have then A(k) = (A{k)N A)U
U (A(k)N A’). But &(k) is closed, A(k)N A’ is of measure O,
80 A(k)N A is a measurable set. At the same time A(k)N A" is
of measure 0, so0 A{k) is measurable.

Remarxrk. A more general theorem can be proved ana-
logously: if 3y 1is continuous almost everywhere then A(k) =

= {t s 1p%(3,t)< k} are measurable, where

* @ - o(ly(t+h) = y(t)l)
lw (3,%) ggﬁ;;a BT .

Theorem 7, Let x be periodioc with period 1,
vy(x,0,1)< o . The function L:w(x,t) is finite for almost
all te¢ {0,1), measurable and there holds the inequality

1
(%) f L';‘p(x,t)‘dtsvv,(x,o.ﬂ.
0

Proof. By inequality (1) in the proof of Th.5 where

g{t) = vy(x,0,1) we get (1) L:‘p(x,t)éLf(x,t)sg’ (t)<oo for
almost all t ¢ <0,1). The function x 4is continuous almost
everywhere (off a denumerable set) in<0,1)., From the defini-
tion of 13%(x,t) there follows

L’;‘P(x,t) = 1im ¢* 1/8(x,¢)

n-—~oo
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18 Jo Clemnoczotowski, W, Orlioz

(comp. def. in Lemma 5) with L*Vn(x t) being & nonincreasing
sequence, Denote a = {t : L1 (x t)<k}, a8, {t t*'/n(x ti<k }..

[o 2]
Hence, we have a = U (anﬂanHﬂ see)e By Lemma 5 the eets

8, are measurable, so a is measurable for any >0, From
(1) there follows

1 1
f L’;‘p(x,t)dt< g’ (t)dt < oo
0
and further, by a olassical theorem

fg’(t)dtsV(B.O.ﬂ = g(1) -~ 8(0)<vylx,0,1).

Remark, J. Marcinkiewicz gives in [8’ a theorem
of this type for p(u) = uP, p>1, with L3 ~?(x,t) repimced by
L(P(x t) and assuming tacitly its measurability. This question
is not settled here. It seems it should be settled in the
affirmative, the way it is for ¢(u) = u (see Th.3) and also
for x continuous (right-continuous) since then L, “Px,t) =

Lsp(x,t) (comp. Lemma 4).

Theorem 8., Letxevy,<0,1>. Let » be a strictly
inereasing p-function, ¢ -1 satigfy the condition of submulti-
plicity ¢_j(uv)<c ¢_,(u) ¢ _,(v), u,v>0. Then L*11(x t) is
finite almost everywhere, meaaurable and

v (3 L;11(x,t) Jat< v, (x,0,1).

oe‘;—l

Proof. The measurability of Lj;11 follows from a
remark to Lemma 5, We have, as in the proof of Th.b6,

t+h) - x(¢ (t+h) - g(+
90(|:<(+)h x(8)1) <4 (n), 1(n) =-8 +)h g(%)
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Fanctione of bounded variation 19

and hence o(|x(t+h)-x(t)l)<Z (h)h. |x(t+h}-x{t]!-sgg_1li(h]h}s

<cp_4il(h))g_y(h), whence, as £(h)—~g’ (t) g (Xot )

# o
f:;oq(gf(t}} almost everywhere. Simultancously L;L(x,t}s

sLt}q(x,tJ and thus

1
[ EIC R ANERNTIE {'g (£)dt < vy(x,0,1),
0 0

Remarik, It can ba seon that the operator U(..,t) =
= L** ;(x,t) is homogeneous and subadditive in the following
SBHES

U(x.l + xg.t){- Li{x1,t} + U(xa,t)

almost everywhere, The theo.sm above implies that this opera=-
tor is continuous and actinr v, —L"%, where 1L*? is an Orlicz
spaca of ¢ ~-integrabls functi. ns,

By way of application wa are going fto provs

Theorem 9. Let » be ap-~function strictly in-
creasing and satisfying condriion A, for small u. In the
apacs c(a,b) of continuous functions on {a,b), the set of
pariodic functions with pericd b-a, for whieh v?{x} = oo is
rapidual,

Proof., It is known thas in 0'( b) the set of perio=

dic functions with period b--a, for which L} (x,8) = co every-

P=1
where is residual [3] (comp. nlso [_2_;, Th.8). In view of Th.7
the set of continuous functions from Ve is of I-Baire cate=-
30T,

A particular case of Th,9, with periodicity dropped, is
Luxemburg ‘s

Theorem [7]. In the mpace Ciq,py the set of con-
tinuous functions from v (spacs of functions of bounded
Jordan variation) is of fivaer nategory of Bairs,
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Let us remark that Luxemburg’s proof is unnecessarily

complioated. It is suffiocient to apply a theorem of Mazurkie-
wioz-Banach [3] stating that the set of functions from Cia,b>’
for which L}(x,t) = oo @verywhere is residusl and Th. 7 or
simply the theorsm on differsntiability almost everywhere of
a function of bounded variation.
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