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0. Introduction

In %his paper we are ooncerned with a general method of
buildi~z new eigebras from a family of algebras of the same
t7pe indexed by & set with a semilattice structure and re-
constructing aigebras by means of the defined construotion,.

Leu (S,*) be a (meet) semilattice and  a set of opera=-
tion syzbols having arity at least two. Then (S,°) may be con-
siderec as ancr-algebra on setting

((101) x1'aox W= x1‘....xn

n

for each n-ary o in Q. Such an algebra is called an Q-semi-

fine a binary operation * on S by

(0.2‘) Xey = x‘y...y@

for sach «w in 2. The equation {0.1) will then hold. Thus
the variety SL of all semilattices can be consgidered as the
variety of Q-algebras. Recall that an identity is regular if
exactly the same variables appear on both sides of it. (See
[17])s It is well known that SL satisfies exactly all regular
identities between >-words., A variety V of Q2-algebras is
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2 A. Romanowska

called regular if each identity setisfied in V is regulur,
Otherwise, V is called irregular. Then V contains the varieiy
SL of Q-semilattices if and only if V is regular. Each alge:za
(4,2) in a regular variety V has a homomorphism, say h, oc:. o
an Q-semilattice (S,R2)s In the case (4,R2) is plural, i.e.
{4,2) is idempotent and all operatioms of 2 have arity at
least two, the fibres Ay 1= h'1(s) for each 8 1in S are sub-
algebras and (A,Q) is sald to be a semilattice of algebras
(AB,Q). In particular, (4,Q) is an Q-semilattice rsplics of
its subalgebras. (See Malcev [14]). The nstural question
arises: Is thers a general method of raconstructing (4,0) from
its Q-semilattice quotient and corresponding fibres? There lu
an exampls of such a construction for slgebras in so called
regularised varieties. The regularisation sr regularised va-
riety i of a variety V is defined to be the class of &2~-anlge-
bras satisfying the regular identities that are satisfied

in V. (See Pxonka [17] and [19]). By Ptonka’s results [19]

it is known that an algehra in the regularisation i of axn
irregular variety V of plural algebras is the Ptonka sum of
algebras in V, However if V is an arbitrary regular variety
then not avery algebra in V can be reconstructed as a Ptonke
sum of its subalgebras,

Now consider more general situation. Given & set & cf
operation symbols having arity at least twc, define a culti.
semilattice or Q-multisemilattice to be an algebra (M,0) for
which each reduct (M,w) with @ in © 1ie an {w} -semilattice.
For each reduct (M,w), (0.2) defines a binsry semilattice
operation., Denote this operation by °*w. There is a correspon:i-
ing semilattice order on M, denoted =<, . ¥or a plural varie-
ty V of Q~algebras let MV denote the varisty of Q-multisemi-
lattices (M,?2) lying in V., The variety MV is non-trivial if
and only if V is multiregular, i.e. each identity satisfied
by each V-zlgebra and involving only one operation « from &
is regular. Note that multiregular variety is not necessarily
regular. (Take for example the variety DL =f distributive
lattices). Let h be a homomorphism of a -lural algebrs (4,7}
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Constructing and reconstructing of algebras 3

©»0 ¢ multisemilatiice (M,2). Then the fibres Ay := h™ (m)
;. eash m in M are subalgebras of (A,R). In this case

(4,92} 18 said to be the multisemilattice (M,2) of algebras
{4ge@)s In particular, each plural algebra (4,2} is a multi-
ssnilattice replica of its subalgebras, and a semilattice

of Q-algebras 1s a special case of a multisemilattioce of
-=algabras, Noy ¥s can ask as before whether there is a gene-
r=i method of resorstructing (4,2) from itsQ-multisemilattioce
guotisnt and corresponding fibres. Consider the following
c¢znstruction,

Let (M,:?) be a multisemilattice. For each m in M, let
en algsbra (Am,Q} »g given, and for each k-ary w in @ and
sach pgiv {m,r} i u2 with n=,m, a mapping ;o‘;.n:Am—-An
satislying

fiy 3 g.fé"ﬂ is the identity mapping on 4.

Define an cperatior w on the disjoint union A of Ay, me M,
by

- N w w
(2.4) 890008 @ 1= %0 ,m kYm0

where &; ¢ Ami, mecMy, m= meoomwe The algebra (4,9) defined

ir thle way is welli defined Q~algebra having M ss the multi=-
zamilattice quotient and the subalgebras Aps e M, as corres-
ponding fibres. Howsver this construotion of a new algebra
fom the family of @-algebras indexed by a set with an Q-multi-
semilattice structure is too general to reconstruct any 2 -mul-
tisemilattice of 2 -algebras from its multisemilattisce quotient
and corresponding fibres. It is not always possible to define
mappings ga‘;.nmm —— A, for m>  n such that thg condition (0.4)
holda. As we will see in section 2 this diffioculty can be
avoided by taking s mapping from Am in some extension of An
instead of a mapping from Ap in Apy for m > n. There is

also one more difficulty, Each non-triviasl multisemilattice
[1,2} of slgebras (.&m,Q) must satisfy multiregular identities
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satisfied in all (Am,Q). To use the described construction to
reconstructing a multisemilattice of algebras from its zulti-
semilattice gquotient and corresponding fibres one needs such

a8 definition that secures this property for z construced alge-
bra. One gets this by putting some additional condition on
mappings @:'n that generalises functoriality condition in the
definition of Ptonka sum, In particulsr, Ptonka sums ars (very)
special case of the construction described here.

The paper is devided into two parts. In the first section
one defines and investigates extensions of Q-algebras generalis-
ing some ideas known from semigroup theory. The notlion of sink
(or trunk) (see [20]) plays a crucial role in this section.
Using results of the first part one defines the main construo~
tion of multisemlilattice sum of algebras in section two. One
investigates its properties and some special cases., The main
theorem of this seetion reads that every multisemilattice of
¢(=algebras is a multisemilattice sum, Examplss of applicetions
of the construction of the multisemilattice sum in theory of
semirings, bisemilattices, modes and modals are then given,

As for basic facts concerning algebras the reader 1is re-
ferred to [1]. The notation and terminology is similar to that
in [1]. AnQ-algebra is denoted by (A,R) or briefly & when
there is no danger of confusion.

Finally note that the paper contains an expanded version
of some material that will appear in the book [27]. Some prob-
lems of the paper were discussed with J.D.H. Smith and the
final form of some definitions was proposed by him.

1. Sinks and sink extensions

4 subget T of an Q-algebra A 1s sald to be a sink or trunk
if for each n-ary o in@, t in T and BireeerBy 4985 490008
in A and 1 = 1,.4..,0, a1...ai_1fai+1...ana)eT. The notion of
a sink was investigated by F.S. Poyatos [20]. For example,
{0} is & sink of the algebra (R,*) of real numbers under multi-
plication, and the set 2Z of even integers is a sink of the

subalgebra (Z,*) of (R,*). The interior I° = (0,1) of tke unit

n
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Constructing and reconstructing of algebras 5

interval I = [0,1] is a sink of the algebra (I,I°) with infi-
nitely many operations i, where ie I°, defined by xyi 1=
t= (1-i)x + iy. (see [27], [28], [29]). The empty set is a sink
of an algebra (A,R2) if and only if &2 does not contain any
constant symbols, The set A is improper sink of an algebra
(4,9), and all other sinks are called proper. i4n algebra (4,2)
is called impermeable if it has no proper non-empty sinks,
For example lsttices, semigroups in irregular varieties and
idempotent commutative medisl quasigroups (see [9], D1])
are impermeable. In semigroup theory, as well as in less known
theory of distritutive groupolds sinks are called (two sided)
ideals. (See 16!, B8]). Sinks of (meet) semilattices are also
called order idsals, initial segments, hereditary sets, down
sets, lower ends and decreasing sets. Clearly every sink T of
an algebra 4 is its subalgebra. The set T(4) of all sinks of
A is a lattice with regpect to the set theoretical unions and
intersections., Sometimes it is convenient to speak about sinks
of an &'-reduct {4,R'), where Q< , of an elgebra (4,2).
Such sinks are called Q'-sinks and in the case Q' = {w}, simply
w-8inks,

In some cases the notion of & sink of an algebre A is
closely relsted to the notion of a semilettice replica of ..

Tele Lemma., Let V be a regular variety of plursal
2-algebras., Let A be an algebra in V and h a homomorphism of
A onto its semilattice replica I, If for cach i in I, the
fibre A; = n~'(1) satisfies an irregular identity, then a sub-
set B of 4 ie a sink of (4,2} if and only if B = L)(Ailie J),
where J is a sink of I.

Proof. LetJ be asink of I, and B = U(4;[1eI),
Let & be n~-ary operation in &2 and aike Aik for k = 1,ec04he

Then A: +see8; WE Ai1 1 1.

11 ln

Then a-vno.a- ese8B.: wWe A s :
11 lj ln l1<..ljccoln

11...i....in§ i,, whence 11...13...ine J« Concequentily,
3= U ?Ailie J) is & sink.

"‘inw‘ Suppose 1je J and a; € A, .

gU(Ai[ieJ), since

)
s



6 A+ Romanowska

Now suppose B is a sink of 4, If 8yed4,NB then Ay & B,
Indeed, since Ai setisfies an irregular identity, it folliows
that there is a binary word w(x,y) with w(x,y) = x. Herc: £~
any byje Ag, by = i(bi.ai), which implies that b e B. Coi 3=
quently, B = U(AyldieJ) for some JCI, and it is sasy ¥ -
show that J is a sink of I.

Te2e Proposition, Let V be a regular va=-
rlety of plural Q-algebras and A an algebra in V with aard=-
lattioce replica I and fibres Ai’ ieI, Batisfylng w: irvegular
identity. Then the lattice T(A) of all sinks of A is iscmorpnhie
to the lettice T(I) of all sinke of I.

For a 1in an @Q-algebra A, denote by Ta the lesst si-k
contailning a. Then evidently the relation.GT defined .
(a,b)e 6, if and only if Ta = Tb is an equivalence relsi.on.
(See [20]). If the conditions of Proposition 1.2 ars sarisfircd,
then the relation GT coincides with the least congruence of i
having as a quotient an 2-gemllattiece, This holds 1z pair:;ieuiar
for idempotent commutative medial groupoids frem [9] and [1:,
and meet-distributive bisemilattices form [22].

Let T be a sink of an -algebra 4, The relation 7y, de-
fined on A by (a,b) € tp if and only if a,becT or a = b is
a congruence relation of A. It is called the Rees congruence,
similarly as in semigroup theory. The quotient algebra éfrT
is denoted by A/T, and called Rees quotient.

An element O, of an Q-algebra A is an w-zero if {0} is
an w-sink of (A,w). An element O of A is a zero if the sat
{0} 1s & sink of (A,Q). Note that the quotient A/T is iso-
morphic to the Q-algebra ((A-T) U{0},0), where each n-ary w
in Q 1is defined by

310008

a ‘. w if Bi. 81...an(o¢’l‘,
B1ooo n(o) 0

n
otherwise.

Since T is a sink, the Tp-class T acts as the zero of A/T.

For example the set I° is a sink of the algebra (1,1°), and
the quotient I/I° is the free semilattice {0,1} SL on two ge-
nerators O and 1.
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Constructing and reconstructing of algebras 7

I=% A be an Q-slgebra, If T is a sink of A then 4 is said
%3 be a sink extension of T by A/T, or briefly an extension
of Te In particular, sach algebra A is an extension of itself.
hn extension 4 of T ie proper if A # T. For example, the alge-
bra (I,I°) is an extension of (I°,I°) by the semilattice
{0,1} SL. The notion of s sink extension was firstly introduced
in semigroup theory under the name of ideal extension, (See
[16]). The aim of this section is to generalize some ldeas
concorning extensions of semigroups to the case of Q-algebras,

First ncte that the set of all identities that are saw
tisfied in a propsr extension E of an Q~algebra A by an Q-alge=-
brae Q with zexro is contained in the set of identities satisfied
in bo%h A aad Y. Ths next lemma shows that identitiss satisfiled
in E nust oo reguler in many osses.

1¢3, Lemma. Lot E be a proper extension of an
Q=-algabra 4 by an Qw-algebra Q with zero. If Q is an idempotent
algebra then none of. irregular identities satisfied in A and
Q i3 satisfied in E.

Proof. Lot w(xypeee,xy) = W' (¥yse00,s7)) bo an irre-
gular identity satisfied in A and Q. Assume that 314{31""'3k]'
Let ac E~A and be 4, Substitute a for all Xy J #1, and
for ail ¥i: 1 = T,000,ke Substitute b for Xy0 Then
8occ8bBccoac A 8ince A is a sink of E, and @...8W’' = 8 since
Q i3 idempotent, whenoe 8.cc8bBesc8F ¥ BoseaW's

The following Definition 1.4 and Theorem 1.8 below give
& method of construoting new extensions of an Q-algebra 4
by an @=-algebra Q with zere, from an arbitrary extension of A,
Since the slgebra A is its own extension, the theorem gives
& general method for construoting extensions of arbitrary
algebras,

1e4e De finition, Let (D,Q) be an extension
of (A,2)e Let (Q,2) be an algebra with zero. Denote Q* i=
t= Q = {0}, Then a partisl homomorphism of G into D is a mapping
@:Q“—ﬂ*— D such that
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I w

81.'.anwgo= 319300.811?60 if 81,81...Bn®6 Q*,

and a;pesed poe A 1f 840008, w= 0 in Q.

Given a partial homomorphism ¢ of Q into D, the extension
of A by Q induced from ¢ is the algebra (E,R) with under-
lying ‘'set B = Q¥U A and with operations w in ¢ defined by
setting

8qs008,0 in Q if aj,a8;..02 weQ*,

n

(115) 510098 =

n 8Yese8 ¥y in D otherwise,

where

agp for aeQ¥,
81y:=
a for acA.
1.6, Lenma. For each Q-word w of arity n and

arbitrary B9eees8y in E in Definition 1.4

aje0e8 W 1in Q if aj,..u,8p¢ ¢* and for
each subword t of w acting
(1.7) aj...a7 = on ai1,...,aik (k<n),
8; »ee8; te Q¥
1077y ’
a,ysee8yW otherwise.

W = 81Pesed PW fOr 8,,000,8 € Q¥ with

In particular, Bieee8y

51...anﬁ = 0 in Q.

Proof. The proof goes by induction on the number
of @-operations constituting w, the result holding by the
definition of &2 on &, if this number is 1. Otherwise suppose
a1o.oanw = 31"oai(ai+1.o.ai+mo)ai+m+1oooanw for m-ary (mé n)
operation ¢« sand n-mtl-ary derived operation w. Recall that
8y 1ee084,n® 18 defined by (145). Hencs if there is
e {1,000,1 U {14m+1,...,n} with a, e 4, then evidently by
induction hypothesis (1.7) holds. Now suppose, for eaca j,
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a;e ("o If there is k such that a; ,¢ 4 for k = 1,...,m,

or if all 8i,k°€ ¢ and 354100085, ¥ = 0 in ¢ fer k = 1,.e.,m,

then by {1.5) B3 ,q°0985,q@= 8 qVYeeeBy jyoeh, and by induec-

tion hypothesis (1.7) holds. Also in the last case, all

aj e Q¥ and ai+1...ai+mo>eQ*, (1.7) follows easily from the

induction hypothesis. Finally, note that if all By € Q* and
for svery ke-ary (k=n) subword t of w acting on 8y seeer By
1 k

W =0,

3; «.o8; t # O, then also 840008, ¥ # 0. Hence if a,...a

i i
1 k
then there is a subword t of w and elements a5 seseyBy
1
in ¢ such that ai1...aikt = 0 in Q, whence a11...aikt =
= ai;p...aigp?e;A, what implies the last etatement,

TeS Proposition. If (¢,R) is a non-trivial
plural algebra with zero, then all identities satisfied in an
axtension (E,?) of an algebra (4,2) as in Definiticn 1.4 are
just all regular identities satisfied in both (D,%) and (Q,%).

Proof, By Lemaus 1.3, e¢ach identity holding in a
proper extension of A must be regular, Let

(109) W(x1,000’xn) = W (y.l,..o,yn)

be a (regular) identity satisfied in D and in (. Evidently
{x1,...,xn} = {31,00.’31,1}0 Let a.‘,ooo’an’ b1,...’bn€E,

It

{a1,...,an} = {b1,...,bn}. Substitute a; for x; and by for yj
in (1.9) and consider three cases,
(1) 411 a;e Q*, and hence all b.e Q*, and for each subword
i J
t of w acting on 311,...,aik, ai1...aik§e Q*, and similarly

for sach subword 8 of w’' acting on b, ,eee,b; , b, soab, B
Jq 31" T, 3

w in Q and

€ ¢*. Then evidently Gqeced o

ni in E squsls 8iece8

31."&

nw = b‘]"‘bnw .

(11) A11 aje @, and hence all bse Q*, but thers is a
subword t of say w acting on R with 8y eeeBy t =0.
1 k 1 k

Then in Q, a1...aﬁﬁ =0 = b1...bnﬁ; and by Lemma 1.6,
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84.-08,F in ¥ equals a1m.f$aﬂ¢§ and 01.,.bnw; eGuals

& §
bypees wW ', Since all ay, bj are in D and {1.9) holds in D,

1t Tolicws “hat a,.eea,W = bye.ab W' in E,

n

(1131) I for sert«in i, 8, € 4, then by Lemma 1.6, 840208, W
in & equals 2qYeosB Y% ané meraover eadh 8y < De Sinoce
8¢ {b‘i""'“bk}_' elsc a1e.;ebn§f' in % equsls 'n,;w..”bnvfﬁ'..' Sinae -
(1.9) holds ir D, it -1icvs that alsc "5 thie Cage &geeeu,” =
= U?”’“ni’ in E.

A congruznge ¢ o an slgehrs (4,90 withk sip: {(T,0) is
said to pressrve (T,°} if .%e resiziotisn t¢ T & the aquality
reiation, &n exteasisn (E,20) of an algewra {AR} is called en
anvalopes of (4,57 17 squality relstion is the orly congrusnce
on (E,R) preserving i4,%). Ib camigroup iheosy elveluims acs
called dense extensions, v 1g sasy to uwee that znoh zigeurs
{A,57) is an envelope of itsell and the «vtersion lao thes exampls
above i3 an envelope. For a convex poly“op & in aa Bucslidaan
spuce, the aligebras (4,1°) is an envelops of {int 4,I%), Gu the
cther hand, the semilattiocs ({1,2,3}?v} is not an anvslope
of {3}.

Now if {E,%) iB an extension of an nigsbra (4,2) and
is 8 ccogruenge of (8,82} rrsserving (A4} tisn the quotient
E/¢ ism also an cxtension of {4,500,

1.70e Lemma . (8% {H,0) be un exteprion of an
algebra (A, and 6§ e ocongrusnce of (E,R) prsesrving (4.0,
Then the extension (B/9,0) of (A,2) is an envelops 1if and only
if 8 is a maximal congrusnce of (E,?) preserving (A,0).

For each ex%ension (E,?) of an algebra {A,2) there iEe
a homomorphism onto an envelope of (A,2). In this sense,
envelopes can be considered as mirimal propsr extensions of
{A,2). The next theorem showe that each extension of (4,R)
can be constructed from an envelope of (4,2).

1.7 T he orem. BEsch extenalon (E,Q) of an alge-
bra (4,Q) is induced from a pasrtial homomorphism ¢ of Q =
= (B=-8)U {0} into an envelope (D,0) of (4,Q) with ("¢ = D-A,

]

oy

ay]
]
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Proof, Let X be the sat of congrusncss on (E,R)
proserving (4,2). The set X is non-empty, since it contains
the equelity ralation. By Kuratowski-Zorn’s Lemma, X has a
‘maximal element 7, Taeke D = E/r and O = (E=-A) U {0}. (Note
that (Q,2) is isomorphic to the Reses quotient (E/A,Q)). Let
n 3B —E/r be the netural homomorphism under r. Take ¢ %o
be the restriction of n, to B=A = Q*, If a1,,..,nne.0*, w i
n-ary operation in'Q, and 8qeccdyw# 0 i Q, then a,pecca, pw=
= 84DgoeoB R W= ByooabyWly = Bieoolpwpe If Bie008)
in Qp then B84pees2, 9 w = BqNrecsB N O = 8BieeeB 0N, =
= 840000 0¢ 4, 88 required. Evidently D = E/v = AUQ¥p, and
D is an envelope of (4,2) by Lemma 1.10, Now one needs to show
that the conditions (1.5) are satisfied. Let « ba n-ary ope-
ration inQ. et {1ye0uen} = {L150000di} U {3y 4000003y} both

w= 0

last sets beirg non-empty and a, € &, &, ¢ Q%, Then a,.e08,0 =
i, js i

n

= 8qeco@pi, = 84Np00clpN. 0 = Agecel) Y0, WheDe airw = air
and ajay = sj;p. if aj¢ Q" Lo 1 = Tiemein; an@ 31;..anan= 0
in Q, then in a similar way, BieeeB W= 84N 4008 0 W=
= 8,Pe008 0. The last case can be verified snalogously. It
follows that the envelope D has required properties.

Note that not each regular identity satisiied in an
Q-algebra A must bs also satisfied in an envelope D of 4.
To show- this consider the following cxample. Let S, = {1} be
one element normsl band and S, = {a.b] be a left=-zero band.
Let D := S1L132 and morsover al = 1a = & and b1 = 1b = b,
The algebra (D,°) defined.in this way is evidently a semigroup
and it is easy to check that D is an snvelope of 52‘ However
the identity xyz = xzy 1s not satisfied in D since 1ab =
=a# b= 1ba,

112 Proposition. Iet (E,2) be an exten-
sion of an algebra (4,2) by an Q-algebra G with zero construot=-
ed in Definition 1.4 from an envelope D of 4, Then E is a sub=

direct product of D and Q.
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Proof. 4s in the proof of Theorem 1.11, D = E/7T.
Let n, :E¥ —E/t and u:E -—~E/4 be the natural homomorphism,
Define 7:E — Dx& by e——~{(8n,,eu). Then evidently 7 is a ho=-
momorphism, Now let a,be BE. If ay= by, then an, = bn, implies
a = b; if a,be t-A, then ay = bu implies a = b and finally
if one of elements a,b, say a, 1is in A, and the second one,
say b, is in E-4, then au = 0 and by # O, which is impossib-
le, Thus y 1s bijective, and since both n, and & are surjoec-
tive, E 3 is a subdirect product of D and Q.

2. Constructing algebras in multiregular varieties
2¢1a Definition. Let (M,Q) be an@-multi-
cemilattice, For each m in M, let an algsbra (Am,Q} be given,

and for each w in @, an extension (E;i,w) of (Am,co), For
sach k-ary operstion ¢y in & and each pair {m,n} in ¥° with
n m, let y* :4 —=E* be a mapping satisfyi

= 1] wm.n o E‘n pp g a y ng

Sw

(a) ‘Vr;),m is the eambedding of 4, into E:;

{b) for m;,e..,m €M and m..omw=a
(Am1w‘;1 o) ...(Amk\y;k’m)w S Ay

(¢c) for any n SMye.eMw=m and a; in Ami fOor i = 1,s0e,X

w w o) — W w
a‘lwm“m'“akwmk,mwwm,n = %1%m0t BkYmy, 0
Define an o-~-algebra structure on the disjoint union A of the
underlying sets Am, m in M, by

(2.2) w:AmxoooxAm ——— Am' a.]oonakw o= a{wg ,m...akw(ﬁ) ’mw'
1 k 1 k
where m = Moo The algebra (4,Q) is said to be the sum

of algebras Ay over the multisemilattice M by the mappings
Wt;) pe OT more briefly the multisemilsttice sum,
14
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{onsirueting and reconstructing of algebras 13

Note that by 2.1{b}, a1wg1,m...akty";k’mme!xm, whence the

i9f% hand side of the sgquality 2.1(o) is well~-defined. Further,

note vhat if sach ®, is just Aj then 2.1(c) is equivalent to

zhe commuting of the fuollowing disgram

oW (A

'Y Xoee XY w w
’ 40 )y 1 ‘»”m.l,mx"'x‘pmk,m
3 b xscexh -4k
n 2 o, m
B w w
# Ya,n
':,n« - S Am

Jaees  he ¢~algsbra straciuwrs on (A4,2) has been defined, the
coné  ion :.1{¢) may bs rvewritten more simply as

£2.3] CYRPP akm;.:;“-'sz:‘ = 8‘1""?11 ,n°° .aktpgk,nm.
For o %, B, the mappings Jt’n are w ~homomerphisms,

fooprove this, put w, = .o =m =m in (2.3). By
2.1(ai, the algebras (Am,Q) are subalgebras of (4,2).
Further, (4,Q) is a muitisemilattice M of algebras (4,,Q).
Note that Pzotka sums mve special cases of multisemilattioe
~ume in whicn (M, is en Q-semilattice and each of the Ef;
or w0 in @ is Juet 4 . Now let @ be a disjoint sum of £24
=g f}?, and 1zt Xe 4 = x~w1y = wi.1y for Wy g in 9'21 and
2eoF = xowey = xowfz'y £ar Wy, co'2 in Qge If (M,'1,°2) is a
lattive, E; = & for sach = in M, and (A,Q1) and (4,2,) are
Pxonka guams of (Am’91) zud (Am*QQ) regspectively then one
obtairs another specisl case of multisemilattice sum intrcduc-
ed sud invegtigated under the name of dowvble sum by E. Gra-
CuyLni "a '“ﬂ, ES].

Two of the most important ceses of multisemilattice sums
are aiven in the followiig definitions,

2sde Definision, A multisemilattice sum is
saic t0 be a Lallement wux if the following two conditions
wre iatisfied for each in ¥ and o in 021
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f
w T R P 5
(a) B = iawh’%|n;;&>n, a*-“n}=

{b) IE;,w} is an envalope of (km,wl.

A Lallement sum is said to be strict if B, = A, for each weQ
and m in M,

Lallement sums wera firgt introduced in semigroup theory.
(See [13] and [16]). See alpo relatsd construotion of bissmi~
lattices in [22].

. The significanse of Lallement sums is explained in the
following theorem,

2:5. Theorsm , EBvery multimemilattice of alge-
bras is a Lallement sum.

Proof. Let (4,0 be an Q-multisemilatiice (M, 2}
of algebras (A ,2)e For each m in M and © 1inQ, set
ﬁ: = mE?Jn Ape Then (a:,ml is a subalgsbra of (4,») and an
oxtansi;; of (am.w) by the Rees quotient:(aﬁ/am,w) with single~
ton sink ({4 },0)s By Theorem 1.11, this extension is in=
duced from a partial homomorphism & of (4 /4 ,») into an

envelope (Bp,w) of (4 ,w), with ({A;/am} - {amliyz = B2 ~ Ao
Identifying sach {&n.m} for m <, n with ite isomorphic image

1A_— B2

w A
in (A /A ,0) under the Reees homomorphism, define Yo, aldy s

to be the restriction to Ay of the partial homomorphism

or((ag/ay)-{A}) —Bp. Define y& sk, —= Ay to be the iden-
tity mapping on Ape Then the conditions 2. 4(3], 2,4(b), and

2.1(a) are certainly satisfied.
Now let m = m1...nka)in M and aieeﬁmi for i = 1,40s4K.

Ir my =m for some i in {1,....k}, then by 1.5

- B a5
“1.'*’31.'»:"'31:‘*'3,;,:::“’ o “1‘?3"'a1-19°§31'_’1+19"m"-“k¢’m“E’*mi = Aps
slince [am,w} ig an w=-gink of (Egﬁnl. Otherwise, all a; for

1= 1,...,k belong to A ~A and B ...8,weh . Hence, sincs
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91...akazis the zero of 1:/Au it follows that

;1‘,,;1?“,,.%,,:;‘}:"(” 2,90 s ety Proeh, what implies 2.1(b),

5 i © O
and MOTEOVEr &ye.. iy = 31wm1,m"°ak*mk,m“' To verify 2.1(c),

it then suffices tu verify the eguivalent (2.3). But, with
n <, m, one has ag,..akmwg,n = 80008090 = a1¢§...akggcan

. a1wﬁ1'n...akwgb'jw.as required, Also, (2.3) with n = m is
L3 immediate. -

2.6, Corollary. Bvery algebra in a multiregu-
lar variety of plural algebras is a Lallement sum of ite
indscompcsable subalgebras over ite multisemilattice replica.

Theorem 2,5 a-’ Corollary 2.6 concern in particular semi-
groups, semirings. bigsmilattices=, modes and modals, Semi-
rings are well knuwi aljebras. (See ﬁB] for examples of semiw-
rings represented =28 Ficnka sums). Bisemilattices, algebras
with two semilattice s¥:iucltwes, raives still more interaest
among algebraiste. (See ror instance [3], [18], [21] -[28]).

One of the mejor and best known olssses of bisemilattices

is that of so-callcd digsemilattices or meet~-distiributive bi-
semilatticea, in which one of semilattice operations distri-
butzs over the second. (See [22], [24], [27], [28] for the
vole of Lallement sums in the theory of dissemilattices).
niesemilatticas play a big role in the theory of modes and
nodals { [27], [28], [29]). % mode is an idempotent and entro-
pic slgebra. Anm algebrs (A4.2) iz antropic if for each n-ary o
in © the mappingw:(A”,0) —— (2,0} is an Q-homomorphism.

(One uses also different nemes as for example medial or abelian
for this property). Perhaps the most interesting modes are
CIM~groupoides (i.e. idempotent commutative medial groupoids)

of Jezek and Kepka ([9], [10], [11], [12]) and barycentrio
algebras. From the description of the variety of CIM=groupoids
in [12], Thm, 6 in [2] saying that cach irregular CIM-groupoid
is & quasigroups, and rezuits of Ptunka ( 17] and [19] ) it fol=
Lowe ihat each groupoid ik a non=trivial regular subvariety'af
the variety of all CIk-groupoids is the Pronka sum of quasigroups.
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16 A, Romanowska

Other CIM-groupolds are Lallemsnt sums of irregular subgroupoids.

In particular this answers the question of Jesek, Kepka BO]
about a method of recomstructing a CIM~groupoid from its semi-
lattice replioa and corresponding classes. Barycentrie algébras
are homomorphic images of convex subeets of real affine epaces
considered as algebras with ipfinitely many binary opsrations
r, where re I° = (0,1), defined by xyr := (1-r)x + ry, (Ss=
(6], (71, [27], [30]}. & modal or sn idempotent sntropio sne=
rator semilattice (ses [29], [27], 28!} is an algebra (¥,+,%)
such that (M,+) ias a semilattice, (M, is = mede, snd the
operations 2 distribute over +. The nhame "modal®* is intended
both to refer to the relationship with modes and to suggest

the analogy with "modules", which are also algebras (i,+, R:

in which a set R of operations distributes over the siructire
of {(M,+). Typical examples are modsls of non-eapty submocdes

of modes. Other examples are provided vy real numbers wit:

the operation of maximum and operatione I°, distributive 1ot
tices and more general dissemilattlices, then semilsttice~-nor-
mal semirings (see [15]). Each modal in a variety V is a
Lallemsnt sum of indecomposahle submodais over its dissemi-
lattice replica. Modals in an irrsgulsr varisty V are Lallement
sums of submodals over (distributivs) lattice replice. Further
each modal in a regular variety V is & Lallement sum of
submodals over its semilattice replica. If i is a regularised
variety of an irregular variety V of plural algebras then each
algebra in V is the Pxonka sum of its subalgebras in V over

its semilattice replica, (See [17], [19). Algebras in regu-
lar varieties not being regularisation can be Pionka sums only
in individual cases.

Another important special case arises from a need to
correlate the various different co-reducts in a multisemilatti-
oe sum., Thie leads to the following definition.

2¢7, Definition. A multisemilattice or Lalle-
ment sum is said to be coherent if the following three condi-
tions are satisfied:
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4
Ve

the multisemilattice (M,Q) is an Q-semilattice;

+} for each m in M, there is an extfension (Em,Q) of (Am,Q)
such that (Ep,0) = (E;,w) for each @ in Q3

{¢) <br each alement (n,m) of the relation=. on the Q-semi=-

lattice (4,92}, there is a mapping 9’m,n’Am"—.’En such

that ¢, = tp“;:’n for each @ in Q.

e
[4

Note, in particular, that Ptonka sums are both strict and
coherent. In a coherent sum, the description of the basic
eperations ¢« given in Definition 2.1 may be extended to de~
rived operations.

2,80 Proposition, ILet (A,22) be a coherent
sum over the S -gemilattice (M,2), Then for each Q~word
w(x.l,u.,xn} aad for elements a; of A“’i’ with m = m1...mn'u7
in (1,82},

Brecal W = a1gom1 ,m ‘-ansomn,mw

Proof. The proof goes by induction on the number
of occarences of elements of 2 in the word w, the result
holding by Definition 2,2 if this number is O or 1. Otherwise,
sUppPOES a1....anii = 31...aiai+1...ai+pa>ai+p+1...an7 for an

p-ary operaiioca w inm £ and an Q-word v(x1,...,xn_p+1). Let
® By qeeely, o0y 80 that m = m1...mim’mi+p+1...mn7§. m',

Then by induction

31...anw = 31"'ai(ai+19°mi*1,m' ...ai*psomi“'p’m,w.)ai*.‘...an?' =
='a19°m1,m"‘515°mi,m( 8141%my 0 00

+p+ ,mo 3 angomn’mv =

U

***84 4 pPm, +pl wlog a®4+p+1Pm;

1
= a1¢m¢,m"°3i¢mi.m(ai+1¢mi+1’m"'

seals o oo .&3)\"3.- 20 1Pp . . cseB Y V=g (] 'XXX: M w
iy n.ﬁ%!,m LDl m:.«x-pM’m n’m,,m 1 m1,m n'm, o

[

e repubess, the nulvimate equality hoiding by 2.1(c).
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29 Proposition.., Let (4,0 be a non-tri-
vial multisemilattice sum of algebras (Am,Q). m in M,

Then (4,Q) satisfies, for each wef, all regular identities
involving only the operation « and satisfied Ly each of the
extensions E: of (A ,w). Irregular identities of this type
are not satisfied in (4,Q).

Proof. Evidently all identities satisfied in (4,w),
for each w in @, must be regular. It will be shown that all
such identities are satisfied in A, Let w and w’' be 2 -words
of arity k involving only one operation » in o . Let
w(x1....,xk) = w’(y1,...,yk) be an identity satisfied in all
extensions Ez‘of (fm’w)‘ Substitute a,e Ami for x5, i=1,..0,k
and bje Anj
= {31....,yk}, one has{ m1,...,mk} = {n,,...,nk}, whence

m1oo.mki = m1'...‘mk = n1'...'nk = n1o..nk§ = @, 88F. Then

for 345 J = 1ye00,k. Since {11,...,xk} =

by Proposition 2.8 a1...gki = 31W31,m“‘akwmk,mi and

T = w w = w
b1...bkw = b1wn1,m...bkwnk,mw o« Sinoce ailpzi’n. bj\PgJ'ne Em,
where the identity w(x1,...,xk) = w'(y1.....yk) holds,

w w w w W =} ¥ =
a1wm1,m...akwmk’mw = b1wn1,m"'bkwnk,mw » Whence &,...8,W

= b100.bjﬁ' » as I‘equil‘edo

Note that an identity satisfied in all Agr in M, and
involving at least two operations from 2 need not to be sa~
tisfied in the sum A of L in M, To show this consider
the following example. Let'({0,1},+,-) be a lattice (0<1).
Let A, = {b,c} be a lattice with b<c and 4y = {a} be one

. + . +
element.lattioa. Let D° = D° = Ao and D1 = D1 = A1. Further,
. +  _ et L
let a¢1’0 = b, bw0,1 = cw0'1 a. Then the sum A of A, and A1
over {0,1} is evidently a bisemilattice. Both summands of the
sum a8 well as the lattice of indices are distributive latti-
ca. However neither distributive law nor the absorption laws
are preserved in the sum. Indeed, o+ac = ¢ # b = c{ato)} and
c{a+o) = b # a.
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2.10, Proposition. A coherent sum (4,Q)
satisfles all the regular identities satisfied by each of
the extensions (Em,Q).

Proofe. Using Proposition 2,8, the proof is exactly
analogous to the proof of Ponka’s theorem [jf] that Ptonka
eums satisfy regular ldentities satisfied by each of the
fibres,

The following corollary generalises Ponka’'s theorem.

211 Cor ollary. The identities satiefied by
a strict oohsrent sum over a non-trivial (multi-) semilattice
ere precisely the rsgular identities satisfied by each of the
fibres.

Coherent multisemilattice sums can be described also by
means of soie :ubdireet products. Let (A,2) be an algebra and
¢ an elsmeni not contained in A, Then (A U{0},2), where O acts
gt the zerc, i~ aiso well defined Q-~slgebra and satisfies the
same Tegulay icentities as (4,Q).

2.2 Cercllary. Let {A,Q) ba a coherent sum
of slgabras (Am,Q) over a (multi-)semilattice M. Then (A,%)
is a subdirect procduct of algebras (Bm,Q). m in M, where
K, = By, if m 16 the zero of M, and By = E U {0}, whare O
acts ac the zero, otherwise,

Procf. Let X4 ——~-—Bm be defined by

i k
ac aq)k'm f ac—Ak. >m,

o Om otherwiss.

Let w be an n-ary operation from £ and let By sesesly € Ak .

1 n i

Then a, o o-oa x_ w= 8 4 eee8,y w= 8 soe
k" m k,'m k,%kq,m k Pk ,m k19"k1,k1...kn

sse 8 ? (AR = 8

kn kn,k1.ookn k1-.okn,m k1

”.ak:)am in the case k.l...kn;m, and ak1°‘m"‘akn°‘m“’=

see By W =
ke ¥kyeook ,m

= a
ky

= 0m = °k1"°ak;““m otherwise. Henoe<xm is an S2-homomorphism,
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20 4+ Romanowska

Now it is easy to see that the mapping B:4 ——W(Bmlme M}
defined by a *""(a“.m)mem is an Q~homomorphism, Moreover {
is injeetive. Indeed, suppose ac, = bo:m for all m in N,
and let aed,, be i, Then k=m if and only if l=m for
all m in M what implies k = 1, But then for k = 1 = m,
one obtaine a = ax, = htxm = be Consequently, 8 is an iso=-
morphism of A onto subdirect product of Bm, me M,
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