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0 . I n t r o d u c t i o n 
In t h i s paper we are ooncerned with a genera l method of 

build ins i'- -w a lgebras from a family of a l g e b r a s of the same 
t j p e indexed by a se t with a s e m i l a t t i c e s t r u c t u r e and r e -
c o b s t r u c t i n g a l g e b r a s by means of the defined o o n s t r u o t i o n . 

Let; ( £ , * ) be a (meet) s e m i l a t t i o e and Q a se t of opera-
t i o n symbols having a r i t y at l e a s t two. Then ( S , * ) may be con-
sidered as an o-algebra on s e t t i n g 

( 0 . 1 ) x 1 . . . x j n w := x 1 * . . . , x n 

f o r each n-ary u i n Í 2 , Such an a lgebra i s c a l l e d an Q-semi-
l a t t i c e . Conversely, given an Q - s e m i l a t t i c e (S,Q) one may de-
f ine a binary operat ion • on S by 

( 0 . 2 ) x*y x y . . .y cj 

f o r each co i n fí . The equation ( 0 . 1 ) w i l l then hold. Thus 
the v a r i e t y J3L of a l l s e m i l a t t i c e s can be considered as the 
v a r i e t y of ¿ 2 - a l g e b r a s . R e o a l l t h a t an i d e n t i t y i s r e g u l a r i f 
e x a c t l y the same v a r i a b l e s appear on both s i d a s of i t . (See 
[ 1 7 ] ) . I t i s well known t h a t SI s a t i s f i e s e x a c t l y a l l r e g u l a r 
i d e n t i t i e s between Q-words. A v a r i e t y V o f S 2 - a l g e b r a s i s 
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called regular i f each identity sat is f ied in V is r egu la r . 
Otherwise, V is oalled irregular« Then V contains the varieV? 
SL of Q-semilattices i f and only i f V is regular. Each alge"'-?!a 
(A,S3) in a regular variety V has a homomorphism, say h, c o 
an Q-semilattioe (S,Q) . In the case (A,S2) i s p lural , i.e., 
(A,£2) i s idempotent and a l l operations of & have arity at 
least two, the f ibres A_ »« h~ 1 ( s ) for eaoh s in S are sub-
algebras and (A,Q) is said to be a semllattlce of a lgebras 
(A_,£2). In particular, (A,£?) i s an £-semilattioe repl ica of 
i t s subalgebras. (See Malcev [14]) . The natural question 
ar ises : Is there a general method of reconstructing (A,Q) from 
i t s £-semilattioe quotient and corresponding f ibres? There I s 
an example of such a construction fo r algebras in so ca l l ed 
regularised var iet ies . The régularisation or regularised va-
riety V of a variety V i s defined to be the class of Si-olge-
bras satisfying the regular identit ies that are sat is f ied 
in V. (See Plonka [17] and [19]). By Pionka's results [19] 
i t i s known that an algebra in the régularisation V of an 
i rregular variety V of plural algebras i s the Fionka sue of 
algebras in V. However i f V is an arbitrary regular variety 
then not every algebra in V can be reconstructed as a Plonks 
sum of i t s subalgebras. 

Now consider more general situation* Given a set Q of 
operation symbols having arity at least two, define a malti 
semllattice or £>-mult lse milattioe to be an algebra (M,i?) fo.r 
whioh each reduct (M,«) with co in Si i s ar {co} -semilattioe« 
For each reduct (M,co), (0.2) defines a binary semilattice 
operation. Denote this operation by *co. There is a correspond-
ing se mi latt ice order on II, denoted • *or a plural var ie -
ty V of Q-algebras let MV denote the variety of Q-multiserai-
latt ices (MtS2) lying in V. The variety MV i s non-tr ivia l i f 
and only i f V i s multiregular, i . e . eaoh identity sat is f ied 
by eaoh V-algebra and Involving only one operation to from Q 
i s regular . Note that multiregular variety i s not necessarily 
regular. (Take for example the variety DL f d i s t r i bu t i v e 
l a t t i ce s ) . Let h be a homomorphism of a - l u ra l algebra (A,.?) 
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••• vo a multisemilattioe (M,£2). Then the f ibres Am := h"1(m) 
, :e aaoh m in M are subalgebras of (A,£2). In this case 
i:,,Q) is said to be the multisemilattice (M,i?) of algebras 
( a In particular, each plural algebra (A,£2) i s a multi-
S 'iioilattiae replioa of i t s subalgebras, and a semilattioe 
of Q-algebras is a apeoial case of a multisemilattioe of 
S-algebras. Sow we aan ask as before whether there is a gene-
r -L method of reconstructing (A,£?) from itsQ-multisemilattioe 
quotisnt and corresponding f i b res . Consider the following 
construction. 

Let iM,Q) be a multisemilattioe. For each m in M, let 
en algebra ( A b e given, and for eaoh k-ary co in Q and 
3aeh pair (m»rO> in M with n a, a mapping yP nsAm—— AQ 

B&tisiZyiag 

,3) (f L „ i s the identity mapping on A_. uA <0 ill 

Define an operation co on the dis joint union A of Am, mtM, 

DJ 

( 0 .4 ) a r . . a k < o : « a ^ ^ . . . a , ^ ^ , 

where e i t A , m^&M, m » m^.^m^u. The algebra (A,i?) defined 

i r ta is way ie well defined O-algebra having If as the multi-
semilattioe quotient and the subalgebras Am, meM, as corres-
ponding f i b res . However this construction of a new algebra 
from the family of Q-algebras indexed by a Bet with an Q-multi -
semilattice structure i s too general to reconstruct any Q -mul-
tisemilattioe o f - a l g e b r a s from i t s multisemilattioe quotient 
and corresponding f i b res . It is not always possible to define 
mappings n,Am f o r " = c j n 8ttC^ that condition (0.4) 
holds. As we w i l l see in section 2 this d i f f i cu l ty aan be 
avoided by taking a mapping from Am in some extension of AQ 

instead of a mapping from AB in AQ, fo r a n. There is 
also one more d i f f icu l ty* Saoh non-tr ivial multisemilattioe 

of algebras {A ,£?) must satisfy multiregular identities 
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s a t i s f i e d in a l l (Am,Q). To use the described construction to 
reconstruct ing a mult isemilat t ice of algebras from i t s multi-
semi la t t i ce quotient and corresponding f i b r e s one needs such 
a d e f i n i t i o n that secures t h i s property for a oonstruced a lge-
bra* One gets t h i s by putting some additional condition on 
mappings 50" that general ises f u n c t o r i a l i t y condition in the flip Q 
d e f i n i t i o n of Pionka sum* In p a r t i c u l a r , Pionka sums ars (very) 
spec ia l case of the construction described here. 

The paper i s devided into two parts . In the f i r s t sec t ion 
one defines and invest igates extensions of Q-algebras g e n e r a l i s -
ing some ideas known from semigroup theory. The notion of sink 
(or trunk) (see [26]) plays a c r u c i a l ro le in t h i s sec t ion . 
Using r e s u l t s of the f i r s t part one defines the main construc-
t ion of mult isemilat t ice sum of algebras in sect ion two* One 
inves t iga tes i t s properties and some specia l cases . The main 
theorem of t h i s sect ion reads that every mult isemilat t ice of 
Q-algebras i s a mult isemilat t ice sum. Examples of applicat ions 
of the construction of the mult isemilat t ice sum in theory of 
semirings, b i s e m i l a t t i c e s , modes and models are then given. 

As for basic f a c t s concerning algebras the reader i s r e -
ferred to [1] . The notation and terminology i s s imilar to that 
in [1 ] . An Q-algebra i s denoted by (A,£2) or b r i e f l y A when 
there i s no danger of confusion. 

Final ly note that the paper contains an expanded version 
of some material that w i l l appear in the book [27] . Some prob-
lems of the paper were discussed with J .D.H. Smith and the 
f i n a l form of some def in i t ions was proposed by him. 

1. Sinks and sink extensions 
A subset T of an .(2-algebra A i s said to be a sink or trunk 

i f f o r each n-ary 0 i n £ , t in T and , . . . » a ^ ^ , a i + 1 , . . . , a n 

in A and i = 1 , . . . , n , a^. . . a i _ 1 t " a i + 1 , . .aQa)e T. The notion of 
a sink was investigated by F . S . Poyatos [_20] . For example, 
{0} i s a sink of the algebra (R,•) of r e a l numbers under multi-
p l i c a t i o n , and the set 2Z of even integers i s a sink of the 
subalgebra (Z , * ) of ( R , * ) . The i n t e r i o r 1° »= ( 0 , 1 ) of the unit 
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interval I = [o,l] is a sink of the algebra (1,1°) with infi-
nitely many operations i., where iel°, defined by xyi 1« 

(1 —i)x + iy. (See [27], [29], [29]). The empty set is a sink 
of an algebra (A,Q) if and only if Q. does not contain any 
constant symbols* The set A is improper sink of an algebra 
(k,Si) f and all other sinks are called proper. An algebra (A ,Q) 
is called impermeable if it has no proper non-empty sinks. 
For example lattices, semigroups in irregular varieties and 
idempotent commutative medial quasigroups (see [9], [ll] ) 
are impermeable. In semigroup theory, as well as in less known 
theory of distributive groupoids sinks are called (two sided) 
ideals, (bee ;_;l6j, L8!)* Sinks of (meet) semilattices are also 
called order ideals, initial segments, hereditary sets, down 
sets, lower ende and decreasing sets. Clearly every sink T of 
an algebra A is its subalgebra. The set T(A) of all sinks of 
A is a lattice with respect to the set theoretical unions and 
intersections. Sometimes it íb convenient to speak about Binks 
of an £>'-reduct (A,Í2'), where Q'czQ , of an algebra (A 
Such sinks are called Q' -sinks and in the case Q' = {GO} , simply 
co-sinks. 

In some cases the notion of a sink of an algebra A is 
closely related to the notion of a semil&ttice replica of ... 

1.1, L e m m a . Let V be a regular variety of plural 
fi-algebras. Let A be an algebra in V and h a homomorphism of 
A onto its semilattice replica 1. If for each i in I, the 
fibre Ai = h~1(i) satisfies an irregular identity, then a sub-
set B of A is a sink of (A,Q) if and only if B - UfAjJieJ), 
where J is a sink of I. 

P r o o f . L e t J b e a sink of I, and B = U (A¿I i 6 I). 
Let o be n-ary operation in Q and a., e A., for- k = 1,...,n. 

k 
Then a, ...a. co e A. . . Suppose i.e J and s.¡ & A- . 

X1 n 1 r , , 1 n " J j 
Then a, ...as ...a^ coe A- . , £ U(A.[ie J), since X1 1j xn 1 r t , V r, 1 
i — i -i «hom» i ... i-... i e J. Consequently, 
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Now suppose B Is a sink of A. If a^ e Â  D B then A ^ B . 
Indeed, sinoe A^ satisfies an irregular identity, it follows 
that there is a binary word w(x,y) with w(x,y) • x. Hanc-j f" 
any t^e A^, bA » wtb^.a^, which implies that b ^ B. Cox- ,3-
quently, B • U (Â l i e J) for sons JEI, and it la aaey t 
show that J is a sink of I. 

1.2. P r o p o s i t i o n * Let V be a regular va-
riety of plural £2-algebras and A an algebra in V with s&ni-
lattioe replioa I and fibres A^, iel, satisfying irragular 
identity. Then the lattice 1(A) of all sinks of A is ieemorpnic 
to the lattioe T(I) of all sinks of I. 

For a in an Q-algebra A, denote by T„ the least eJvk O 
containing a. Then evidently the relation 9,p defined v 
(a,b)e 9™ if and only if Ta « T^ is an equivalence rala'o.on-
(See [20j). If the conditions of Proposition 1.2 ara saxisfipil, 
then the relation 8j coincides with the least congruence of \ 
having as a quotient an Q-semilattiee. This holds in particular 
for idempotent commutative radial groupoids fron [9] and » 
and meet-distributive bisemilattices form [22]. 

Let T be a sink of an Q-algebra A. The relation r^ de-
fined on A by (a,b) e r^ if and only if a,be T or a * b is 
a congruence relation of A. It is called the Rees congruence, 
similarly as in semigroup theory. The quotient algebra / V^ 
is denoted by A/T, and called Rees quotient. 

An element 0 W of an Q-algebra A is an co-zero if {ow} is 
an co-sink of (A,co). An element 0 of A is a zero if the eat 
{0} is a sink of (A,£). Note that the quotient A/T is iso-
morphic to the Q-algebra ((A-T) U {o} ,Q), where each n-ary co 
in Q is defined by 

{a.j..*anco if 

0 otherwise. 
Since T is a sink, the r^-olass T acts as the zero of A/T. 
For example the set 1° is a sink of the algebra (1,1°), and 
the quotient 1/1° is the free semilattioe {0,1} 3L on two ge-
nerators 0 and 1. 
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Let A be an fi-algebra0 I f T i s a sink of A then A i s said 
to be a sink extension of T by A/T9 or b r i e f ly an extension 
Ox T0 In pa r t i cu la r , each algebra A i s an extension of i t s e l f . 
An extension A of T i s proper i f A 4 T. For example, the a lge-
bra ( I 9 I ° ) i s an extension of ( I ° , I ° ) by the semilat t ioe 
{o9l} SIio Th® notion of a sink extension was f i r s t l y introduced 
i n semigroup theory under the name of idea l extension» (See 
[16]). The aim of t h i s sect ion i s to generalize some ideas 
concerning extensions of semigroups to the case of £2-slgebras<, 

F i r s t note that the set of a l l i d e n t i t i e s that are sa -
t i s f i e d in a proper extension 3 of an -algebra A by an Q-alge-
bra Q with aero i s oontained in the set of ident i t ies- s a t i s f i e d 
in both A and "J« She next lemma shows that i d e n t i t i e s s a t i s f i e d 
in E must DO regular in many cases« 

1 ® 3o L e m m a ® Let 5 be a proper extension of an 
£-algebra t b? an £2°*algebra Q with zero» I f Q i s an idtampoteat 
algebra then none of- i r r egu la r i d e n t i t i e s s a t i s f i e d in A and 
Q i s s a t i s f i e d in E, 

P r o o f s Let w(x.j , . . . Bsn) • w'(y 1 > . .o 9yj £) be an i r r e « 
gular ident i ty s a t i s f i e d i n A and Q„ Assume that y b | 0 
Let aeE-A and b e A0 Substi tute a f o r a l l j ^ i e and 
f o r a l l y-;. 1 » 1 „ . . . 9 k . Substi tute b f o r x^. Then 
a s o eaba®. oa?r e A since A i s a sink of 5, and a . . . aw ' ® a since 
Q ia idempotent, whence a . . . aba . . . aw $ a . . . aw'® 

The following Defini t ion 1.4 and Theorem 1.8 below give 
a method of constructing new extensions of an Q-algebra A 
by an £2-algebra Q with zeroB from an arb i t ra ry extension of A. 
Sinoe the algebra A i s i t s own extension, the theorem gives 
a general method fo r constructing extensions of a rb i t ra ry 
algebras. 

1.4. D e f i n i t i o n . Let (D»Q) be an extension 
of ( A L e t (Q,Q) be an algebra with zero. Dsnote Q* 
t= Q - {o}. Then a pa r t i a l homomorphism of Q in to D i s a mapping 
<piQ*—- D such that 
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a.]...anco(p= 8^50...a f l(Puif Q*, 
/ 

and a.j<p...an93oe A i f a^..»a f lco= 0 i n Q. 

Given a par t i a l homotnorphism cp of Q into D, the extension 
of A by Q induced from cp i s the algebra (E,S2) with under-
l y i ng set E = Q*U A and with operations co i n Q defined by 
se t t ing 

( 1.5) a 1 . . . a n c j : = 
a 1 . . .a nco i n Q i f a i , a 1 . . . a n c o e Q * f 

a ^ . . . a n y c o i n D otherwise, 

where 

a y : = 
a <p f o r a e Q * , 

v a f o r a e A. 

1.6. L e m m a . For eachQ-word ,w of a r i ty n and 
arb i t rary a ^ , . . . , a n i n E i n De f i n i t i on 1.4 

(1.7) a 1 . . . aflw = 

a^...anw i n Q i f a.|,. . . ,a ne Q and fo r 
each subword t of w act ing 
on a< 

1 
L1 

.a, t e Q , 
xk 

at (kén), 
k * 

with 

a^if« • • a^fw otherwise. 

I n par t i cu la r , a^..«anw = » .an<pw for a 1 , . . . , a n e Q' 
a1...a £ lw = 0 i n Q. 

P r o o f . The proof goes by induction on the number 
of Q. -operat ions cons t i tu t ing w, the re su l t holding by the 
d e f i n i t i o n of O on hi, i f t h i s number i s 1. Otherwise suppose 
a.,...ajw ~ a.,. • •aj-(aj_+-j• • i + m w ) a i + m + r " a n w f o r ( m = n ) 1 • • • "n" " "1 

operation co and n-m+1-ary derived operation w. Reca l l that 
a i + 1 . . . a i + m c o i s defined by (1.5) . Henc9 i f there i s 
i e {1, . . . , i } U { i + m + 1 . . ,n} with a^e A, then evidently by 
induct ion hypothesis (1.7) holds. Now suppose, for each 
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a^G Q*. I f t he re i s k such t h a t Sj^ j j 6 A f o r k = 1 , . . . , m , 
or i f a l l Bi+jj6 Q* a i + i • • • a i + m

a : ' = 0 i n Q f o r k = 1 , . . . , m , 
then by (1 .5) a i + - j • ' * a i+m" = a i+ iY*** a i+m , ' ; " 6 A ' a n d induc-
t i o n hypothes i s (1 .7 ) h o l d s . Also i n the l a s t c a s e , a l l 
a . e t i * and a i + 1 . . . a

i + m c o 6 Q*", (1 .7) f o l l ows e a s i l y from the 
induc t ion hypo thes i s . F i n a l l y , note t h a t i f a l l a^e Q* and 
f o r every k-ary (k< n) subword t of w a c t i n g on a^ , 

1 _ k 

a. . . . a . t 0 , then a l so a 1 . . . a n w ^ 0 . Hence i f a 1 . . . a „ w = 0 , 1 ^ 1 I ill I XI 
then there i s a subword t of w and elements a., 

1 _ k 

in Q such tha t a4 . . . a , , t = 0 i n Q, whence a4 . . « a . t = 
X1 k X1 k 

= a. © . . . a - wt e A, what impl ies the l a s t s t a t emen t , 
k 

1.B. P r o p o s i t i o n . I f (Qt£2) i s a n o n - t r i v i a l 
p l u r a l a lgebra with z e r o , then a l l i d e n t i t i e s s a t i s f i e d i n an 
ex tens ion (E,Q) of an a lgebra (A,Q) as i n D e f i n i t i o n 1.4 are 
j u s t a l l r e g u l a r i d e n t i t i e s s a t i s f i e d i n both (D,Q) and (Q,£>). 

P r o o f , By Lem&ia 1 .3 , each i d e n t i t y hold ing i n a 
proper ex tens ion of A must be r e g u l a r . Let 

(1 .9) w ( x 1 , . . . , x n ) = w ( y - | , . . . , y n ) 

bo a ( r e g u l a r ) i d e n t i t y s a t i s f i e d i n D and i n Q. Evident ly 
{ x 1 f . . . , x n | = { y 1 f . . . , 7 n } . Let a 1 , . . . , a n , b 1 P . . . , b n e E , 
| a 1 , . . . , a n J = | b 1 , . . . , b n | . S u b s t i t u t e a^ f o r x̂ ^ and b^ f o r y^ 
i n (1 .9 ) and cons ide r t h r e e c a s e s . 

( i ) Al l a ^ t Q*p and hence a l l b . e Q*, and f o r each subword J — 
t of w a c t i n g on Bj f 9 0 * p Qj f a • % • • t e G*» and s i m i l a r l y 

X1 k L1 x k 
f o r each subword s of w' a c t i n g on b . , . . . , b , , b . . . . b . 8 

3 1 °1_ J 1 3 1 
6 G*. Then ev iden t ly a ^ . . . a n w i n E equa l s a^ . .»a c w i n Q and 
a ^ . . , a n w = b ^ . . . b n w ' . 

( i i ) All a ^ G*t and hence a l l b^e Q*, but t h e r e i s a 
subword t of say w a c t i n g on a., wi th a. ...a- t =0 

X1 k k 
Then i n Q, a 1 . . . a w = 0 = b 1 . . . b w^ and by Lemma 1 .6 , 



10 

a^.o.a^w in S equals »^ . „ .a^pw and equals 

b ^ p . . . S i n o e a l l a A , b^ are in D and ( 1 , 9 ) holds in D, 
i t fol lows ihat a.,»..anw » b-j.s.b^w' in S. 

( i l l ) f o r -j0rt'id.c i» a» e A, then by Lisons 1 . 6 , a , j . . . a w 
in £ equals a^w.^.a^« and moreover eaoh â  D, Sinoe 

( S -a, e | b 1 t . . . , b k | , also « .bfiw' in S eq «a I s • Sinoe • 
( 1 . 9 ) holds in l>, i t -.lit^a that also f.;a tii?® case e 1 o . . a n

î ? » 
= jw' in E» * ¿1 

A congruenoa e oa an algebra with sink (TtQ) i s 
said to preserve (T,Q) i f i t s saatr-iotion to T i s the a quality 
r e l a t i o n . An exteasicn (E,Q) of an algabra (A,Q) i s cal led an 
envelope of iAfS?) i f equality re la t ion i s the ojely corigra«r;se 
on (B,Q) preserving {A,S?) ; In ¿amigroup theory «rival©pes ace 
ca l led dense extensions, "v- i s easy to sea that :j«oh sàgeax'â 
(A,Q) i s an envelope of i t s e l f and the ««tension in the example 
above i s an envelope. For a convex poly'iop A in aa Euclid«an 
epaoe, the aigebi'a (A»I°) i s an envelope of (Int A„I0}« On the 

/f t 
other hand, the semilatt ice {{1 s2»3j ? vi i s not as envelope 
of {3j -

Nov; i f (B,S?) i s an extension of an sXgsbra ( A ) and 
i s a congruenoe of {B,Q) {»ressrvicg ( A ) than the quotient 
E/6 i s also an extension of ( 

1 . 1 0 . L a t u t . iiet be aa extension of ae 
algebra (A,fi) and 6 a congruence of (£,Q) pil«ei>rving 
Then the extension (B/&,Q) of (A,Q) i s an envelope i f and only 
i f 9 i s a maximal congruenoe of (StQ) preserving (A,G). 

For eaoh extension (E»Q) of an algebra (A,Q) there i e 
a homomorphism onto an envelope of (A,Q). In this sense, 
envelopes a an be considered as minimal proper extensions of 
(A,Q). The next theorem shows that each extension of (A,£) 
can be constructed from an envelope of (A,Q). 

1 . 1 1 . T h e o r e m . Each extension (E,Q) of an alge-
bra (A,PJ i s induced from a part ia l hooomorphism <p of Q = 
= (E-A)U { o} into an envelope (D,Q) of (A,a) with Q*(p = D-A. 
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P r o o f » L e t 1 b e t h e s a t o f c o n g r u e n c e s o n ( B t Q ) 

p r o s e r v i n g ( A , Q ) « T h e s e t X i s n o n - e m p t y , s i n c e i t c o n t a i n s 

• S h e e q u a l i t y r e l a t i o n « , B y K u r a t o w s k i - Z o r n ' s L e m m a p I h a s a 

• m a x i m a l e l e m e n t r , T a k e D » E / r a n d Q » ( E - A ) U { 0 } . ( N o t e 

t h a t ( Q 9 Q ) i s i s o m o r p h i c t o t h e R e e s q u o t i e n t ( B / A » Q ) K L e t 

n r s E — - ~ E / r b e t h e n a t u r a l h o m o m o r p h i s m u n d e r r . T a k e <p t o 

b ® t h e r e s t r i c t i o n o f n r t o B - A = Q * . I f a 1 s o . . e Q * 9 c o i s 

a - a r y o p e r a t i o n i n ' j Q , a n d a 1 « < . e a a c o j i 0 i n Q 8 t h e n a ^ . . , a n 9 ? c o « 

«= a ^ f l r « . » a f l f l l . t 1 ) = . . a a f t c o n r *» a . . . . o e . n c j < p a I f a ^ . 0 « a n c o = 0 

i n Q 9 t h e n a , , 9 ? » . . > o n 9 > w » a ^ n ^ o c a ^ n ^ w = a . j . . • a 0 « n r = 

= a . j ® o e O n < y e A p a s r e q u i r e d . E v i d e n t l y D = E / r » A U , a n d 

S U a n e n v e l o p e o f ( A ^ Q ) b y L e m m a 1 s 1 0 « N o w o n e n e e d s t o s h o w 

t h a t t h e c o n d i t i o n s ( 1 . 5 ) a r e s a t i s f i e d » L e t co b o n - a r y o p e -

r a t i o n i n S 3 . L e t { l „ . 0 * , a } - { i 1 . . , , i k } U { J k + 1 . . , b o t h 

l a s t s e t s b e i n g n o n - e m p t y a n d a , , e A , a . , e Q * » T h e n a i . . e a M c o = 
x r J s i n 

= a-j• °5>ancdn?r E ainr"°«cQnro = a.ji|/...antf6), where a^ y • a. 
» " r r 

a n d a ^ y <= a ^ c p 0 I f a ^ e Q f o r i = 1 s o . . s n s a n d a ^ o , e a f i u = 0 

i n Q s t h e n i n a s i m i l a r w a y 9 s ^ i g a ^ u : a ^ n ^ . a . a ^ n ^ c o = 

= . o a n j 3 6 > . T h e l a s t c a s e c a n b e v e r i f i e d a n a l o g o u s l y . I t 

f o l l o w s t h a t t h e e n v e l o p e D h a s r e q u i r e d p r o p e r t i e s . 

N o t e t h a t n o t e a o h r e g u l a r i d e n t i t y s a t i s f i e d i n a n 

S i - a l g e b r a A m u s t b e a l s o s a t i s f i e d i n a n e n v e l o p e D o f A . 

S o s h o w - t h i s c o n s i d e r t h e f o l l o w i n g e x a m p l e . L e t S ^ » { 1 } b e 

o n e e l e m e n t n o r m a l b a n d a n d S g » b a a l e f t - z e r o b a n d . 

L e t D » • S . j t J S g a n d m o r e o v e r a 1 = 1 a = a a n d b 1 = 1 b = b . 

T h e a l g e b r a ( D s » ) d e f i n e d . i n t h i s w a y i s e v i d e n t l y a s e m i g r o u p 

a n d i t i s e a s y t o c h e c k t h a t D i s a n e n v e l o p e o f S g . H o w e v e r 

t h e i d e n t i t y s y z » j c z y i s n o t s a t i s f i e d i n D s i n c e 1 a b ® 

= a 4 b « i b a » 

1 . 1 2 . P r o p o s i t i o n . L e t ( E , C 2 ) b e a n e x t e n -

s i o n o f a n a l g e b r a ( A t Q ) b y a n Q - a l g e b r a Q w i t h a e r o c o n s t r u c t -

e d i n D e f i n i t i o n 1 . 4 f r o m a n e n v e l o p e D o f A . T h e n B i s a s u b -

d i r e c t p r o d u c t o f D a n d Q . 
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12 A. Homanowska 

P r o o f . As in the proof of Theorem 1.11, D = E / r . 
Let n r :ii —^ S/r and ,u:E —— E/A be the natural homomorphism. 
Define y:E —- D*(< by e 1 - (an z ,eM) . Then evidently 3* is a ho-
momorphism. Now let a ,be E. I f = by, then an T = bn r implies 
a = b; i f a , be ii-A, then a ^ = b̂ u implies a = b and f i n a l l y 
i f one of elements a , b , say a, i s in A, and the second one, 
say b, i s in E-A, then a,u = 0 and b/u ^ 0, which i s impossib-
l e . Thus g" i s b i j e c t i v e , and since both n r and ¿J are su r j a c -
t i ve , S y i s 8 subdirect product of D and Q. 

2. Constructing algebras in multiregular var ie t ies 
2.1. D e f i n i t i o n . Let (M,Q) be an Q -mu l t i -

eemilatt ice. For each m in M, l e t an algebra (A ,Q) be given, 

and f o r each u> in n , an extension of (A ,co). For Hi u* ^ 
each k-ary operation co in Q and each pair (m,n) in M with 
n < w m, l e t y/̂  Am —— E^ be a mapping sat i s fy ing 

( a ) Vm m i s 6 i n b 0 d d i n € o i Am into E^; 

(b ) f o r m^, . , . ,m^e M and « ^ . . . m ^ w s m 

m^m^m — n' 

( c ) f o r any n SCdm1 . . .m^o = m and in f o r i = 1 , , . . , k 

Define an £?-algebra structure on the d i s j o in t union A of the 
underlying sets Am, m in M, by 

( 2 . 2 ) c o j A ^ X ^ . X A ^ Am, a ^ . a ^ : » 

where m = m1 . . .m l c«. The algebra (A,S3) i s said to be the sum 
of algebras Am over the multisemilattice M by the mappings 
y u , or more b r i e f l y the multisemilattice sum. 

- 2 2 0 » 



Constructing and reconstructing of algebras 13 

Not« that by 2«i(b}{ ,n* * *ak l f 'njc ,o06 Am* w J l l e n c e 11110 

2eft hand side of the ¿quality 2.1(c) i s well-defined. Further, 
note -ihat i f saoh i s just Am then 2.1(c) i s equivalent to 
-¿he commuting of the following diagram 

k k 
in • • • •* V -Am i a 

-j CO 

•q— Am 

Jiicft he Q~alg.iibra structure on (A,Q) has been defined, the 
cond ion l i e ) ma? to« rewritten more simply as 

{2.3/ a , , . . ^ * * / ^ = V m 1 f n " * a k < k , n w -

For o a, the mappings ui" _ are cj -homomorphisms. 
i'T- prove th i s , p!?.S <».. = = mt = m in (2 .3 ) . By 

2 .1 (a ) , the algebras ( a r e subalgebras of (A,s) . 
Further, iafQ) i s it multisemilattioe M of algebras (An,Q). 
Note that Ploulra sums are special oases of multisemilattioe 
rums in whic;'. (M,Q) i s an Q-semilattice and eaah of the 
i s r v in Q. La juet Affl. How l e t £2 be a dis joint sum of Q^ 
«fidii-p, and l e t x* s= jc*w y = x*oy y f or ^ , in Q̂  and 

?.«2y y » y w2 i n S 2 2* I f i B a 

l a t t i o s , = Am for each m in M, and ( A , ^ ) and (A,i32) are 
Pionka sums of (Am,i?^) and (Am,C0) respectively then one 
obtains another speoial case of multisemilattice sum introduc-
ed asd investigated under the name of double sum by E. Gra-
csyii:.'-a j_4], [5 ] . 

o of the most important cases of multisemilattioe sums 
are given in the following def in i t ions . 

'¿«4. D e f i n i t i o n . A multisemilattioe sum i s 
fci.ia to be a Lal'lement .--u.:-; i f the following two conditions 

sa t i s f ied for each in M and o in 5?; 
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(a) 

(b) is an envelope of {A 

A Lallement sum is aaid to bs> strict i f • k for each oeQ 
and m in M, 

Lallesasnt euma wars f i r s t introduced in semigroup theory. 
(See [13] and ¡1Sj ) . See also related construction of biseai-
latt icee in ¡22] . 

. The significanse of Lalleuent SUBS ia explained in the 
following theorem. 

2.5. T h e o r 3 m * Svex-y aultia^milattlos of alge-
bras is a Lallamsnt sam. 

P r o o f . Let {A,_Q) be an Q -multisenilattioe (MtO) 
of algebras (A^f f ) . For each jo in M and w in Q t a®t 

A',/ = U A . Then (A",gj) ia a eubalgsbra of ( A,w) and an 
m =gjd 

extension of {A_,co) by the Reg a quotient .(A"/A_.cj) with single-01 , ?2# &M 
ton sink ((¿..J % Theorem 1.11, this extension ia in-
duoed from a partial horaomorphie® <pjjj of (A^/Am,cj) into an 
envelope (b£,u) of (Am,co)t with ( (A^/Aj - {aJ = - Affl. 

Identifying each (An,co) for ra < u n with i t s isomorphic image 

in (A^/Aa,,co) under the Rees homomorphism, define 

to be the restriction to A_ of the partial homofflorphisffi 

^ ( ( A ^ / A j - j A J ) — - b " . Define, miAm—'~ A_ *>• *ke idan-rm m nr l mJ as Tmtca m ¡a 
t ity mapping on Affl. Then the conditions 2.4(a), 2.4(b),' and 
2.1(a) are certainly satisf ied. 

How let m = a^.,. rak co in M and a i e Affl> for i = 1,..., ic. 

I f m* * a for some i in j l , . , . , k } , then by 1.5 

V S , , . " ^ , ! ' " aT^m* * * ai-1^maiai+1^m* * * ak^mCJ 6 Aa i = V 

since (Am,co) is an co-sink of (E^,w). Otherwise, a l l a^ for 

i = 1 , . . . ,k belong to A"-A and a1...akco£A . Hence, sine« 
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CoaBtrus.lag and reconstructing of algebras 15 

.a^cj ia the zero of A^/A^ i t follows that 

&t<Pm"' ak (Pm a e km w i l a t 2.1(b) , 

.ittfi moreover a1..wuJt<i>a a ^ ^ a*** ak^M m"* T o v a r i f , 7 2.1 (c ) , 
1 * ' k' 

it then suf f ices to verify the equivalent (2.3). Bat, with 

n < u i s , one has a * , . . a ^ o ^ a » a ^ ^ a ^ c o ^ * • *ak^n " * 

- a ^ ^ •j£J,as required. Also, (2.3) with n » m i e 

±1 immediate* 
2,6. C o r o l l a r y . jsvsry algebra in a multiregu-

lar variety of plural algebras i s a Lallement sum of i t s 
indecomposable subalgebras over i t s multisemilattice repl ica. 

Theorem 2*5 a ' Corollary 2.6 concern in particular semi-
groups, semiring?... biser.'.ilatticess modes and aodala. Semi~ 
rings are well known algebras. (See [15] f o r examples of semi-
rings represented as Plcmka sums). Eisemilattices, algebras 
with two semilattice st>-act ores, raiaas s t i l l more interest 
among algebraists. (See fox1 instance [3], ¡18] , [ ? l ] - [ 28 ] ) . 
One of the major and bast known classes of bisamilattices 
is that of so-called diase«¿lattices or meet-distributive b i -
semilattiees, in which one of semilattice operations d i s t r i -
butes over the second. (See ¡22] , [24], [27], [28] f o r the 
vols of Lallement sums in the thoory of dissemilatt ices). 
iUeaemilattioes play a big role in the theory of modes and 
aodala ( [27], [28] , [29] ) . A mode is an idempotent and entro-
pic algebra. An algebra (A.©) is antropio i f for each n-ary a> 
in ¿2 the mapping« : (A n .Q )—- (A .Q ) -is an Q-homomorphism. 
(One uses also different names as for example medial or abelian 
for this property). Perhaps the most interesting modes are 
CIM-groupoide ( i . e . idsmpotent commutative medial groupoids) 
of Jezek and Kepka ( [9 ] , [10] , [11] , [12] ) and barycentrio 
algebras. Prom the description of the variety of CIM-groupoids 
in [12] , Thm. 6 ic [2 j saying that each irregular CIM-groupoid 
is a quasigroups, and results of Pl^nka ( [17] and [19] ) i t f o l -
lows that each groupoid in a non-trivial regular subvariety of 
the variety of a l l CBi-groupoida is the Honka sum of qua3igroups. 
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Other CIM-groupoids ara Laileœent suas of Irregular eubgroupoids 
In p a r t i c u l a r t h i s answers the q u e s t i o n of J e i e k , Kepka [lO] 
about a method of r e c o n s t r u c t i n g a CIM-groupoid from i t s semi-
l a t t i o e r e p l i o a and corresponding c l a s s e s . Barycentrio a lgebras 
are homomorphio images of oonvex s u b s e t s of r e a l a f f i n e spaces 
considered as a lgebras wi th i n f i n i t e l y many binary operat ions 
r , where r e 1° = ( 0 , 1 ) , def ined by xyr ;«= ( l - r ) x + r ? . (Sae, 
[6]» l?1 , [27] , [30] 13 A modal or an iaempotent s n t r s p i o spe -
r a t o r a e m i l a t t l c e ( sea [29] , [27], [26]; i s an algebra (M,+,Q) 
such that (11,+) i s a s e m i l a t t i o e , (M,q» 1b a made, and the 
operat ions 'Si d i s t r i b u t e over +. The name "modal" i s intended 
both t o r e f e r t o the r e l a t i o n s h i p with modes and t o suggest 
the analogy with "modules'*, which are a l s o a lgebras (M,+4RÎ 
i n whioh a s e t R of operat ions d i s t r i b u t e s over the s t r u c t u r e 
of (M,+). Typical examples are models of non-empty submodel 
of modes. Other examples are provided by r e a l numbere witn 
the operat ion of maximum and operat ions 1 ° , d i s t r i b u t i v e 1 e t -
t i o e s and more genera l d i s s e m i l a t t i e e s , then s e m i l a t t i c e - n o r -
mal semir ings ( see [15] )® Baoh modal i n a v a r i e t y V i s a 
Lallemant sum of indeoomposable submodels over i t s d i s s e œ l » 
l a t t i o e r e p l i c a . Modals i n an i r r e g u l a r v a r i e t y V are Lailament 
sums of submod&le over ( d i s t r i b u t i v e ) l a t t i o e r e p l i c a . F u r t h e r 
each modal i n a regular v a r i e t y V i s a La l lement sum of 
submodels over i t s s e m i l a t t i c e r e p l i c a . I f V i s a r e g u l a r i s e d 
v a r i e t y of an i r r e g u l a r v a r i e t y V of p lura l a lgebras t h e n each 
a l g e b r a i n V i s the Pionka sum of i t s eubalgebras i n V over 
i t s s e m i l a t t i c e r e p l i c a . (See [17] , [ 19 ] ) . Algebras i n r e g u -
l a r v a r i e t i e s not being r é g u l a r i s a t i o n can be Plonka sums only 
i n i n d i v i d u a l c a s e s . 

Another important s p e c i a l case a r i s e s from a need to 
c o r r e l a t e the various d i f f e r e n t £?-reducts i n a m u l t i s a m i l a t t i -
ce sum. This l e a d s to the f o l l o w i n g d e f i n i t i o n . 

2 . 7 . D e f i n i t i o n . A m u l t i s e m i l a t t i c e or L a l l e -
ment sum i s sa id t o be coherent i f the f o l l o w i n g three c o n d i -
t i o n s are s a t i s f i e d : 
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{&} the multiaeicilatt ice (M,£2) i s an £2-semilattice ; 
{'-} fo r each m in Mt there i s an extension (Em,Q) of (Am,S2) 

such that (Bm,o>) « aaoh w in fi} 
(c) f b r each element (n,m) of the r e l a t i o n s . on the S3-semi-

l a t t i c e (M,S2), there i s a mapping $t>m n:Am—— E^ such 
that <pm „ = „ f o r eaoh co in Q. « 

Kote, in pa r t i cu la r , that Pionka sums are both s t r i c t and 
coherent. In a coherent sum, the descr ipt ion of the basic 
operations co given i n Defini t ion 2.1 may be extended to de-
rived opérations. 

2 ,8 . P r o p o s i t i o n * l e t (A,Q) be a coherent 
sum over the i l - s ea i l a t t i oe (1,52), !Phen f o r each Q-word 
w(x1t»*« tx r i) (xad f o r elements a.̂  of A , with m = m1...mnw 
in ' 

a r t . a n w = a i , m* • , an^mn , m" 

P r o o f , The proof goes by induction on the number 
of occurences of elements of si in the word w, the r e s u l t 
holding by Defini t ion 2.2 i f t h i s number i s 0 or 1. Otherwise, 
supposa a1«..a f iw - a 1 . . . a i a i + 1 . . . a i + p 6 > a i + p + 1 . . . a £ l v f o r an 
p-ary operation co in Si and an£2-word v ( x 1 , . . . , x n _ p + 1 ) . l e t 
m *4 *®x-i-pM» 8 0 ^hat m = m'. 
Then by induction 

a r . . a n w = a r . . a i ( a i + 1 ^ m i + i f 0 . . . . a i + p ^ + ^ m , c o ) a i + 1 . . . a c v « 

= 'a1?>m1 ,m* a i + 1 5 ° n i + 1 * '* 

ai+P9>mi+p,m'w)9'm , <nai+P+1^mi+p+1, m* * • an?mn,m7 = 

= al9>m1 ,m**e aiS"mi, o{ a i+1 

« *«ai+p ffi ̂  *4 an^mn ,o ? * al9'm1 ,ra*••an?mQ,m* 

Wi;ulrsùt>i<s i-iOltiraate equali ty holding by 2 .1(c) , 
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2.9. P r o p o s i t i o n . . Let (A,n) be a non-tri-
vial multisemilattioe sum of algebras (Am,s), m in M. 
Then (AtQ) sat is f ies , for each oe42, a l l regular identities 
involving only the operation &j and satisfied by each of the 
extensions E^ of (Am,co). Irregular identities of this type 
are not satisfied in (A,Si), 

P r o o f . Evidently a l l identities satisfied in (A,u) t 

for each u in a , must be regular. It w i l l be shown that a l l 
such identities are satisfied in A, Let w and w' be Q-words 
of arity k involving only one operation co in Q . Let 
w(x. j , . . . ,xk ) = w ' ( y 1 , . . . , y k ) be an identity satisfied in a l l 

extensions E^ of (Affl,w). Substitute a^e Am for x^, i =1 , . . . , k 

and bj e An for y^, j = 1 , . . . , k . Since { « ^ . . . . x ^ ] = 

= | y.J,..• tJjc}» 0Qe has | ntj,... ,mk| » ,n k j , whence 

m^...m^w = = n^*...*nj£ = n.j.,.nkw = m, say. Then 

by Proposition 2.8 a r . . a k w = . . . a k v w and 
I K 

b r . . b k w ' = V « ^ . . . b ^ . » ' . Since a ^ ^ , b ^ ^ e H j . 

where the identity w(x. j , . . . ,xk ) •* w ' ( y 1 » . . . » y k ) holds, 

^ . m ' " 8 ^ , « * a N ^ . b - V S ^ « 1 ' ' w h e n o e a r . . a k w « 

= b 1 . . .b^w' , as required. 
Note that an identity satisfied in a l l Am, m in M, and 

involving at least two operations from i2 need not to be sa-
t is f ied in the sum A of Am, m in U. To show this consider m 
the following example. Let ( { 0 ,1 } , + , • ) be a lattice ( 0 < 1 ) . 
Let Ag = {b,c} be a lattice with b<c and A1 = { a } be one 

element latt ioe. Let D^ = D* » Ag and D̂  » D^ = A^ Further, 
let a ^ q » b, bi|ij ^ = c^J ^ = a. Then the sum A of AQ and A1 

over {0,1} is evidently a bisemilattice. Both aummands of the 
sum as well as the lattice of indioes are distributive l a t t i -
oe. However neither distributive law nor the absorption laws 
are preserved in the sum. Indeed, o+ac = c 4 b c(a+c) and 
c(a+c) = b 4 0. 
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2.10« P r o p o s i t i o n . A coherent sum (A,Q) 
s a t i s f i e s a l l the r e g u l a r i d e n t i t i e s s a t i s f i e d by each of 
the extensions (Em,£2). 

P r o o f * Using Propos i t ion 2 .8 , the proof i s exact ly 
analogous to the proof of Pionka 's theorem [l7] t ha t Pionka 
sums s a t i s f y r e g u l a r i d e n t i t i e s s a t i s f i e d by each of the 
f i b r e s . 

The fol lowing coro l l a ry gene ra l i s e s Pionka 's theorem. 
2.11. C o r o l l a r y . The i d e n t i t i e s s a t i s f i e d by 

a s t r i c t coherent sum over a n o n - t r i v i a l (mul t i - ) s e m i l a t t i c e 
are prec ise ly the r e g u l a r i d e n t i t i e s s a t i s f i e d by each of the 
f i b r e s . 

Coherent m¿ l t i s emi l a t t i c e sums can be described a l so by 
means of eo.;e ¡mbdirect products . Let (A,Q) be an a lgebra and 
0 3i3 element not contained i n A. Then (AU{o},Q), where 0 a c t s 
b& the zero , i- also wel l defined Q-algebra and s a t i s f i e s the 
same r egu la r i d e n t i t i e s as (A,Q). 

2« 12. C o r o l l a r y . Let (A,Q) be a coherent sum 
erf a lgebrae (Am,.Q) over a ( m u l t i - ) s e m i l a t t i c e M. Then (A,Q) 
i s a eubdirect product of a lgebras (Bm,Q), m in 11, where 
B * E , i f m i s the zero of M, and B_ « Em l l{o_}, whore 0m m a ' ' m m i m l ' m 
a c t s Bb the zero , o therwise . 

P r o o f . Let a i A —-Bm be defined by m m " 

a?k,m i f a e V 
0_ otherwise, m 

Let co be an n-ary operat ion from jQ and l e t a k , . . . , a k e Ak . 
1 n i 

T h e n ^ « m ' - ^ k ^ m ^ a k / k 1 , m " ' a k / k n , m w = a k / k 1 , k 1 . . . k n " * 

• • • a k / k n , k r . . k n ^ k r . . k n , m * a k 1 — a k n ^ k 1 . . . k n , m » 

= a v ...a,,coor_ in the case k 4 . . . k _ > m , and a. o < . . a i , c*_o> = k m i n — * k4 m k_ m i n i n 
a ®m = a k ***akcoam o t ^ e r w : i - s e * Hence a ^ i s an £>-homomorphism. 
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Sow it is easy to see that the mapping ßik —F(Bm|me M) 
defined by a >—*- {ac*n̂ meM i s a^ö-homomorphism. Moreover Ü 
is injactive. Indeed, suppose a«m » botffi for all m in M, 
and let a e Aj,., b 6 A-̂ . '¿hen k^ m if and only if l ä m for 
all m in M what implies k « 1. But then for k - 1 = mE 

one obtains a = a«m - b«m = b. Consequently, ß is an iso-
morphism of A onto subdireet product of Bm, meM. 
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