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I. Introduction

We base our considerations on Zermelo=-Fraenkel set theory
with ths axiom of choice. In particular: an ordinal coincides
with the set of all its predecessors, a cardinal is an initial
ordinai. Every well ordered set is isomorphic with an ordinal'
(ordered by ¢} and every set X can be well ordered isomorphi-
cally %0 a oceriain cardinal (which is called the cardinality
of X and denotsd by |X|)e

‘We denote cartesian product of the family {Aizie I] by

T 4&; and its cardinalit Jasl o If (VieI) |&;] = m
ter * B PIRL L

and |I| = n, then ;U;[Ai| is denoted by m®, It is easy to
€
see that

i Il
{1] if (VieI)miam then iglmidm
Lot < be a partial order of a set P and x,ye P. We call
X,y incompersble ir x<4y and y4 x. A set of mutually incompa-
rgble oelemenis is called antichain, An m~-antichain is an anti-
chain of cardinality m. Every antichain is included in a
maximal antichain,
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An initial segment of P is a set of the form {yeP:ysx}
and.it is denoted by x). If ACP then the set {yeP:(ExeA)ysx}
is denoted by 4).

4 subset P1 of P is called cofinal with P if

(VxePHByeg)xsy

i.e. if P = P,). Let m be a cardinal, The least cardinal n
such that the set m (ordered by € ) contains a cofinal sub-
set of cardinality n 1is denoted by of{(m). If c¢f(m) = m then
m. is called a regular cardinal, If |I/< cf(m) and

(VielI) |Xl<m then |}€% X;|< m. The reader who needs more

basic or advanced informations on set theory and cardinals
can find them in [1] or [2].
Let n(P) be the least cardinal n such that

(VxeP)lx)| < n.

We call P a set with small initial segmaents (s.i.s.) if
n(P) < [Pl

One can prove without difficulty that a linearly ordered
get 18 not a set with s.i.s8. It is easy to find examples of
partially ordered set with s.i.s., 6.8+ antichains, The fa~-
mily P of all finite subsets of & certain uncountable set is
another such example (P is ordered by inclusion, obviously
n(P) ?ffo).

The main purpose of this paper is to prove that in many
ceses (and under some assumptions of set-theoretic nature -
always) partlially ordered set P with s.i.s8. is "thiok", i,e.
it contains a |P|-antichain,

II. Introduction.¢f the results and problems

Theorem 1, .If P is an infinite partially ordered
set with s.i.s, and m 1is an arbitrary cardinal less than |P|
then P conteins an m-antichain.
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Partially ordered sets 3

Theorem 2, IfP is an infinite partially ordered
set with s.i.8. and cf(|P|) >n(P) then P contains a |P|-anti=-
chain,

Theorem 3. Let P be a partially ardered set wit..
B.ie8., of{|P!)<|P| and P satisfies the following condition
{+)1 mk<<|P| for each cardinal k<of(|P|) and each ocardinal
m < |P|. Then P contains a |P|-antichain,

Corollary 1. If P is a partially ordered set
with s.i.8. such that cf(|P|) = 80 then P ocontains & |P|-anti-
chein,

Proof. IfP is a countable set then the proposi-
tion is a consequence of Theorem 2, If P is uncountable then
it satisfies trivially the assumptions of Theorem 3 (k is
finite), '

For some cardinals |P! fulfilment of the condition (+)
depsnds on cerialn additional axioms of the set theory. The
following ocorollary is an easy example of such situatlion when
gaoch cardinal satisfles the desired condition,

Corolliary 2, If the generalized continnum hy-
pothesis holds then every infinite partially ordered set P
with s.1.8. oontaine a |P|-antichain,

Proct, If P 18 a regular cardinal we can apply
Thesrem 2. Otherwise of(|P|) < |P| and P = &, for a limit
cr:.nel A’ Thus for ordinals «, <A

= 2" =% $a

a'+1<
wherse 7 = max{v,A). The condition (+) is satisfied and we can
apply Theorem 3.

The natursl problem on entichains arises in the sets which
are beyond the resch of Theorems 2 and 3 i.,e. such sets P with
8elem. thus there sxist cardinals m <|P| and k<of((Pl) and

§,< c2(1Bl) =n(P) < |PI< ¥,

This probvie? rrmaing unsolved (at least by the author of this
paper). Iz parilculsr the following problea is open (it seenms
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to be the simplest case of the above situation). Assume that
&
|P| ’Hw = 2 0 and that all initial segments of P are at most

1
countable (i.e. n(P) ={5,). Doee P contain an?\'w“-antiohain?
(by Theorem 1 it contains an antichain of an arbitrary cardi-

nality less than ).
1

III., Proofs

Proof of Theorems 1 and 2. Let us defins two trans=-
finite sequences of sets (P, : <) and (A, : <) ] where
B,C P and Ay is a maximal antichain in Py

By = P

IE'o‘+'1 = By = Aol

Py = [ | Py for's limit ordinal A.
a<f

Let A be the first ordinal & such that P, = #. If cnme of
the antichains A, has cardinality |P| then the conclusions
of both the theorems are satisfied. Thus we can assume that
|yl < |P| for all o<,

Let us observe that the set ul:;L A, is cofinal with P

since if ac P then aec P, -~ E 4 for some o <7, Thersfore
ac Ay) hence a<b for some be A,. The above property can be

expressed by equality

(2) p- U no,).

xX<A

We shall now prove now that

(3) A <n(P).

Let use assume that n(P)<A . Thus Pn(P} £ ¢¥. Let a 28 an
arbitrary element of P (p)e 8¢ Py for each o <n{F) and therc=-
fors it is comparable with some a e A, (88 Ay is a “aximel
antichain in P,). But if a <a, then ac Ay) what impiies
a¢F,,q¢ Thus ag<a for each a < n(P), It in eacy $o0 zec that
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8, ¥ ag forx ,p<n{P), o ¥ 3. Honoe |a)| >n(P) which contra~
dicts the assumption,

Assume now (in spite of the conclusion of Theorea 1) thrt
there exists a8 cardinal m éIPI such that for every ordinal <)

(4) lAq|<m.
Inequalities {3) and (4) imply

| kJ)‘Aa|< n(P)em <|P|

hence

| U )l <12

x <A

in spite of tha equality (2).
For pru-ing Theorem 2 it is suffiocient to write equality
(2) iz the folliowing form

P= LJ l¥) x).

U x)‘ = |P| for a certain
XEA,

In of{|Pi}): n(P), then, by (3),

0
uo<i%. It implies immediately that |Aao; = [Pl

Lemma 1 If the cardinal |P| satisfies condition
(+) then there exists a transfinite sequencs (n, 3 o< cf({|P|))
of cardinals having the following properties:

1. ny 18 a regular cardinal

2. n,<ng if o« <B <ct(l/Pl)

3. Bup{na:a<cf(|P])} = | P|

4. gz; n§<:nq.

Proof. The required sequence is defined by trans-
finite induction in a routine way, with the help of the ine=-
quality
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g];[o?ﬁ < [sup{n; 1<« }]Iml

which is obvious consequence of (1).

Lemma 2. Let P satisfy the eesumptions of theo-
rem 3. There exists a transfinite sequence (B, 1 & <of(|P|))
of antichains which have the following properiies:

1. |B,] is a regular cardinal, |B,|>n(P), |By|>ef(|P|)

2. IBgl < IBgl 1ifax<p<of(|P|)

3. sup {[aq|m4oz(|rn} = |P|

4, if x<p<cf(|P|), ac B, and be By then bda

5, if« <of(|P|) then | TTB.|< |Ble

- E<x E

Proof, Let (n,tx<of(|P|)) be a soquence of car-
dinals which satisfies the conditions 1 - 4 of lemma 1. We can
assume that n,> of(|P|) and n,> n(P) for each x<of{|P|). Lot
{a..E 1 E< IP!} be an enumeration of all elements of the set P
(under some well ordering of P), let for o < of(|P|}

R '{‘g t E<nq}
and
U = Byyq) = B)e

It is easy to see that |P, )| = n,en(P) hence |Qy| = n . qe
Moreover Q. is a set with s.i.s. therefore it satisiies the
assumptions of Theorem 2, Thus Q. contains sn nu+1—-antiuhsin
Bye It is easy to verify that this sequence of antichains
(By: x < of(|P|)) has the required propertics 1-5.

Proof of Theorem 3, Let (B, :o <cf£(|{P|]) be a
sequence of antichaine which satisfies the conditions 1-5 of
Lemma 2. We shall construct a double sequence (Ga’ﬂ_ tagp<
<of(|P])) of antichains such that the following conditions
are satisfieds let o,8,7,A, be ordinals such that
asp< of(|1Pl)ya< y<of(|P|), xgcA<ec(|P]), A is a limit
ordinal. Then
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Te CC‘”BI:':B »
20 if ﬁ<'\f ’ tﬂon CO(.FQCO(,B,
3. ICO(’O(I = IBQ(ID

4, lCa'ﬁ - CO(,ﬂ+1I < |Ba|'

5 l<a£2<7\co(.[3> - c“'xl = IBO(I
6o U CE A is an antiochain,
E<p
Observe that the above conditions 1~-5 and the condition 1 of
lemma 2 imply for each pJ>o the equality

(5) 1Cu,p1 = |Bals

The construction will be based on transfinite induction
on the ordinal variable 3,

We put C0 0= Bo. Let us assume now that the antichains
Co L7 with o< j </ have already been defined and they satisfy
conditions 1=5. Cne must define C, B8 for x<fB. Let Daﬁ

M)

e ﬁca.ar (if B =7 +1 then obviously Da'ﬁ = co'g). For

8 fixec well ordering —, of the set D, 5 and for xeD, 4
1 ?

let Xx dJenotes the set {ye Do p ¢ ¥ 34 x}. Given a function f
4
with /5 as the domain and such that f{x)e Dy 5 (L.e. feTlD, ,)
4

let Ef be the set defined by the following equality
(6) Bp = {beBp 1 (Va <p) BIND, 4o £l
It follows by the inequalities

)1 Dy gl < 1b)] < n(P) < |By]

and by the regularity of the cardinal |Bpl) that

(Vbe Ba)(3t e 0]13 Dy, p) e Be
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thus

Bo= U {Bg : £ T Dy g}
But ; Jj;; D'o(’ﬁ'é‘ uU,e Bq‘ < IBﬁI « Thus, again by the regularity
of |Bpyl, there exists fe ojjﬂ D,,p that ]Efol = [Bgl. We put

now
(7)~ C/e’ﬁ = Efo
(8) CO(’/B = DQ,ﬁ - fo(o() for. 0(</3.

The conditions 1-5 are obwiously satisfied. It remains to
prove the seme for condition 6, Let a,be U/50°‘ pe 1f both
[« 23 ’

these elements are in Cp B oT in Cy B for some o </3 then they
are incomparable by condition Te If aeCy B be CT p for some
xy y<f then ac Cy ,B s DE Ca. /3 for some ordinal ﬁ1 suoh that

Xy a’</51</3. Therefore a and b belong togk%" c B which

is an antichain by the inductive assumption, Let us assume
now that aeCp s and be Cy 5 for some x<B., Thus asb by
1 4 1 4

condition 1 and point 4 of Lemma 2. Let b<a, It implies that
be a)n D, 8 hence, by (7) and (6), befo(o() in spite of (8).
Thus b4 a.

We define now & set C by the following two squalities

F, = ﬂ Coc./3’

(o4
xgB<ef(|Pl)

c= U 5

o<ef(|P|)
C is an antiochain. Indeed, if acF, and be F, for some
% 2

X, < 0<2<cf(lPl ), then for an arbitrary ,31>0<2 we obtain that
aqu1,B1 and be 002’/31 Thue a, b belong to gU C‘g /5 and

they are incomparzble by condition 6.
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The antichains are pairwise disjoint by condition 1.
|F,| = [By| by conditions 3, 4, 5 and by the inequality
|Byl< of(|P]|). Therefore

ci = sup {1yl o< of(P)} = |P|

by point 3 of Lemma 2. This completes the proof,
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