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1. Introduction

The idea of n-groups derived from m-groups appeared in
the very first paper [2] on polyadic groups (called also
n-groups). This notion was subsequently generalized in va-
rious ways by several authors (cf. e.g. [21], [10], [1],
[22], [23], [4]~-[8]). In this paper we introduce a general
construotion, which contains all cases considered before, and
we treat the problem from a new point of view, Usually, one
asks what properties of an ne-group (G,f) derived from an
m-group (G,g) inherit from (G,g). We are interested when
an n-group (G,f) is derived from an m=-group {G,g) and what in-
formation about thie m-group one can obtain from information
about (G,f). Various applications and extensions of results
presented here are given in [2d]. This paper is a continuation
of our papers devoted to various construotions of polyadic

groups (ef. [12]-[19], [4]-[8]).

2. Some notions and notation

The terminology and notation of the present paper are the
same as in [5], [6] (and in great parts as in [4], [18], [19],
[12], [16]). To avoid repetitions, we fix the following no-
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2 Je Michslski

tation: n, k, s are positive integers such that n = s*k;
(G,f) is & nonempty (n+1)-group, (G,g) is 2 nonempty (k+1)=~
~-8T0UDe .

Let us recall after Post [21] a certain equivalence rela-
tion on the set of all palyads of a given polyadic group (cf,
also [5], [13], [18]). Let (G,f) be an (n+1)-group. The rela-
tion ; is defined as follows:

<a1> <bm+un> if and only if for some 1 and for some

elements cy,...,¢ ¢ G the eguality f( )(c1,a1,ci+1) =

m+un
= f( )(01,b1 ’°i+1) holds.

Post has proved (cf. [21] ) that <a$>;<b?+un> 1f end only
if for a11 i and T (where r>1i and r+m = 1 (mod n}) the

eguality f(.)(x%,a?,x§+1) = f(.)(x%,bm+un,c§+1) holds for
every sequencse XqseoesXp€ Go In this paper we often consider

different polyadie group operations f, g on the same set G,
and so we write (a?) 3 <b:> or <a?> = <b§> to indicate from
which polyadic group the Post relation comes,

3, C-~systems
Consider a (k+1)-group (G,g). Let 6&,...,6 be a sequen~

ce of mappings from G into itself and c1,...,ck:eG. We denote
the system of mappings and elements (called in this paper an
s~gystem over G or simply a system over G) by<(61,c1> or
briefly(§ jc>. Any such s-system{§ j;c) enables us to define
an {n+1)-ary operation f on the set G by

k
(1) f(x Ty - g(s+1)(x1.da(x YyouasSp(xy 1)sc)e
We say that the resulting {n+1)-groupoid (G,f) is{d;c) ~de~
rived from the (k+1)-group {G,g) and we write {G,f) =
= der5 c( ,e) (ef. [4], [5]). In general {G,f) need not be
an (n+1)-group.
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C-derived polyadic groups 3

Definition Te An s-system<(6?;c$> over a
(k+1)-group (G,g) is gaid to be an 8-G-system if the (n+1)-
-groupoid (G,f) = oerd, (G,g) is an (n+1}~group.

A criterion which decldes when a system{§;c» is a G-sy~-
stem was found in [6]. In the present paper we restrict our-
selves to Ge-systems. It is easy to verify (cf. [6]) that for
a G-system{&;c> all mappings §; must be bijective., We have
also the following

Propesition 1o Lat (é?}af}'and (6?;b$>

3

be s-G-gystems over a {k+1)]-group
= der§ ,(G,8) 1F and oniy if Zak> = (o,

Some additional assumptions are often imposed on G-systems
ander considerstion (cf. [2], [21], [o], [11. [, [7], (4],
BQ] stc.), Tesulting in spacial properties oI derived (n+1)-
~groups. New -we try to state whet do we mean by a conditiocn C
imposed on systems under consideration,

Consider the category Gr, , of {(k+1)-groups (cf. [12])
and fix n = g+k. Suppose that for any (k+1)-group (G,g) a set
C{G,g) (possibly empty) of s-systems over (G,g) ig chosen in-
variantly with respect to isomorphisms of {k+1)~-groups (i.e.,
for any isomorpﬁiam h:(4,8) —(B,g) and an s-system(S;cd
of the set C{4,g) the system<<h§h'1;h(g)> belongs to the set
C(B,g8)). Denote by C the class of all systems bslonging to
Cc(G,g) for any (k+1)=group (G,g). We will often say that a
system(J;¢> satisfies a condition C or simply that ‘it is a
C-system if (§;0> belongs to the class C, As was mentioned
above, in this paper we assume that all systems of the class C
(i.e., all C-systems) are G-systems., Given two conditions
C, C', the condition C is said to be stronger than ¢’ if
C(G,g)cC (G,g) for any (k+1)=-group (G,g). In this case we
write C>C’ (and C>C’ if C is essentially stronger, i.e.,

C #C' ). By CC’' we denote the interseotion of the conditions C
and C', 4 group (G,f) = der6 c(G,g) is said to be an s-C-de-
rived (or briefly: C-derived if s is fixed) from (G,g) if

¢ j¢> is an s-C-system over (G,g). The (k+1)=-group (G,g) is
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4 J. Michalski

called then an s=C-creating (or<{¢;c>-creating) (k+1)-group
of (G,f), and the system{d;c)> itself is called an s-C-creat-
ing system of (G,f). An {n+1)=-group (G,f) is said to be a
C(k)-primitive (n+1)=group if it is not s-C-derived from any
(k+1)-group and n>1, Consequently, (G,f) is a C-primitive
(n+1)=-group if it is C(k)-primitive for every k <n,

The above terminology coincides with that of Dornte, who
considered in [2] the case where &; = id; (i = 1,...,n) and
<c¥> was an identity polyad in (G,g).

Definition 2, &n s-system<(61,c1> over a
{k+1)-group (G,g) is said to be an s-PE-system if 6; is the
identity mapping for esvery 1 = 1,...,0 and <c1> is an iden~
tity polyad in (G,g).

The above-defined condition is, in fact, the intersection
of two conditions: P and E, which are defined and investigated
in [20]. But in this paper we consider only PE-systems.

Note that in previous papers wé used the symbol ys(G,g)
(also wB(G)) to denote the (n+1)-group PE-derived from {G,g).
According to the terminology used here, in this paper we pre=-
fer the symbol derz(G,g) where e = <e$> denotes an identity *
polyad in (G,g).

The case of n = 1 should be treated separately. Since any
(k+1)~-group is 1-PE-derived from itself, for any condition C
waaker than PE every (k+1)-group is 1-t-derived from itself,
Therefore it is natural to consider the notion of C-orimitive
(n+'1)-gx'oup only for n>1 {and k<n).

The first criterion for an (n+1)-group to be PE~-derived
from a (binary) group has bean given by Doérnte in [2]., It was
generalized by Post to the case of (n+1)-groups PE-derived
from (k+1)=groups (cf. [21], and also [9] for a certain spe-
oial case). Thia probilsm for conditions different from PE
was considered in [5], (7], [22] and other papers. In [20]
we give such criteris for vaerious conditicns C.

Thers are known some conditions C (s.g. the Hosszd condi-
tion of [ﬁ], which is dssoribed in section 5° uf this paper)
when C-primitive (n+1}w-zroups do not exist, Such conditions
will be c¢alled nonrestrictive conditions, nemely
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C-derived polyadic groups 5

Definition 3. 4 condition C is said to be
(s,k)-nonrestrictive if any (sk+1)=-group is s-C-derived fron
a (k+1)=group.

Definition 4, A condition C is said to be
(s,k)=restrictive if there exists an (sk+1)=-group which is
not s-C-derived from any (k+1)=-group.

It is evident that conditions which are weaker than a
certain nonrestrictive condition are nonrestrictive., Similarly
conditions which are stronger than a restrictive one are re~--
strictive,

45 was mentioned above, the Hosszu Condition (denoted in
the sequel by H) defined in [4] is nonrestrictive, whereas
the condition PE and also those studied in [5], [6], [19] are
restrictive., For restrictive conditions C the prpblem arises
of deciding when a given (n+1)=-group is C=primitive, There is
also problem of the reconstruction of C-~creating (k+1)=-groups,
which mekes sense for nonrestrictive conditions as well, This
question was treated in [21]-~[23], [11], [6]. In the present
paper and in [20] we resolve the above problem in several new
cases,

The notion of a nonrestrictive condition is closely re-
lated to a generalization of Hosszu theorem (cf. [4], Corolla-
ry 4). Namely, this generalized theorem states that an (n+1)-
-groupoid (G,f) is an (n+1)=-group if and only if (G,f) is
s-H~-derived from a (k+1)-group. It is clear that this theorem
remains true when we substitute the condition G for H. More-
over, we may substitute any'nonrestrictiva condition C>G (and
only such a condition). A4 natural question to ask at this
point: Must such a condition be weaker than H? In other worde

Probvlen 1. Does there exist a nonrestrictive
condition eesentially stronger than H?

Problen 2, Does there exist & nonrestrictive
condition stronger than every nonrestrictive condition?

If the answer to Problem 2 is negative, then one may poss

Problem 3. Pind a nonrestrictive condition such
that any essentially stronger condition is restrictivs,
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Analogous question may be asked for restrictive conditions,

Problea 4, Does there exist a restrictive condi-
tion weaker than every restrictive condition?

If the answer to Problem 4 is negative, then we put

Problem 5, Find a restrictive condition such
that any essentially weaker condition is nonrestrictive,

4. s-C=identity colyads

Now we formulate some notion which simplifies considerably
the investigation of C-derived polyadic groups.

Definition 5. Given an (n+1)=-group (G,f), let
e¥> be a k-ad in G. The k-ad (o> is said to be an s-C-iden-

tity polyad in (G,f) if (e¥) ie an identity polyad in some
g=C=creating (k+1)=-group of {G,f}.

ihe introduction of this notion was inspired by [15],
when we studied s-skew elements in polyadic groups with res-
pect to the condition FE. One can also define s=~C-inverss
polyads and s-C-skew elements, which we will investigate in
a separate paper. Note that a 1-PE-identity n-ad <e?j>in an
{n+1)=group (G,f) is simply an identity n-ad in (G,f}.

Consider an (n+1.)-group (G,f). It is evident that any
s-C~creating (k+1)-group of {G,f) determines some s-C-identity
k-ads in {G,f) and conversely, any s-C-identity k-ad in (G,f)
determines some s=-C-creating (k+1)-groups of (G,f). Unfortu-
nately, the correspondence between the set of all s-C-creat-
ing (k+1)=groups of (G,f) and the set of all s=C-idertity
k-ads in (G,f)} is not necessarily bijective. Neverthelsss,
for certain conditions this is so.

Definition 6, 4 condition C is said to be
(s,k)-regular if for any (n+1)~-ggoup (G,f) the above correspon-
dence is bijective,

It is easy to check that a condition stronger than a regu-
lar one is also regular, and a condition weaker than an irre-
gular one is irregular.
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By arguments of [21] or [15] the condition PE ie (s-k)-re-
gular for any s and k (cf. also [20]). In the following
sections we will show that the condition H is (s,k)-irregular
for k> 2, whereas for k = 1 it is (n,1)-regnlar (of. Fropo-
sition 5 and Corollaries 8,9)., We list now several problems
about regularity of conditions between H and PE.

Problem 6, Doss there exist an irregular condi-
tion stronger than every irregular condition?

If the answer to Problem 6 is negativie, then one may pose

Problen Te Find an irregular condition C such
that any condition essentially stronger than C is regular,

Problem 8. Does there -exist a regular condition
weaker than every regular conditlon?

If the answer is no, we state

Problenmn 9. Find a regular condition C such that
any condition essentially weaker than C is irregular.

A8 we mentioned above, for a regular condition C any
g=C~creating (k+1)=-group {G,g) of a given (n+1)-group (G,f)
is determined by a unique s-C-identity k-ad <e$> in (G,f}.
This may be false for an irregular condition. But for an arbi-
trary (regular or irregular) condition C any s-C-creating
(k+1)=-group (G,g8) can be reconstructed from some s-C-identity
k~ad <e¥> in (G,f) and some s-C-creating system {§;c> of (G,f).
Namely, we have the following

Proposition 2. If an (n+1)~-group (G,f) is
{$;¢c>~derived from a (k+1)=-group (G,g) with <e$> as an iden-e
tity kx=-ad, then the operation g is given by

(2) g(X};‘”) = f(2)(x1.3"1(x2) ,-oo,?k(xk+1),d§n-k)

where the mappings Tqreeesdy BTE inverse of 61,...,6k and

the (2n-k)-ad'<d§n'k> is an inverse of the k-ad (¥,(e,),.ee,
".’gvk(ek)> in (G,f)b

Froof. Let {G,T) = der {Gyg) (i.e. let f be

]
6
dentity k~ad in (G,g). First

1
en

g%

given by {1) and let <e$> be an i
we consider the case s >1,
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Take elements a},...,ah_k e G such that the n-ad
<6k+1(3&),6k+2(52),...,6h(3n4k),c¥> is an identity polyad

in (G,a) and substitute a},...,a;_k TOr X, oreeerX in (1),

Thus we get

n+1

(3) f(x¥+19§?-k) = s(x1,61(x2),....6k(xk+1).

Take a (2n-k)-ad (d?n'k> such that <d$n'k> z <3§"k>. Let 7y
denote the mapping inverse to &; for i = 1,...,k. Then (3)
becomes (2), Substituting the elements 8 100098 for
XppesesXy 4 in {2) we obtain

=k
(4) x1 = f(z)(x1'71(31)’000.8'k(5k)d$n )1

It follows from (4) that<(d$n'k> is an inverse of the k-ad
<3ﬁ(°1)""'3k(°k)> in (G,f), )
Next, let 8 = 1 (i.6., n = k), Note that

(5) fxz)(x$k+1) =

= 8(4)(x1’61(x2) EXX] ’dk(xk+1)’c¥’61(xk+2)""’ak(x2k+1),o%).

Take elements dqseeesdye G such that the 3k-ad (o¥,61(d1),...

eves6(d) 45> 15 an identity polyad in (G,) and put
dyseeesdy in place of X, syeee9Xy, 4 10 (5)e 45 in the first
part of the proof one can verify that g satisfies the assump=
tions of our theorem. This completes the proof of Proposi=-
tion 2.

Corollary 1. Letdl§jodand (&3¢’ be s~G-sy-
stems over (k+1)=-groups (G,g) and {(G,g’), resp., and let
<e¥> be an identity k-ad in (G,g) as well as in (G,g’). If

derzic(G,g) = dersé% . (G,g’) and 8 = Gi for 1 = 1,.e004k, then

1

& =8 »
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C=derived polyadic groups 9

Fix an (n+1)=group (G,f) and a k=-ad <a§> in (G,f), It may
be interesting to consider the question under what condition
On 74seeey 7y 8N4 dyyeee,dy oo formula (2) gives the operation
g such that (G,g) is an s-C-creating (k+1)=-group of (G,f)
witn<(e%> as an identity k-ad. The solution of this problem
for certain conditions will be glven in ths following sections
and in [20].

5. A=systems

Now we give a characterization of s-C-identity polyads for
a certain condition C (this will be continued in [20]). Pirst
we define this condition, which is related to the condition H
of [4],

Definition 7. An s-system‘(dﬁ;c$> over a
(k+1)=group (G,g) is said to be an s-A~-system if

1° 61 is an automorphism of (G,g)}

2° 5 = (61)i for every L = 1,e.0,n3

3% for any x e G we have

k

(6) e(6,(x),e¥) = alef,x);

40

k

(7) 8y(cq)469(cn)serey8yleg)> : {oqd> e

an {n+1})-group (G,f)} A=-derived from a (k+1}-group (G,g)
will bs denoted by derg x(G,g) {instead of der> (G,g),

jeq sk

13¢4
since all mappings 61,.,.,6n are powers of the same mapping J&';

de facto 6 = &,) or briefly derg,c(e,g). The A-creating system
[ -2

itself will be denoted by<(6;c¥> or (530>

From the definition of an A-system and by Propositicon 1
we obtain

Corollary 2e If <6ga§> iz an 3-A-system ovsr

(3,8} end <af> =<:b§>, then (5;b¥> 1s alsc an s=a-system cvar
Vg Nt !
<

(G,g) and deré;g

(Gog} = der?
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The condition A is a generalization of the well-known
Hosszu condition for (binary) groups (cf. [21], [11], [10],
[23], [1]). It differs from the condition H of [4] only in
the formulation of 4°, where equality (7) was of the form

(8) 6y(cg) = c; for every 1 = 1,...,k,

Any k-ad satisfying (8) also satisfles (7); so the condi-
tion H is stronger than A. The condition H is (s,k)~nonre-
strictive for k>1 (cf. [4]). which implies the {s,k)-non-
restriotivity of A. For k> 2 the condition 4 is essentielly
woaker than H, Indeed, this follows from

Proposition 3, Let (cf) and <a¥> be central
polyads in a (k+1)-group (G,g). Define mappings 643G —GC by

6,(x) = g(i,(x,%‘{) (1 = 1,000,n)s Then (6%5cX> 16
1° an A-system over (G,g) if and only if (ak>is an iden-
tity polyad in (G,g); ‘ﬁd

2° an H-gystem over (G,g) if and only if <a§> is an iden~
tity polyad in (G,g).

Recall that k-ads in a (k+1)-group (G,g) (to be exact:
= = gguivalence classes of k-sds) may be treated as elements
of the free covering group (G*,*) of (G,g) and also as ele-
ments of the associated group (d°,°) (which is actually a nor-
mal subgroup of (G*,*); cf. [21], [18] and also [4], [5],
[12], [13], [16]). Por this reason we may interpret conditions
1° and 2° in terms of (G*,*).

Corollary 3. Let k>1, If the associated group
(Go,°) of a (k+1)-group (G,g) contains an element of order k
from the center of the free covering group (G*,*), then there
exists an A-system over (G,g) which is not an H-system ovser
(G,g).

We give the example of such & (k+1)-group. Let k>1, Con-
sider the {k+1)-group (G,g) = derg(G,') whers (G,*) = (Zk2,+)

+1)E

is the cyclic group of order K2 {(i.0., g(xf XqteootXy 4

2 K
(mod k?)). Let &y = 1 for i = 1,...,k and let {cy) be an
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C~derived polyadic groups 11

arbiwrary k-ad in G. Thus, by Proposition 2<(6$;c¥> is an
A-system and it is not an H-system over (G,g).

Corollary 4. For k>1 the condition H is es~
sentially stronger than A.

However, it is evident that for k = 1 this corollary is
false, Namely,

Proposition 4, For k = 1 the condition H is
agual to A,

The main purpose of this section is to give a criterion
for a k-ad to be an s-A-identity one.

Lemma 1. If‘<6;0$> s an A-system over (G,g) and

(G,f) = derg,c(G,g), then the mapping & is an automorphism
| B8

of the (n+1)-group (G,f).

Proof., Indeed,
6(f(x?+1)) = G(g(s+1)(x1,6(x2),...,6n(x ),c$)) =

)40%) = £(6(x1) 000 ,6(x

n+1

1

= g(s+1)(6(x1)’.'o.6n+ (xn+1 n+1))0
Theoremnm 1. A k-ad<(e¥> is an s-~4-identity poly-

ad in an (n+1)=-group (G,f) if and only if there exists an

automorphism y of (G,f) such that

.2 k=1 2 Yok
(9) <e1'3(e2)|3 (93),oos’3 (Bk)> ;<<T(e1),? (32),..o,3 (ek)>
and

k-1(

(100 #50x) = 258" ", x,00,7(65),8%(05) s0ee s 2 (o))

where the (2n-k)-ad<(d$n'k:> is an inverse of <e1,x(82),...

""Zk-1(ek)> in (G,f). Then (G,f) = derg;c(ﬁ,g) and<(e$> is

an identity k-ad in (G,g) if and only if
(1) &(xf*N) = £, (57,7055 ,0%0x5) ye e, 2% (3, 1) 402075,

{(12) 6:3“-1,
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(13) <01.3’(02).3‘2(c3).ou.3‘k'1(ck)> 't*'.

; <\e1 ,3’(92)93‘2(93) ’coo.?k-1 (eki>

8+1
for an automorphism 7 of (G,f) satisfying (9) and (10).
Proof. Let <e11<> be an s~A-identity k-ad in an
(n+1)-group (G,f). Thus there exists a (k+1)-group (G,g) such
that (G,f) = derg;g(G,g) and <el1(> is an identity k-ad in (G,g).
According to Proposition 1 the operation g is given by (11)

where g = 6=1 and the (2n-k)~-ad <d$n'k> is an inverse of the

k-ad <3~(e1),...,3‘k('ek)> in (G,f). From Lemma 1 it follows
that & is an automorphism of (G,f), whence 3 1is an auto-
morphism of (G,f) as well, Thus

£(0) (@ (5D s720x5) suee st (4 )07(04),8085) 40 nes2ldp ) =

n

P20y (%o (x) 172 (23] yo e sty 4),0257K)) = 2 (glxE*T)) -

8(3.(11 ) DO'ODT(xk_',‘l )) = f(g)(?‘(Xﬂ.Tz(xz),-..,TkH (xk+1),d$n—k))

which shows that

(14) (AT = (gMag),7(8y) s ume Tl g s
Since & 1s the inverse of 7, we get

(15) <a$n-k>;<6(d1).a(dz),....a(az,n_k)>.

The 2n-ad <d§n'k,3'(e1),v3~2(62),...,a‘k‘(ek)>-is an identity poly~-
ad in (G,f); so the 2n-ad<é‘(d1),6(d2),...Y,G(d2n_k),63‘(e1),...
...,dyk(ekD is also an identity polyad in (G,f). Thus, in view
of (15) the k-ad<e1,3~(92),a~2(03),...,3‘k'1(ek)> is an inverse

of (d%nd{) in (G,f). Then by (14) we get (9). From the equa-
lity
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C-derived polyadic groups 13

= 8(311{,}!) = f(2)(e1p?(ez),3‘2(33),Q-o,?k-“(ek)pa‘k(x),dﬁn-k)

and using (9) we obtain (10). Note that

f(xgx+1) = g(s+1)(x1,5(x2),...,Gn(xn+1),cl.]() =

= 81} (X126(xp) yeees6™ Hxy) 86 (xy, )40 5)) =

8(9)(x1,6(x2),...,5n_1(xn).f(z)(an(x ,T(C1”3‘2(C2) gsecey

n+1)

vees2¥ley),a27E)) <
8(5-1) (X116(xp) yeeey 8™ o 10,867 K Mx 1) seee s8N (),

.f(z)(dn(xn+1)’Z(c1)’3‘2(02)’ooo’atk(ck)dfn-k)) )=

8(5o1) (X126(xp) yeue 8™ 8 x )y2 (6" K x L ),6%Hx o)

ee s ),60 K (x84 (0,842 (0,0 10007 0 ),0377E)
2
k -k
sse = f(28+1,(x¥;+1, n(c1)'a‘n+1(°2)’ooo,3‘n+ (Ok),dfn e
s+1
Thus the k—ad<:yn(c1),?n+1(cz),...,zn+k(ck)> ig an inverse of

the (2ns+n-k)-ad <d?n'k> in (G,f)., So we have the equality
s+1

(16)¢3™(e1),8™ (ep) yeen 8™ ey )> = Cogatlon)yene st oy ),
: 8+1

which together with (9) gives (13).

Conversely, consider a k-ad <e¥> in G and an automorphism
7 of (G,f) satisfying (9) and (10) where the {2n-k)-ad
<d$n'k> is an inverse of the k-ad<(e1,3(62),32(33),...

vees?®Ney)> 1n (6,£). Prom the definition of {d2"K) taking

into account (9) we get (14). We may write the equality (10)
in the following form

- 143 -



14 Je. Michalski

(17) (7*(x),6577 = (a§ K, o0
Define a (k+1)-ary operation g by (11}, Then

ala(x* ), 25N < v, (81, (xy02(x5) 182 (x5)mm e

...,zk(xk+1) dzn‘k),g(xk+2),32(xk+3),,..,y‘( 2k+1)dzn"k) =

n

f(z)(x1,f(2)($(x2),...

.."a"k(xk+1)'2‘k+1(xk+2) ,dﬁn-k)~,a‘2(xk+3) ,t-o,?k(x2k+1)’d$n-k) =
= f(e)(w ,y(f(Q)(xk+2' 2n-k),32(xk+3)'...
con st (X1 )085° ) = elxgalxg ) E TN,

which proves that g is a (1,2)associative operation. Thus
from Proposition 1 of [3] we infer that (G,g) is a (k+1)-group.
Furthermore, <e¥> is an identity k-ad in this (k+1)-group, De-
fine a mapping & by (12) and take a sequenge CqreeesCypeC

that satisfies (13), We claim that<35;c$> is an A-system
over (G,g). Indeed

k+1))

7(alxy x(f(z)(x1.x(x2).---.zk(xk+1).d?n'k)) =

d2n-k) =

f(z)(Z(x ) ?(T(xe)),-oo,? (?(xk+1))

8(7(x ) seeesd(xyp 41

i.e., g (therefore also 6) is an automorphism of (G,g). Using
(9) and (13) we get

(18) <C1,3'(02),3‘2(03),....Tk_1(0k)> ;

=<aleq),7%(e,) pennn 2 (e Do
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By (18), the definition of g and (14) we have
(19) <°l1(>‘<3'(°1)00'093'(°k)>0

4
from which one can easily get (7). By (17) we have

(20) (28§75 = CafPE 65 (),

which 1s turn gives
(210 C6%(x)y0407(05) 485 (03) seeu " (o)) =

;.<e1,a'(02),8'2(e3),...,Z‘k-1(ek),x>
(since the k=-ad (e1,3~(92),....3‘k'1(ek)> is an inverse of the

(2n=k)-ad (d%n'k>»in (G,f). Now we use (21) and {17) to prove
(6). In fact,

B6™(x),05) = £5)(67(x),5(0q) e w007 () ,a3") =

f(B)(dk(dn'k(x))»?1o3(62).32(83)13-.,3k-1(ek).dfn‘k) -
s+1

f(e1’3(32)p32(93)p-0- o?k-1(ek) oén-k(x) 191 ,8(62),-oo.3‘k'1(ek) }=

s=1

cees = f(e1,3'(62),...,Jk-1(ek)9x) =
8

f(B)(‘e‘]gI(ez),ooc,a’k-‘l(eL) ,d?n-k,x) =

v

s+1

f(z)(c1,3(c2),...,zk'1(ck).zk(x},df“'k) = g(Cf,x)-

'1‘hen<<5;c{]{> is an h=system over (G,g).
Finally, as in the first part of the proof one chows that

k.
) ¢yl =

E(S+1)(X],G(XZ),...,(Sn(Xn+1 »

= ;(s)(x1 ,6(x2)..-.,dn-1(x2),f(2)(6n(xn+1),
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,3(01),32(c2),...,3k(ok).dfn'k)) =

= 8(5)(x1 ,6(x2) ,o..,é‘n-1(xn) ,f(d’n(kn+1),81.3"(62),.:.’Tk-1(°k)‘) =
8

= g(s_1)(x1,5(x2),o'ogdn-kh1(xn_k)’f(dn-k(xn_k+1)9000’5n~k(xh¥00

18157(0,5)y00e s Moy ))) = ae = 2(xI*),

s~1

i.e., derg‘c(G,g) = (G,f). This completes the proof of Theo=~
rem 1,

So, by Theorem 1 we obtain the complete description of
s-A~oreating (k+1)-groups of a given (n+1)-group (G,f). Any
such (k+1)=-group is determined by an appropriate k-ad of G
and an appropriate automorphism of (G,f).

Note that in Theorem 1 we reguire only that <o¥> satisfies
(13), thus we have some freedom in choosing it. For instance,
we may do this in the following way.

Corollary 5. Let 7 be an automorphism of an
{n+1)-group (G,f), assume that 7 satisfies (9) and (10) for
some k=~ad <e¥>. If a (k+1)=-ary operation g is given by (11),
a mapping & by (12) and a k-ad <c¥> by the formulas

¢y = f(e1pz(32),32(33)"°°tzk-1(9k)p31), Co = €5900090) = 8)y
5
then<:6;c¥> is an s-4-gystem over (G,g),<(e$> is en identity

k-ad in (G,g) and derg;c(G,g) = (G,f).

We now use Corollary 5 to show the irregularity of ocertein
conditions,.

Proposition 8., The condition H is (s,k)-irre-
gular for k=2,

Proof. Let (Gye) = (Sk,-) be the symmetric group
of degree k (k>2). Form the (n+1)-grovp (G,f) = qer;‘(s,-)

whére e is the neutral element of (G,*) (i.e., f(x?+1)

= x1-...°xn+1). 4 mapping 3:G —G given by J(X)==8‘X'Bk-1,
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where a .is an element of order k in (G,*), is an auto-
morphism of (G,f). Let ey = ; for L = 1,..0,ke It is8 easy to

check that the k-ad (el1‘> = e > and the automorphism 7 sa-
tisfy the assumption of Corollary 5, Define a (k+1)-ary ope-
ration g, a mapping & and a k-ad (c{f) as in Corollary 5.

Then

{22) g(xlfﬂ) = Xq°8°K5% e 008Ky 4y
(23) §{x) = a®lexes,

(24) c; =06 for i=1,...,n

It is evident that the so-defined system <6;cl1‘> is an s-H~gystem
over (G,g)e Thus (G,f) is H~derived from the group (G,g) and
(e > is an identity k-ad in (G,g). On the other hand, 1et 7

be the identity mapping of S onto itself, The k-ad <e1> and
the automorphism » also satisfy the assumption of Corollary 5,
Define another (k+1)-ary operation g’, a mapping & and

a k-ad <c'1,...,c'k> also satisfying the assumption of Corolla~-
ry 5. Then

(25) gl (xl.‘(+1) = x1’aac'xk+1,
(26) §(x) = x,
(27) c’i = 8 fOI‘ i = 1,.-.,.[1.

The system{&'j¢’> is even a PE-system over (G,g) and (G,f)
is PE~-derived from (G,g). lMoreover, (ef) is an identity k-ad
in (G,g). Thus this s-H-identity k-ad {e,...48)> in (G,f)
correspondses to two distinct s~H-creating (k+1)-groups of
(G,f). This completes the proof of Proposition 5.

As the condition 4 is weaker than H, we have

Corollary 6., The condition A is (s,k)-irregu=-
lar for k>2.

It is worth while to add that Proposition 4 and Corolla~
ry 6 hold for every s = 1,2,..., in patticular for s = 1.
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6. A-systems. The binary case

The problem studied in seotion 5° simplifies considerably
in the binary case (k = 1), We must treat cases n>1 and n =1
separately. Assume first n>1. In this case formula (11),
takin% into account (9) and the fact that the (n-ﬂ -ad

{ e ,8) is inverse to e in (G,f), takes the form

(n=2)
(28) g(xf) = f(xy, ne 189%,)

where e is the neutral element in the group (G,g). Hence we
obtain (cf. Proposition 3 of [4])

Corollary 7. If (G,f) = der (G,g), then
(G,g) = ﬁetg(G,f) where e 1is the neutral element of the
group (G,e).

Note that the above-mentioned binary operation g 1is the
same as that of Proposition 3 of. [4].

Corollary 7 is false for k>1. As is shown in [4], for
every k>1 and an appropriate n there exists an (n+1)-group
H-derived from a (k+1)=-group which is not a retract of this
(n+1)=groups

Corollary 8. The condition & is (n,1)=-regular
for n>1.

Theorem 1 shows that s-A-orsating (k+1)=-groups of a given
{n+1)=-group (G,f) depend on s=-A=-identity k-ads and some auto-
merphisms of (G,f). In the case of k = 1 these groups depend
ohly on n-4-identity elements, while automorphisms appearing
in Theorem 1 are determined by these elements,

Proposition 6, Inan {(n+1)=-group (G,f) any
element ec G is an n-A=-identity element. Then (G,f) =
= der& c( s8), where e 1is the neutral elemgnt of the(irg?p
(G,), if and only if (G,s) = Ret((G,f), 6(x) = f(e,x, & ',8),

(n+1)
c=1f( e ).

Proof. Let e be an arbitrary element(of gG,f)
n=-2
satisfying (9) and (10) (note that the (n-1)-ad { e ,e)> is
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an inverse of e in (G,f). Thus, by Theorem 1 the element e
ia an n-A-identity elemsnt -in (G,f). The second part of the
theorem follows immediately from Theorsm 1,

Now we consider the case n = 1. Formula (11) takes the
form

(21) 8(x3) = £15)(x,d,x,)s

where d is the inverse element of e in (G,f) and e 1is
the neutral sloment in (G,g).
Coroliary 9. If (G,f) = derg.c(G,g), then
1

(Gyg) = Ret;'z(G,f) where d 1is the inverse of e 1in (G,f)
and e 1s tne neutral element of the group (G,g).
Corol :ary 10. The condition A& is (1,1)-regular.
Prepositiou 6 also changes slightly, but the idea of the
rrveof is the sama.
Proposgition Te In a group (G,f) any element
aeG iy a 1-A=identity element. Then {G,f) = der};o(u,g),
whers @ 1is the neutral element of the group (G,g), if and

2)
only if (G,g) = Ret;'Z(G,f), §(x) = f(z)(e,x,d), ¢ =f(e)
where 4 3ig the inverse of e in G(f).
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