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1 Preliminaries

Let T and C be the spaces composed of all 2w=-periodic
complex~valued functions Lebesgue-integrable on the interval
<0,2s> and all 27-periodic complex-valued functions continuous
in<0,2m>, respectively. Introduce in these spaces the usual
norms

2r
IlfIIL=f I£(t)ldt 1if fel,
0

I£llg = sup {I£(t)] : O<t<2r} i1f feC.

Denote by M the set of all bounded functions belonging to L.

Suppose that ¢ is a continuous, convex and strictly in-
creasing function in the interval <0, ), such that ¢ (0) = 0.
Given any function fe i, let us denote by Vz(fja,b) the total
¢=-variation of £ on the interval <a,b>, defined as the
upper bound of the set of non~negative numbers
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=1

Y B (Itx,q) - flxg)])
k=0

corresponding to all partitions B<XH<Xq< ane <xm<b of
<8,b>, The class of all 2m~periodic functions of bounded
¢~variation on <0,27> will be signified by BVg.

Considering a function fe M and a fixed positive inte-
ger n, let us introduce the modulus of variation of f on

the interval <a,b>

ne=1
vin;f,a,b) = sup Z If(x2k+1) - f(xzk)| ’

Th k=0
where the supremum is taken over all partitions T —of <a,b>
into n non~overlapping intervals a< Xy <X S Ky< o0 < Xpp o<
< Xpp.1 <Dbe Write v(03f,a,b) = 0. Some basic properties of
this modulus can be found in [2], For instance, in the case
of fe BVg, the inequality

(1) v(n;f,a,b)sn¢'1 (%V(p(f;a,b)) (ne N)

holds for every interval <a,b>, Denoting by w(6;f) (5>0)
the modulus of continuity of fe C, we have

(2) v(n;f,a,b) <2ne (b;a ; f)

for every integer n>1 and every interval <a,b> (see also [7]);
Given any function fe L, let S, [f] (n+1e N) be the n-th
partial sum of its Fourier series. Denote by E, . [f] and
B, [f] the Euler and the Borel means of this series which are
defined by
n

B [£](x) = — D\ gn=kg 1£](x) (q>0, nele N),
By, q [£](x <1+q>“1;o (8) o™ sy 1]

B, [f](x) = ™ E %, ¥ s, [f](x) (r>0).
k=0
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Approximation of periodic functions 3

In this paper we shall give some esiimates for the rate
of convergence of the above means at the points x at whioh
the finite 1imit

(3) S(£,x) = Mn & [(x+t) + £(x=t)}
t—0

exists, Also, some results conocerning the order of uniform
approximation of continuous functions by the Euler and Borel
means will be deduced.

The symbgls cyr Oyl {Greeely 3 = 0,1,2,00s o0Ccuring below
will mean some positlve absolute constants or positive con-
stants depending only on the indicated parameters G,e..

2. Auxiliary results

Let (Ak(g)), k+1e N, be a sequence of non~negative factors
defined in a set G of positive numbers, with the accumulation
point + o, Consider the Dirichlet kernels

ain(k+-;—)t
Dk(t) = (=co<t<oe, k+teN)
28in 3 t
and write

(0 Kelt) =gy ;) Ac9ID (), Ale) = :;0 MR

Lemma 1. Suppose that ¢ 1is a complex~valued func=-
tion measurable and bounded in an interval <0,8>, 0 <6 <7,
such that ¢ (0) = 0. If, for the kernel defined by (4), there
is

(5) I/\Q(x)‘ <o (0<x<6, 9eG),

K ox

(t)at|<
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then s
Jf Sof  n v(n=1;9,0,8)
plt)Ko(that|< (55— +5 o +
§/n 1
¢ v vik;9,0,k8/n)
+<69 +JT> ; ;2’ (¢>1),
where n = [¢7]=inf {j;g: Je N}.
P ro00 f . Putting tk = k6/n (k=1,2,...,n)’ we have
& n=1 Treq
J ettixginias = Y g(ey) S Kelat +
S/n k=1 )
n=1 tk+1
+ e/5 {¢(t) - ¢(tk)} Ke(t)dt = I, +1I,, say.
k=1 tk
By the Abel transformation,
5 n=2 8
1, = ol [ Kptuiar + ) {olty,0) - o) [ xoteian.
¥y k=1 bt

Consequently, in view of (5}, we get

n=2

1,1 oo, Agle)] + kZ [ plt,q) = ol I Agle 1<
=1

c.n n-2
1
< 6{;—{|¢(t1) - o{0)] + g;; | p(ty,q) = 9lt)] EIT} .

4pplying once more the Abel transformation we obtain

n=3 k

c n
1,02 225 1ot 1-pt0) kZ }:1 903, 0-9te5)] (g7 -5iz) +
=1 j=

ne2
SITMETRIEE
=1
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Approximetion of periodic functions

n-3.

c.n V(k;g),(),tk }
<2 {v(130,0,t4) + L I
¢ { 0]+ ) (k+1)2

k=1

<
= 2 n=1
¢ k=1 k

Since

n=2
1Y v(ki9s0s i) vin-159,0,0) ’

v(in=2;¢0,0,6) } <
n=-1 =

1 : 1 7
IKQ(t)IQWkZﬂ‘) %k(?)lnk(t”ém—éﬁ (0<t<m),

we have
n-1 8/n
llgl =

k=1 O

§/n n=1

<87 [ ) ottty - ols] &

0 k=1

On

6/n( n=2 k

n
Nis

0 | k=1 3=1

=
-

-

[N

n=2

}:. f {?(t‘f“k) -so(tk)} Ko(t+t, )dt|<

+ |th ) - plty )| n1]dté

dt =

ZE: | plt+85) = pt5)] <%" E%T) *

k(k+1) + =1
k=1

n-1

_ Z v{k;p,0,8, 4)  v(n=139,0,t, .) }g

éJTZ v(k;0,0,t,) +7grv(n- ,SOle)

2 n=1
ka2 k

Collecting the results we get our thesis,
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Lemma 2. 1If ¢ is of bounded ¢ ~variation on the
interval <0, 6>, then

n=-1

N1
Z v(lmol.(o?,ms/n)gs Z 1g- (% vgs(@;o’%)) (n=2).

k=1 k=1

Moreover, under the assumptions 11:2 p(t) = ¢(0) = 0 and
-0

o > Lo (F)<om

k=1
we have

n=1

nliiz.k@'1( o 10,9)) - o.

Proof . In view of (1),

n=1 ne1
v(km 0 kd/n) kS <
L tamgpen§ e (1 ulow. %)
$
<2 j 1g-1 < V5930, t)>
é/n
ne1
<2 2%55-1 (.‘%— Vé(ga;(), —ﬁ—)) ’
k=1

and the desired inequality follows. Since ¢ is right-sidely
= t = Y
continuous at the point t = O, we have t}.ig+ Vg(gogo, ) 0

This and the condition (6) imply our assertion by simple cal=-
culation.
Suppose now that ¢ 1is of class CNBV; and write

Q24 (639) = sup{VQ(go;t' Wt )31t - s 6}~ (0<85<oo).
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Approximation of periodic functlons 7
Obviously, 25 1s a non-deoreasing furotics of & and

95'1(Q¢(6;gp))>w(6;g>) when 0<&<oco,

48 known, for an arbitrary ¢ >0 there exists an p>0 such that
Vs (pia,b) <& if |b-aj<p (the proof runs as in [5], Lemma 3).
Consequently,

(7) 1i Q (6 ) = 0,
6——3# glosyp

If, in addition, the function ¢ satisfies the condition

(8) $(2u)< 2§(u) (u>0,2 =const.),
then
(3) Q4l63p) <2 wlosvslp)) (0<6<T),

where w(6;Vs(p)) denotes the modulus of continuity of the
continnous function Vg(go) defined by Vs(p)(t) = V¢(¢;-Jr,t)
(¢>-7), in the interval <=7, 7>,

3. Approximation by the Euler means

Given any function fe 1l and a fixed point x for whioh
the 1limit (3) 1s finite, let us introduce the 2r-periodioc
function ¢  defined by .

f(x+t) + £(x-t) - 2S(f,x) when 0 <|t|< T,
0 when t = 0O,

It is easy to see that

m
Bn,q [£](x) = S({f,x) = 71, jgox(t)'Kn(t)dt,
0

with
n
n =k
Kn(t) = Kn,q(t) = (12a)B 1; (k) qB Dk(t) (3> 0, n+1e N),
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8 P, Pych-Taberska

Our main result concerning the Euler means can be stated
as follows,.

Theorem 1. (i) Suppose that fe L and that, at
a fixed point x, the limit (3) is finite. If there exists a
positive number 5<7 such that f 1s bounded in the interval
<x=8,x+6>, then, for n>2, we have

v(in=139_,0,6)
(1) [By [£1(x) - S(£,x)|< o4(q,0) 1pg000) |

D=1
. v(k;¢x,0,k6/n)
+ cz(q,a) EE; . +

+_l_< 9% + 29 cos & + 1>n/2 o]
4 e + 29 + 1 x

L.

(i1) 1If fe M, then, at every point x at which the fi-
nite limit (3) exists, the estimate (11) with & = 7 remains
valid. Moreover, the last term on the right of this inequali-
ty can be dropped,.

Proof. Let us write

é/n 6 r
(12) By g [£]({x) - S(f,x) = %<f + f +f>gox(t)Kn(t)dt.
&

0 é/n
Since

n
|k, (t)< (1+;)n 1;; (f:) qn‘k(k + -12->sn + ;— )

we have

é/n

o (K (t)at|< 2 6 v(159,,0,2).

0

To estimate the second integral on the right-hand side
of (12), we shall verify that the kernel K satisfies the
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Approximation of periodic functions 9

condition {5) with ¢ = n, 0y = 27(1+q)}+ Indeed, under the
assumptions O <x<6<7w, 4> 0 and ne N, we have

s n [
([Kn(t)dt's(—“;)n Z (1‘:) qP-k {Dk(t)dt
Y (E) e e 3 ()RR

k=0
< T .0 1 n

=

n+l .

n
x(n+1?(”1+q)n kZ=0' <§ﬂ) Q" - x(n+f;T(1+q)n ; (n;‘l)qu-k___

2r{(140)™ - o™ _ 2n(14q)
x(n+1)(14q)®  — B F

Consequently, applying Lemmas 1, we get

é<2ﬂ(;+q) +_72T_\> V‘n-1¥9’x9096) .

&
f <px(t)Kn(t)dt
&/n

n-1
2(14q) 7 vlkigy,0,k0/n)
+< 5 +1T> kZ{' k2 (n>2)o

Finally, let us note that the kernel K  can be represented
in the form

n/2 _. 1
K. (t) =<q2+2q cost+1> s1n<n et"gt)

(g>0)
n 3° + 29 + 1 1 !

28in 5 ¢

3%/

where 8, € {=m,7) is uniquely determined by the following re-
lations

q sin 61: = sin(t - 8;)y sign 8, = sign t, [8;) < |t|< 7
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(see [3], Lemma 1.3). Therefors, if 0 < &<, then

J
2 n/2
9% + 29 cosd + 1
o (t)K (t)dtls—” ( > .
JX n 48 q2 +29 + 1 ”pr”L

Collecting the above results and applying (12) we get the
desired assertions with c,(q,6) <2(1+a)/s+1/2, o,(q,8)<
<2(149) /5 +1436/2m.

Remark 1. Theorem 1 (ii) remains valid for q = 0,
l.e. for the sums B, , [£] = s, [£] (see also [7]).

Supposs now that f 1is of bounded ¢ -variation on the
interval <x-6, x+¢é> and introduce the 2m-periodic functions
93 9y defined by

+ f(x+t) - £f(x+0) when O<|tl<w,

when t = O,
where f(x+0) denote the one-sided limits of f at the point x.
Obviously, in view of (10), gox(t) = go;(t) +go;(t) and both

the functions gp; and ¢ _ are of bounded § -variation on the in-
terval <0,6>. Moreover, for every interval <a,b>c < 0,6> and
all positive integers n, we get

v(ngp_,8,b) < v(njp],8,b) + vinjpr,a,b).

Consequently, Theorem 1, Lemma 2 and the inequality (1) yield
Corollary 1., Lot f£¢L and lot there exist

a positive number S<rs such that f 1is of bounded § -variation

or the interval < x-5,x+6>. Then, for n>2 and 9> 0, we have

2 n/2
IEn,q [£](x) - f(xw);f(x-O) Is%@ +29 oosé‘+1> oyl +

‘q2+2q+1
N1
+o30a,8) ) {;[ a(E vy (o0, 20) + 7' (5 v, (sp;so.'%);)}
ke=1 '
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Approximation of periodic functions 11

Corollarry 20 IffeBVis,then

| By,q ) (x) = 3 {£(x00) + 2lx-0)}|<
n-1

<cyla) ; %{@'1@, Vg;(go;;O.%))i» 93'1<%- Vgs((p;iO,%))}

for every real x and all n>2, 9> 0. Under the assumpticn
(8), the function ¢, defined by (10) is of bounded $-varia-
tion on <0,/>, and

n=1

En.q 1= - £lxs0) ; £x=0) |sc4(q) ; %¢-1<% Vé(sox;o’il;—))'

Remark 2, Takipng in the last estimate ¢ = O and
$(u) = u (u>0), we obtain the result due to Bojanic ([1]).

Remark e If the function ¢ satisfies the con-
dition (6), then the right-hand sides of the inequalities in
Corollaries 1 and 2 converge to zero as n—=oo,

Consldering any function fe C and applying the inequali-
ty (2) we observe that

V(k3prs0,ka/n) < 2ko(m/n5p, ) < 4kol(r/n3f)  (1<k<n)
and

v{n-1 35"x'0-”)
ne1

2
<y V(D30,40,7)< 8w<% 3 f) (n=2).
Moreover,

vk} ,0,k7/n) < vk, ,0,7) < 4v(k;£,0,27m) (1<k<n).

Conseqguently, the following result analogous to Theorem 1
of [2] can be deduced,

Corollary 3 If feC, then, for every ¢>0
and all integers n>2, we have
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12 P. Pych-Taberska

m n-1
1 § k;f,0,2
”En,q [fJ‘f”c$ 05(9) w(%; f) Z ¥+ : v( ;k ) ,
] k=1 ol

m being an arbitrary positive integer not greater than n-2,
From the above inequality it follows at once that all

estimates given in [2] concerning the rate of uniform con-

vergence of sums S [f] remain valid for the sums Bpq [£],

9 >0, For example, we have

1By, q (F]-fllg<cqlalw (£ ;f) log n (n>2, 920),

Clearly, this estimate is more precise than the ones obtained
by Holland and Sahney in [4] and Singh (see [3], p.32, Re=-
mark (2)).
Finally, let us note that Corollary 2 implies
Corollary 4. If fe CNBVg, then

n=1

”En,q [f]-fllcs 07(q) Z %9;-1 (%Qd’f; f)) (n>2, 9>0).
k=1

Hence, in view of (7) and under the assumption (6},
lim B, q[f](x) = f(x) uniformly in x e (=0, ), If, in
»

| ¢ St}

addition, the function ¢ satisfies the condition (8), then,
in view of (9), we get

n-1
I8, [£]-2lg< 2 0g(a) D & 67" (% w(Z; vq;(f)»s
k=1
Jr
<2zc7(q){¢'1 (% vs(£3mm,m) + f %@'1(5%w(t;v¢(f)))at} .
7/n

The last inequality with q = 0, §(u) = u is equivalent to the
Natanson result [6], '
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Approximation of periodic functions 13

4, Approximation by the Borel means

Now, let us consider the Borel means B [f] of an arbitrary
funetion fe L, introduced in Section 1, If at a fixed point x
the finite limit (3) exists, then

B, [£](x) - 5(f,x) = Jlrfgox(tmr(t)dt (r>0),
0

where ¢ is defined by (10) and

e 21 1
- rk -2r sin 5 % sin(r sin t + E't)
Kr(t) =8 T Dk(t) = e
k=0 y 2sin

N[

It is easy to verify that, for every r>0,

K (t)lsr + 3 (mo<t<eo),

2
| Ka8)] < F5 g-2r{s/m) (0<8 < t<m)

and

fl (0<xgbg),

Therefore, applying Lemma 1 and arguing similarly as in the

proof of Theorem 1 we obtain the following result.
Theorenmn 2 Let fe L and let at a fixed point x

the limit (3) be finite, If there exists a positive number

S < such that f is bounded in the interval <x-§,x+6&>, then,

for r>2, we have

v{n=1;9_,0,6)
IBr[f](x) - S(f,x)lé;(g + %) n_f +

ne1
V(k,g) .0 kd/n) 1 -2 (6/ )2 "
+(3 ?> Z g e T il
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where n = [r]. In the case & = 7, the last term on the right-
-hand side of the above inequality oan be omitted.

From Theorem 2 some estimates for the rate of polntwilse
and uniform convergence of the Borel means can be deduced as
in Section 3. We shall present a few of them,

Corollary 5. Suppose that fe BVg and that the
condition (6) is fulfilled. Then,

|3, [£](x) - 3 {2xe0) + 2lxe0)}|<

n-1
< 3 Z %{ g (% Vg (¢;;0.{')>+ ! (% Vs (9230, %))}
k=1

for every xe{=oco,00) and 8ll r>2 (n = [r]), Hence

lim B, tHx) = {f(x+0) + f(x-O)}.

I —=o00

If fe CNBVg, then

n=1

2. [£] - f]lcs 62 Z ' (— ({ : f) (r>2)

k=1
and consequently, 1lim B, [£](x) = f(x), uniformly in
=00

xe(-°°,°°).
Corollary 6, If feC, then

m ne=1
i) - fgessfo @) S g0 I wtumoss)
k=1 k=m+1

where n = [rl and m is an arbitrary positive integer less
than n-2, In particular,

B, [£] - f||Csc8w(%; f) log ¢ (r>2).
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Approximation of periodic functions 15

Moreover,
olr/T3f) v (230,20
ARE AL T
I8, [£]- £llg<oq { log g dt  (r>2),

1
1 o r
provided that f£e CN BV; and % log Frgy dt< (see [2]).
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