

Julian Klukowski, Maciej Zworski

ON THE REPRESENTATION OF P_0 -LATTICES BEING P-ALGEBRAS*Dedicated to the memory
of Professor Roman Sikorski*

The notion of a P_0 -lattice of finite order was introduced first by T. Traczyk [2] in 1963. G. Epstein and A. Horn [1] used this concept for some new generalizations of Post algebras. They discovered P_1 - and P_2 -lattices in this way.

On the other hand T. Traczyk and W. Zarębski [3] and W. Zarębski [4] introduced generalized P_0 -, P_1 - and P_2 -lattices of order ω^+ .

In the present paper P_0 -lattices which are P-algebras (called P_0 P-lattices) will be examined. The theorem about the monotonic representation of P_0 P-lattices is given in section 2. In section 3 it is shown that a P_0 P-lattice L generates the Boolean algebra B^{n-1} for certain n if and only if L is a Post algebra.

1. Preliminaries

Let L be a distributive lattice with the least element 0 and the greatest element 1; $x \cup y$ and xy denote the join and the meet of elements $x, y \in L$. The center B of L is the Boolean sublattice of all complemented elements of L. The complement of $b \in B$ is denoted by \bar{b} . The greatest element $z \in L$ ($z \in B$)

such that $xz \leq y$, if it exists, is denoted by $x \rightarrow y$ ($x \Rightarrow y$). If $x \rightarrow y$ ($x \Rightarrow y$) exists for any $x, y \in L$ then L is called a Heyting algebra (a B-algebra). In particular $1 \Rightarrow x$ is denoted by $!x$. The least Boolean element greater than x , if it exists, is denoted by $x!$; A B-algebra is called a P-algebra if $(x \Rightarrow y \cup y \Rightarrow x) = 1$ or, equivalently, if

$$(1) \quad z \Rightarrow (x \cup y) = (z \Rightarrow x) \cup (z \Rightarrow y)$$

is satisfied in it. If there exists an ascending sequence

$$(2) \quad 0 = e_0 \leq e_1 \leq \dots \leq e_{n-1} = 1$$

where n is an integer ≥ 2 such that every $x \in L$ can be written in the form

$$(3) \quad x = \bigcup_{i=1}^{n-1} b_i e_i, \quad b_i \in B$$

then L is a P_0 -lattice. In this case we write $L = (e_0, \dots, e_{n-1}, B)$. The chain (2) whose union with the center B generates L is called the chain base for L . The order of L is the smallest number of elements in a chain base of L .

Every $x \in L = (e_0, \dots, e_{n-1}, B)$ has a monotonic representation

$$(4) \quad x = \bigcup_{i=1}^{n-1} x_i e_i, \quad x_i \in B, \quad x_1 \geq x_2 \geq \dots \geq x_{n-1}.$$

A P_0 -lattice $L = (e_0, \dots, e_{n-1}, B)$ which is a Heyting algebra and satisfies: $(e_{i+1} \rightarrow e_i) = e_i$ for $i = 0, 1, \dots, n-2$ is called a P_1 -algebra.

A P_1 -algebra $L = (e_0, \dots, e_{n-1}, B)$ such that $e_i \Rightarrow x$ exists for every $x \in L$, $i = 0, 1, \dots, n-1$, is called a P_2 -algebra.

2. The monotonic representation in a $P_0 P$ -lattice

Notice that if a P_0 -lattice L has the property that $e_i \Rightarrow e_j$ exists for every i, j , then L is a P-algebra and a Heyting algebra (see [1] th.3.1 and th.4.2).

Lemma 2.1. Let L be a P_0 -lattice with the center B . Then

- (i) $(x \cup y) \Rightarrow z = (x \Rightarrow z)(y \Rightarrow z)$
- (ii) $(z \Rightarrow xy) = (z \Rightarrow x)(z \Rightarrow y)$
- (iii) $bx \Rightarrow (c \cup y) = \bar{b} \cup c \cup (x \Rightarrow y)$ for $b, c \in B$
- (iv) $(xy \Rightarrow z) = (x \Rightarrow z) \cup (y \Rightarrow z)$
- (v) $(x \Rightarrow y)(y \Rightarrow z) \leq (x \Rightarrow z)$
- (vi) $x! = \overline{x \Rightarrow 0}$
- (vii) $(x \cup y)! = x! \cup y!; (xy)! = x!y!$

Proof. To prove (i), (iii), (vii) it suffices to observe that those properties hold in B -algebras (see [1]).

We now prove (iv). Let $x = \bigcup_{i=1}^{n-1} x_i e_i$ and $y = \bigcup_{i=1}^{n-1} y_i e_i$ be monotonic representations of x and y . It is known that $xy = \bigcup_{i=1}^{n-1} x_i y_i e_i$ is a monotonic representation of xy . By (i) and (iii) we obtain

$$\begin{aligned} xy \Rightarrow z &= \left(\bigcup_{i=1}^{n-1} x_i y_i e_i \right) \Rightarrow z = \bigcap_{i=1}^{n-1} (x_i y_i e_i \Rightarrow z) = \\ &= \bigcap_{j=1}^{n-1} (\overline{x_i y_i} \cup (e_i \Rightarrow z)) = \bigcap_{j=1}^{n-1} (\overline{x_i} \cup \overline{y_i} \cup (e_i \Rightarrow z)). \end{aligned}$$

Easy calculation shows that if $a_1 \leq \dots \leq a_{n-1}$ and $c_1 \geq \dots \geq c_{n-1}$, then $\bigcap_{i=1}^{n-1} (a_i \cup c_i) = a_1 \cup \bigcup_{i=2}^{n-1} a_i c_{i-1} \cup c_{n-1}$. If, in addition, $b_1 \leq \dots \leq b_{n-1}$ then

$$\begin{aligned} \bigcap_{i=1}^{n-1} (a_i \cup b_i \cup c_i) &= a_1 \cup b_1 \cup \bigcup_{i=2}^{n-1} ((a_i \cup b_i) c_i) \cup c_{n-1} = \\ &= \bigcap_{i=1}^{n-1} (a_i \cup c_i) \cup \bigcap_{j=1}^{n-1} (b_i \cup c_i). \end{aligned}$$

Therefore

$$\begin{aligned}
 xy \Rightarrow z &= \bigcap_{i=1}^{n-1} (\bar{x}_i \cup \bar{y}_i \cup (e_i \Rightarrow z)) = \\
 &= \bigcap_{i=1}^{n-1} (\bar{x}_i \cup (e_i \Rightarrow z)) \cup \bigcap_{i=1}^{n-1} (\bar{y}_i \cup (e_i \Rightarrow z)) = (x \Rightarrow z) \cup (y \Rightarrow z)
 \end{aligned}$$

because $\bar{x}_j \leq \bar{x}_k$, $\bar{y}_j \leq \bar{y}_k$ and $(e_j \Rightarrow z) \geq (e_k \Rightarrow z)$ for $j \leq k$.

For (v) we have: if $a \leq (x \Rightarrow y)(y \Rightarrow z)$ then $ax \leq y$ and $ay \leq z$. Hence $ax \leq ay \leq z$, thus $a \leq (x \Rightarrow z)$.

To prove (vi) note that $x(x \Rightarrow 0) = 0$ and thus $x \leq \overline{x \Rightarrow 0}$. If $x \leq b$ then $\bar{bx} = 0$ for $b \in B$, so $\bar{b} \leq (x \Rightarrow 0)$ and $\overline{x \Rightarrow 0} \leq b$.

(vii) follows directly from (vi), (i) and (iv).

Lemma 2.2. If $L = (e_0, \dots, e_{n-1}, B)$ is a $P_0 P$ -lattice, then

$$(i) \quad (x \Rightarrow 0)(e_i \Rightarrow x) \leq (y \Rightarrow 0) \cup (e_i \Rightarrow y)$$

$$(ii) \quad x!(e_i \Rightarrow y) \cup y!(e_i \Rightarrow x) \leq x!(e_i \Rightarrow x) \cup y!(e_i \Rightarrow y)$$

for every $x, y \in L$ and $i = 0, 1, \dots, n-1$.

Proof. By Lemma 2.1 (v) we obtain

$$(e_i \Rightarrow x)(x \Rightarrow 0) \leq (e_i \Rightarrow 0) \leq (e_i \Rightarrow y) \leq (y \Rightarrow 0) \cup (e_i \Rightarrow y).$$

$$\begin{aligned}
 (ii) \quad & (x!(e_i \Rightarrow y) \cup y!(e_i \Rightarrow x))(\overline{x!(e_i \Rightarrow x) \cup y!(e_i \Rightarrow y)}) = \\
 & = (x!(e_i \Rightarrow y) \cup y!(e_i \Rightarrow x))(\bar{x} \cup \overline{e_i \Rightarrow x})(\bar{y} \cup \overline{e_i \Rightarrow y}) = \\
 & = x!(e_i \Rightarrow y)(\overline{e_i \Rightarrow x})\bar{y} \cup y!(e_i \Rightarrow x)\bar{x}(\overline{e_i \Rightarrow y}) = 0.
 \end{aligned}$$

The last equality holds by (i).

Theorem 2.3. Let $L = (e_0, \dots, e_{n-1}, B)$ be a $P_0 P$ -lattice. Then every $x \in L$ can be written in the form

$$(*) \quad x = \bigcup_{i=1}^{n-1} D_i(x)e_i, \quad \text{where } D_i(x) = x!(e_i \Rightarrow x), \quad i=1, 2, \dots, n-1$$

and the following properties hold:

$$(i) \quad D_1(x) \geq D_2(x) \geq \dots \geq D_{n-1}(x)$$

$$(ii) \quad D_1(x \cup y) = D_1(x) \cup D_1(y)$$

$$(iii) \quad D_1(xy) = D_1(x)D_1(y)$$

$$(iv) \quad D_1(b) = b \quad \text{for } b \in B$$

$$(v) \quad D_1(e_j) = e_j! \text{ for } i \leq j \text{ and } D_1(e_j) = e_j!(e_i \Rightarrow e_j) \text{ for } i > j.$$

$$\text{In particular } D_{n-1}(e_j) = !e_j.$$

P r o o f. Let $x = \bigcup_{i=1}^{n-1} x_i e_i$ be a monotonic representation of x . Of course $x_i e_i \leq x$ for $i = 1, 2, \dots, n-1$. Thus $x_i \leq (e_i \Rightarrow x)$ and $x_i e_i \leq (e_i \Rightarrow x) e_i$. Therefore

$$x = \bigcup_{i=1}^{n-1} x_i e_i \leq \bigcup_{i=1}^{n-1} (e_i \Rightarrow x) e_i$$

and

$$x = (x!) x \leq x! \bigcup_{i=1}^{n-1} (e_i \Rightarrow x) e_i = \bigcup_{i=1}^{n-1} D_i(x) e_i.$$

On the other hand $(e_i \Rightarrow x) e_i \leq x$. Thus

$$\begin{aligned} & \bigcup_{i=1}^{n-1} (e_i \Rightarrow x) e_i \leq x \quad \text{and} \quad \bigcup_{i=1}^{n-1} D_i(x) e_i = \\ & = \bigcup_{i=1}^{n-1} x!(e_i \Rightarrow x) e_i \leq x \quad x! = x. \end{aligned}$$

$$\text{Therefore } x = \bigcup_{i=1}^{n-1} D_i(x) e_i.$$

It is easy to see that (i), (iv) and (v) hold. It remains to show (ii) and (iii).

We prove (ii). By Lemma 2.1 (vii), the definition of a P-algebra (1) and Lemma 2.2 we obtain

$$\begin{aligned} D_1(x \cup y) &= (x \cup y)!(e_1 \Rightarrow (x \cup y)) = (x! \cup y!)((e_1 \Rightarrow x) \cup (e_1 \Rightarrow y)) = \\ &= x!(e_1 \Rightarrow x) \cup y!(e_1 \Rightarrow y) \cup x!(e_1 \Rightarrow y) \cup y!(e_1 \Rightarrow x) = \\ &= x!(e_1 \Rightarrow x) \cup y!(e_1 \Rightarrow y) = D_1(x) \cup D_1(y). \end{aligned}$$

Now, we prove (iii), by Lemma 2.1 (ii), (vii) we obtain

$$D_1(xy) = (xy)!(e_1 \Rightarrow xy) = x!y!(e_1 \Rightarrow x)(e_1 \Rightarrow y) = D_1(x)D_1(y)$$

and this completes the proof.

Theorem 2.4. Let $L = (e_0, \dots, e_{n-1}, B)$ be a P_0 -P-lattice and B^{n-1} be a direct power of a Boolean algebra B . Then there exists a $(0,1)$ -lattice monomorphism from L to B^{n-1} .

Proof. If $x = \bigcup_{i=1}^{n-1} D_1(x)e_i$ is a representation $(*)$ of element x , then we define $h : L \rightarrow B^{n-1}$ by $h(x) = (D_1(x), D_2(x), \dots, D_{n-1}(x))$. By Theorem 2.3 we obtain $h(x \cup y) = h(x) \cup h(y)$, $h(xy) = h(x)h(y)$, $h(0) = [0]$, $h(1) = [1]$ where $[b]$ stands for (b, b, \dots, b) for $b \in B$. Obviously $h(\bar{b}) = [\bar{b}]$.

By this theorem we can consider every P_0 -P-lattice as the sublattice of some monotonic elements of B^{n-1} . $((b_1, b_2, \dots, b_{n-1})$ is said to be a monotonic element if $b_1 \geq b_2 \geq \dots \geq b_{n-1}$).

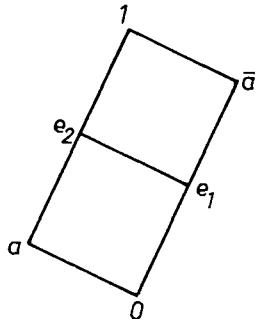
Observe that in a Post algebra, which is in particular a P_0 -P-lattice, the representation $(*)$ is the usual monotonic representation of element in a Post algebra, which is known to be unique.

The representation $x = \bigcup_{i=1}^{n-1} x_i e_i$ is said to be the highest monotonic representation of x , provided that $x_i \geq y_i$ for any monotonic representation $x = \bigcup_{i=1}^{n-1} y_i e_i$. If the highest monotonic representation exists, then x_i is denoted by $D_1^h(x)$. From [1] it is known that in P_0 -P-lattices the highest monotonic

representation exists and $D_1^h(x \cup y) = D_1^h(x) \cup D_1^h(y)$, $D_1^h(xy) = D_1^h(x)D_1^h(y)$, but $D_1^h(b)$ is not equal to b in general. If P_0 -lattice is a P_2 -lattice (the condition $(e_{i+1} \rightarrow e_i) = e_i$ is satisfied) then $D_1^h(b) = b$ (see [1] and [4]). It is also known that in every P_0 -lattice of order m there exists a unique chain base f_0, f_1, \dots, f_{m-1} such that L is a P_2 -lattice, so we can introduce the highest monotonic representation in this base which satisfies $D_1^h(b) = b$ for $b \in B$.

Anyway, the advantage of representation (*) is that for a given P_0 -lattice $L = (e_0, \dots, e_{n-1}, B)$, we can directly represent elements in B^{n-1} such that $D_1^h(b) = b$ for $b \in B$, even if the unique base f_0, f_1, \dots, f_{m-1} and the order of L are unknown.

Example



This P_0 -lattice is not a P_2 -lattice because of $\bar{a} \leq e_2$, but it is not true that $\bar{a} \leq e_1$. Observe that in the highest representation $\bar{a} \rightarrow (1, \bar{a}, \bar{a})$ so $D_1^h(\bar{a}) = 1$. By representation (*) we obtain $b \rightarrow (b, b, b)$ for $b \in B = \{0, 1, a, \bar{a}\}$ and $e_1 \rightarrow (\bar{a}, \bar{a}, 0)$, $e_2 \rightarrow (1, 1, a)$.

If we find the base of this P_0 -lattice, such that P_0 -lattice will be a P_2 -lattice, we will get $f_0 = 0$, $f_1 = e_2$, $f_2 = 1$. Now, in the highest representation we obtain

$$b \rightarrow (b, b) \quad \text{for} \quad b \in B, \quad e_1 \rightarrow (\bar{a}, 0) \quad e_2 \rightarrow (1, a).$$

3. The Boolean algebra generated by P_0 -P-lattice

Lemma 3.1. A P_0 -P-lattice $L = (e_0, \dots, e_{n-1}, B)$ is a Post algebra of order n if and only if $D_i(e_j) = 1$ for $i \leq j$ and $D_i(e_j) = 0$ for $i > j$.

Proof. If a P_0 -P-lattice L is a Post algebra of order n then $(e_i \Rightarrow e_j) = 0$ for $i > j$ (see [2]) and in particular $(e_i \Rightarrow 0) = 0$. Then $e_i! = 1$. Obviously $(e_i \Rightarrow e_j) = 1$ for $i \leq j$, so $D_i(e_j) = e_j!$ and $(e_i \Rightarrow e_j)$ is equal to 1 for $i \leq j$ and to 0 for $i > j$. If a P_0 -P-lattice is not a Post algebra of order n , then there exists some i and $0 \neq b \in B$ such that $(e_i \Rightarrow e_{i-1}) = b$. Hence $b e_i \leq e_{i-1}$ and by th.2.4 $D_i(b) D_i(e_i) \leq D_i(e_{i-1})$ so $b D_i(e_i) \leq D_i(e_{i-1})$. Therefore, either $D_i(e_i) < 1$ or $D_i(e_i) = 1$ and $D_i(e_{i-1}) \geq b \neq 0$.

Lemma 3.2. The only chain $E_n: e_0 = [0] \leq e_1 \leq \dots \leq e_{n-1} = [1]$ of monotonic elements $\in B^{n-1}$ which together with the diagonal of B^{n-1} (denoted by $[B]$) generates B^{n-1} , is the chain $F_n: e_0 = [0], e_1 = (1, 0, \dots, 0, 0), \dots, e_{n-2} = (1, 1, \dots, 1, 0), e_{n-1} = [1]$.

Proof. Observe that $(0, \dots, 0, b_i, 0, \dots, 0) = [b] \overline{e_{i-1}} e_i$ for $i = 1, 2, \dots, n-1$, so $F_n \cup [B]$ generates B^{n-1} . Suppose now that $E_n \cup [B]$ generates B^{n-1} . Then every elements $x \in B^{n-1}$ can be written in the form

$$(1) \quad x = \bigcup_{i,j=0}^{n-1} e_i \overline{e_j} [b_{ij}] = \bigcup_{i>j} e_i \overline{e_j} [b_{ij}],$$

$$i, j \in \{0, 1, \dots, n-1\}.$$

In particular we get an element $x = (1, \dots, 1, 0)$ in this form.

Suppose that $e_i = (e_i^1, \dots, e_i^{n-1})$ for $i = 0, 1, \dots, n-1$. For the last two coordinates we obtain

$$\bigcup_{i>j} e_i^{n-2} \overline{e_j^{n-2}} b_{ij} = 1,$$

$$\bigcup_{i>j} e_i^{n-1} \overline{e_j^{n-1}} b_{ij} = 0.$$

From the second equality we get

$$\bigcup_{j=0}^{n-2} \overline{e_j^{n-1}} b_{n-1j} = 0, \quad \text{so} \quad \bigcup_{j=0}^{n-2} \overline{e_j^{n-2}} b_{n-1j} = 0.$$

Then $1 \leq \bigcup_{i>j}^{n-2} e_i^{n-2} \overline{e_j^{n-2}} b_{ij} \leq e_{n-2}^{n-2} \bigcup_{i>j}^{n-2} b_{ij}$ because $e_i^{n-2} \leq e_{n-2}^{n-2}$
for $i = 1, 2, \dots, n-2$ and $\overline{e_j^{n-2}} \leq \overline{e_0^{n-2}} = 1$ for $j = 0, 1, \dots, n-3$, so

$$(2) \quad e_{n-2}^{n-2} = 1 \quad \text{and} \quad e_{n-2} = (1, 1, \dots, 1, e_{n-2}^{n-1}).$$

Observe that if $E_n \cup [B]$ generates B^{n-1} , then obviously
 $E'_n : e'_i = (e_1^1, \dots, e_i^{n-2})$, $i = 0, \dots, n-1$, with the diagonal
of B^{n-2} generates B^{n-2} . But by (2) $e'_{n-2} = e'_{n-1} = (1, 1, \dots, 1)$,
so the chain $e'_0, e'_1, \dots, e'_{n-2}$ is the chain E_{n-1} .

Applying (2) for E_{n-1} and so on, we obtain

$$e_0 = (0, 0, \dots, 0, 0)$$

$$e_1 = (1, e_1^2, \dots, e_1^{n-2}, e_1^{n-1})$$

$$(3) \quad E_n : \dots \dots \dots \dots \dots \dots$$

$$e_{n-2} = (1, 1, \dots, 1, e_{n-2}^{n-1})$$

$$e_{n-1} = (1, 1, \dots, 1, 1).$$

For $n = 3$, let $E_3 = \{e_0 = (0, 0), e_1 = (1, e_1^2), e_2 = (1, 1)\}$ be
the chain such that $E_3 \cup [B]$ generates B^2 . Then an element
 $x = (0, 1) \in B^2$ can be written in the form

$$\bigcup_{i>j} e_i \bar{e}_j [b_{ij}] = (0, 1), \quad i, j \in \{0, 1, 2\}$$

Hence

$$b_{20} \cup b_{10} = 0,$$

$$b_{20} \cup \overline{e_1^2} b_{21} \cup \overline{e_1^2} b_{10} = 1.$$

Thus $\overline{e_1^2} b_{21} = 1$ and $\overline{e_1^2} = 1$, so $e_1^2 = 0$ and $E_3 = F_3$. Suppose that for $k \geq 3$ the only chain E_k , such that $E_k \cup [B]$ generates B^{k-1} is F_k . By (3), the chain E_{k+1} has the form

$$e_0 = (0, 0, \dots, 0, 0)$$

$$e_1 = (1, e_1^2, \dots, e_1^{k-1}, e_1^k)$$

$$(4) \quad E_{k+1} : \dots \dots \dots \dots \dots \dots$$

$$e_{k-1} = (1, 1, \dots, 1, e_{k-1}^k)$$

$$e_k = (1, 1, \dots, 1, 1).$$

If $E_{k+1} \cup [B]$ generates B^k then $E'_{k+1} = E_k$ with diagonal of B^{k-1} generates B^{k-1} .

By the inductive assumption $E_k = F_k$, so

$$e_0 = (0, 0, \dots, 0, 0)$$

$$e_1 = (1, 0, \dots, 0, 0)$$

$$(5) \quad E_{k+1} = \dots \dots \dots \dots \dots \dots$$

$$e_{k-1} = (1, 1, \dots, 1, e_{k-1}^k)$$

$$e_k = (1, 1, \dots, 1, 1).$$

Express the element $x = (0, 0, \dots, 0, 1) \in B^k$ in the form

$$\bigcup_{i>j} e_i \overline{e_j} [b_{ij}] = (0, 0, \dots, 0, 1), \quad i, j \in \{0, 1, \dots, k\}.$$

For the last two coordinates we obtain

$$\bigcup_{j=0}^{k-2} b_{k-1,j} \cup \bigcup_{j=0}^{k-2} b_{kj} = 0$$

and

$$e_{k-1}^k \bigcup_{j=0}^{k-2} b_{k-1,j} \cup \bigcup_{j=0}^{k-2} b_{kj} \cup \overline{e_{k-1}^k} b_{kk-1} = 1.$$

Hence $\overline{e_{k-1}^k} = 1$ and $e_{k-1}^k = 0$, so $E_{k+1} = F_{k+1}$ which completes the proof.

Theorem 3.3. A P_0 -P-lattice $L = (e_0, e_1, \dots, e_{n-1}, B)$ generates B^{n-1} if and only if L is a Post algebra. (It is understood that L is a $(0,1)$ -sublattice of B^{n-1} as in Theorem 2.4).

Proof. If L is a Post algebra, then by Lemma 3.1 the constants e_1, \dots, e_{n-1} must be as follows $e_1 = (1, 0, \dots, 0), \dots, e_{n-1} = (1, 1, \dots, 1)$ and $B = [B]$ of course. Then by Lemma 3.2 L generates B^{n-1} . On the other hand, if L is not any Post algebra, then by Lemma 3.1 there exists the constant $e_i \neq (1, \dots, 1, \underbrace{0 \dots 0}_i)$.

Then by Lemma 3.2 L does not generate B^{n-1} .

REFERENCES

- [1] C. Epstein, A. Horn: Chain based lattices, Pacific J. Math. 55 (1974) 65-84.
- [2] T. Traczyk: Axioms and some properties of Post algebras, Colloq. Math. 10 (1963) 193-209.
- [3] T. Traczyk, W. Zarębski: Generalized P_0 -lattices of order ω^+ , ibidem 34 (1976) 171-182.

[4] W. Zarębski: Generalized P_1 - and P_2 -lattices
of order ω^+ , *ibidem* 37 (1977), 1-10.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW,
00-661 WARSZAWA;

ADDRESS OF THE SECOND COAUTHOR: 4 AMES St., CAMBRIDGE MA,
02 139 U.S.A.

Received May 30, 1984.