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The notion of a Po-lattice of finite order was introduced
first by T. Traozyk [2] in 1963. G. Epstein and 4. Horn [1]
used this concept for some new generalizations of Post alge-~
bras. They discovered P1- and Pz-lattioes in this way.

On the other hand T, Traczyk and W, Zargbski [3] and
W. Zarebski [4] introduced generalized Po" P1- and P2-latti-
ces of order w',

In the present paper Po-latticea which are P-algebras
(callad POP-lattices) will be examined. The theorem about the
monotonic representation of P P-~lattices is given in section 2,
In section 3 it is shown that a P P-lattice L generates the
Boolean algebra B -1 for certain n if and only if L is a

Post algebra.

1 Preliminaries

Let L be a distributive lattice with the least element O
and the greatest element 13 xUy and xy denote the join and
the meet of elements x,yc L. The center B of L is the Boolean
sublattice of 8ll complemented elements of L., The complement
of beB is denoted by b, The greatest element z ¢ L(2 ¢ B)
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2 Jeo Klukowski, M, Zworskil

such that xs<y, if it exists, is denoted by x —y(x=>y).
If X —~y(x==y) exists for any x,ye L then L is called

a Heyting algebra (a B-algebra). In particular 1=> x is de
noted by !x., The least Boolean element greater than x, if

it exists, is denoted by x!; A B~algebra is ocalled a P-algebra
if (x=>yUy =>x) = 1 or, equivalently, if

(1) z2==(xUy) = (z2=x)U (z2=73)

ig satisfied in it, If there exists an ascending sequence

(2) 0=e,<e0,<eee<0 = 1

o n=1

where n is an integer >2 such that every xe¢ L can be written
in the form
n-1
(3) X = U bgeq, by € B
i=1
then L is a Po-lattice. In this case we write L =
= (eo,...,en;1,B). The cheain (2) whose union with the center
B generates L is called the chain base for L. The order of L
is the smallest number of elements in a chain base of L.
Every xeL = (e ,ec0y0,_4,B) has a monotonic representa-
tion
n=1
(4) X = U Xi855 X3€ By Xy>Xp> 002Xy g0
i=1
A P -lattice L = (eo,...,en_1,B) whioch is a Heyting alge-
bra and satisfies: (°i+1'_"°i) = ey for i=0,1,...,n-2 is
called a P1-algebra.
4 P,-algebra L = (eo,...,en_1,3) such that e;=>x exists
for every xel, i = 0Oy,1,440,0=1, is called a P2-algebra.

2. The monctonic representation in a POP-lattice
Notics that if a Po-lattice L has the property that
e =—>e exists for every i,j, then 1L is a8 P-algebra and a
Heyting algebra (see [1] the3.1 and th.4.2).
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Lemma 2.1, Let L be a POP-lattica with the cen-
ter B, Then

(1) (xU3) =12 = (x=>2)(y=—>13)

(11) (2 =>xy) = (8=—=x)(2=—>y)

(111) bx==>(0Uy) = BUeU(x=>3) for b,0eB
(iv) (xy=>2) = (x==2)U (y=>2)

(v) (x—>y)(y—=2) < (x —>32)

(vi) x! = x=—=0

(vii) (xUuy)! = xtUyl; (x3)! = x!y!

Proof. To prove (i), (i1), (1iii) it suffices to

observe that those properties hold1in B-algebras (s:e (11).
Ne=
We now prove (iv). Let x = U xe; and 3 = iL) yi04
=1

be monotonic representations of x and y. It 1s known that

D=1
Xy = iLJ x;7;64 18 a monotonic representation of xy. By (i)
=1

and (iii) we obtain

n-1 n-1
Xy =>32 =<U xiyi°1> =g = m (xiyieigz) =

i=1 i=1
n-1 n-1
= () (x7; Uley==2)) = [ | (XU, Ule; =>2)).
j=1 321

EBasy calculation shows that if 84S oee <8 4 and 04> ece >Cp
n=-1
then m (aiU ) = a1U1k=J2 a;65_qUc, 4o If, in addition,

by< ees s b, _q then

n=-1 n=-1
() (ayUbyUey) = agub U | ) ((a3Uby)e )Uc, , =
i=1 i=2
n-1 n-1
i=1 3=1
- 105 =

1



4 _ Je Klukowski, M. Zworski

Therefors
n=-1
Xy=—>2 = ﬂ (x4 U i Uley=>13)) =
i=1
n=1 n=-1

= ﬂ (iiU(ei=>z))U ﬂ (iiU (ei=>z)) = (x==2) U (y=—=>2)
i=1 i=1

because ijs Xps ijs ¥y and (ej=>z)> (°k=' z) for j<k.
For (v) we have: if a<(x—=y)(y—>2) then ax<y and
ay< z, Hence ax<ay<z, thus a<(x—=>2),
To prove (vi) note that x(x ==0) = 0 and thus x<x =0,
If x<b then bx = 0 for be B, s0 bs (x==>0) and x—=0<Db,
(vii) follows directly from (vi), (i) and (iv).
Lemma 2.2 IfL-= (°o""’°n-1’B) is a P P-latti-
ce, then

(1) (x=0){e;==x)<(y=>0)U (e;=>7)

(11) x1(ey==7)U yiey =>x)<xl(eg —>x)U y!{ey—=17)

for every x,y L and i = 0,1,e0e,n=1.
Proof (i) By Lemma 2.1 (v) we obtain

_(ei=>x)(x==0)s (ei=0)é (ei=>y)$ (y==>0})U (eiﬁy).

(i1) (x!(ei:y)u y!(ei=x))(xl(ei=x)u yiey=—>y)) =

(xt(ej==y)U y!{eg=—=x))}(xIU ei=x)(§!_u 6 ==y) =

xl(ei=>;y)(ez=>x)§!u y!(ei—-——:,x)i_!(ei———>y) = O,

The last equality holds by (i).
Theorem 2.3, LetlLs= (eo....,en_1,B) be a
P, P-lattice, Then every xe¢ L oan be written in the form
n=-1
{(*) x = U Dy(x)ey, where D;(x) = x!{e3==>x), i=1,2,.0.,n0-1
i=1
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and the following properties hold:

(1) Dy(x) >Dy(x)> eee>Dy_,(x)
(i1) Dy(xUy) = Dy(x)UDy(y)
(111) Dy(xy) = Dy(x)Dy(y)
(iv) D;(b) = b for beB

{v) -Di(ej) = ojl for i< J and D:l.“;j) = ejl(ei:ej) for i>j.

In partioular Dn-1(°j) = log.

n-1
Proof. Letxa=|) x;84 be a monotoric representa-
i=1
tion of x. Of course Xjey<x for 1 = 1,2,404,n~1, Thus

X< (ei=> x) and xi84< (ei: x)ei. Therefore

n~1 n=1
X = U xieisU (6y —>x)eoy
i=1 ‘ i=1
and
n~1 n=1
r= (x!)x<x! U (o= x)oy = U Dy(x)ey.
i=1 i=1

On the othsr hand (ei:x)eis Xo Thus

n=-1 n-1
U (e;j==x)oy<x and U Dy(x)ey =
i=1 i=1
n-1
= U x!(ei:x)eisx Xl = Xo
i=1
n-1

Therefore x = iLJ D;(x)ey.
=1

It is easy to see that (i), (iv) and (v) hold. It remains
to show (ii) and (iii).
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We prove (ii), By Lemma 2.1 (vii), the definition of
a P=algebra (1) and Lemma 2.2 we obtaln

Dy(xuyl=(xuylt{ey=>(xU7)) = (xtUF!){{ey =>x)U(e; = y)i=
= xl{ey=>x)U yHey=>7)U xl{e;=>3)U yl{eg—=x) =
= xl{ey =>x)U yl(ey==7) = Dy(x)uU Dy(y]).

Now, we prove (iii), by Lemma 2.1 (ii), (vii) we obtain

Dy(xy) = (xy)!{ey =>xy) = xI1yl{ey==>x)(e;=>7) =Dy (x)D;(y)

and this completss the proof.
Theorem 2,4, Lot L = (°o""'°n-1'B) be a
POP-lattioe and Bn"1 be & direct power of a Boolean algebra B.

Then there exists a (0.1)-1?ttice monomorphism from L to -1,
n

Proof, Ifxe= :LL) Dy(x)s; is a representation (x)
=1

of element x, then we define h : 1 — 321 by h(x) =

= (D1(x),D2(x),..., (x)). By Theorem 2.3 we obtain

h(xUy) = A(x) Uh(y), h(xy) h(x)h{y), h(0) = [0} h(1) = [1]

whers [b] stands for (b,b,...,b) for be B, Obviously h(B) =[b].
By this theorem we can consider every POP-lattice as the

sublattice of some monotonio elesments of Bn"1. ((b1,b2,...

eseyb ) is said to be a monotonic element if b,> b,> .o

P Je

Obse;ve that in a Post algebra, which is in particular
a POP—lattice, the representation (x) is the usual monotonic
representation of element in a Post algebra, which is known
to be unique.

n=1
The representation x = () x;04 is sald to be the highest
i=1
monotonic representation of x, provided that X274 for any
n=-1

mopotonic rapresentation X = U Ji84e If the highest monoto-

nio representation exlsts, then Xy is denoted by Dh(x). From
[1] it is known that in P'P-lattioes the highaest monotonie
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representation exists and D?(xt)y) = Dﬁ(x)u D?(y). D?(xy) =

= Dg(x)Dg(y), but D?(b) is not egual to b 1in gensrasl, If
P P-lattice is a P,-lattice (the condition (°i+1'—*‘°i) = 8y

is satisfied) then DI(b) = b (see [1] and [4]). It is also
known that in every POP-lattice of order m there exists a
unigue chain base fo’f1""’fm-1 such that L is s P,-lattice,
80 we oan introduce the highest monotonic representation in
this base which satisfies D?(b) = b for beB,

Anyway, the advantage of representation (x) is that for
a given P P-lattice L =‘(e°,...,en_1,B), we can direotly re-

present elements in,Bn'1 such that Di(b) = b for be B, even

if the unique base fo'f1’°"'fm-1 and the order of L are un-
known.
Example

This POP-lattioa is not = P2-lattioe because of a 05,< 84, but
it is not true that Es;e1. Observe that in the highest repre-
sentation a -— (1, a, a) so D?(E) = 1, By representation (x)
we obtaln b = (b,b,b) for be B = {0,1,8,8} and e, - (8,8,0),
92 0(1,1,8).

If we find the base of .this POP-lattice, such that P P-
~lattice will be a P2-lattice, we will get fo = 0, f1 = 85,
f2 = 1, Now, in the highest representation we obtain

b «=(b,b) for DbeB, e1<——(§,0) 92<—>(1,a).
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3. The Boolsan algebra generated by PGP-lattice

Lemma 3,1, A P P-lattice L = (eo....,en_1,B) is
a Post algebra of order n if and only 1if Di(ej) = 1 for i<
and Di(ej) = 0 for 1> j,

Proof. If a POP-lattioe L is a Post algebra of or-
der n then (e;—>6,) = 0 for 1>j (see [2]) and in parti-
cular (ey =>0) = O, Then e;! = 1. Obviously (ei=>ej.) = 1
for i<j, so Di(ej) = °j' and (ei=>e ) is equal to 1 for
i<j and to 0 for i>Jj, If a POP-lagtice is not a Post algebra
of order n, then there exists some 1 and O # be 3 such
that (ei=$ei_.1) = b, Hence b ey<e; , and by th.2.4
Di(b)Di(ei)<D1(01_1) 80 b Di(ei)sDi(ei_1). Therefore, sithsr
D;(e4)<1 or Di(ei) = 1 and Di(ei_1)>b # 0.

Lemma 3.2. The only chain B : e = [0]<e;<...
n=1

ees<8,_, = [1] of monotonie elements ¢ B'~ ' which together
with the diagonal of B™! (denoted by [B]) generates B, is
the Chain Fnz Bo = [OJ, e1l= (1,0'0-0,0’0) .o.’en_2 =
= (1’1'00.'1’0)’ Gn_1 = [1].

Proofe. Observe that (0,-0.,0,bi,0,ooo’0)
= [b] 8y _4e; for i =1,2,00s,n-1, 80 F, U [B] generates B™ ',

Bn-1

Suppose now that E U [B] generates « Then every elements

xe 7 can be written in the form

n=-1
(1 == eguyloyyl = | e,85 Dyl
1,3=0 53

i’je {0’1,o.o,n-1}0

In partiocular we get an element x = (1,...,1,0) in this form.

Suppose that ey = (el,...,02") for 1 = 0,1,..4,n=1, For the
last two coordinates we obtaln

U 92'2, 931-2 byy = 1,
i>)

n-1 _n=1
i3
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From the second equality we get

ne2 n=2
n-1 - n=-2 -
LJ ej bn-1j = 0, 30 kj ej bn-1j = 0,
J=0 J=0
Then 1<:T:f 672 gI=2 p  _ gh=2 L:f b,. because e ~?<efi™2
155 i j 3 ®n-2 15 ij i n=2
for 1 = 1,2,40s,n=2 and en-2\~en-2 =1 for J = 0,1,0eeyn-3, 80

J o

(2) o2 _ 4 and e

_ n-1)
n-2 e = (1,1,..1,en_2 .

Observe that if B LJ[B] generates Bn'1,'then obviously

1

E,: 0, = (ei,...,ei'z), i = Oyeeeyn=1, with the diagonal

n
n=2

of B™2 generates B""%, But by (2) 82 = 8noq = (1hlseeeyt),

n
gso the chain e;,ea,...,eh_z is the chain Bpqe
Applying (2) for B, and so on, we obtain

eo = (0,0,.00’0’0)

61 = (1,3?,.-0,3?-2, 1n-1)

(3) En3 sessv000c00cscsntersrene

8 = (1,1,000,1, a )

n=2

e

ae1 = (Hh1heees1,1),

2
For n = 3, let E3 ={ e, (0,0), 8, = (1,61), e, = (1,1)} be
the chain such that EBLJ[B] generates B2. Then an element
x = {(0,1)¢ B? can be written in the form

U 9153[bi;5] = (0,1), i,ie {0,1,2}
i>j
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Hence
baoU Pip = 0y

2 2
Thus ;$ b21 = 1 and ef =1, 80 ef = 0 and E3 = F3. Suppose
that for k>3 the only chain By, such that E, U [B] generates
B*=1 is P, By (3), the chain E,,, has the form

k k+1
eo = (0,0.....0,0)

8, = (1,6?,...,9?'1 k)

(4) Ek+1 2 ecsessesssnvessscsseoce
k

ek-‘] = (1’1,.'..1’ek-1)
ek = (1,1,.-.,1,1).

If By 4 U [B] generates BX then By , = E, with dlagonal of

k=1 k=1

B generates B

By the inductive assumption Ek = Fiy 80

eo = (0,0,...,0,0)

91 = (1,0,.0.,0.0)

(5) By q 5 eeoesessenccacocssnanns
epq = (Trlieeastyer )
&y = (19190ceslyt)e
Express the element x = (0,0,..4,0,1)¢€ BX in the form

U e [bia = (0,0,oo.’0,1), i,j € {0,1,'oo,k}o
i>j
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For the last two coordinates we obiain

k-2 k-2

U gy VU by =0
3=0 3=0

and

k-2 kw2
k

k .
et | Prery UL Preg Uiy Pigeeq = 10
J=0 J=0

Henoe e§_1 = 1 and e§_1 = 0, 80 Ek+1 = Fk+1 which completes

the proof,

Theorem 3.3, AP P-lattice I.a(eo,e1,...,en_1,B)
generates B™' if and only if L is a Post algebra, (It is
understood that L is a (0,1)=-sublattice of B2~ g8 in Theo-
rem 2.4).

Proof. If L is a Post algebra,then by Lemma 3,1 the
constans ey,..e,8, 4 must be as follows e, ’(1’0""'0)"“’°n-f
= (1,1500041) 8né B = [B] of course. Then by Lemma 3.2 L ge-
nerates B®~1, On the other hand,if L is not any Post slgebra,
then by Lemma 3,1 there exists the constant e;#(lyeeey1,0 00 O}

Then by Lemma 3.2 L does not generate B2-1, 1
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