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Let I be a real finite compaoct interval, E a Banach space,
and ¢ an E-valued function defined on Ix B. It is well known
that neither the continuity, nor even the uniform continuity
of ¢, does imply the existence of a solution of the Cepuchy
problem for the differential equatioh x' = p(t,x). The first
who used the measure.of noncompactness o as a tool for solving
this problem was Ambrosetti [1], who proved (via a fixed point
theorem of Schauder s type) the existence theorem under the
assumption of uniform continuity of ¢ assuming in addition
that o (p(t,X) )< kea{X) for any te I and any bounded subset X
of E, Similar results were proved by Szufla [j6], Goebel and
Rzymowski [9], Cellina [3], Sadovskil [14], Szufla [17],
Deimling [7] and many other authors, The bibliography concern-
ing this results is given in [2], [6], [8], [11], [12], [14]
and is not necessary to quote it here, The object of the pre-
sent artiocle is the study of solutions of the semilinear dif-
ferential equation x’ = A(t)x + f£(t,x) on the real line R
with the assumption that the linear equation x’ = A(t)x posses-
ses an exponential dichotomy and the E-valued function f sa=-
tisfies on RxE some regularity Ambrosetti type condition.
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2 M. Dawidowski, B. Rzepecki

1. Introduction

Throughout this paper, E denote a Banach space with the
norm || *||, L{E) the algebra of continuous linear operators
from E into itself with induced standard norm |-} »R, the
half-line t>0, and [R the real line,

Ve shall consider the differential equation

(+) x'(t) = A(t)x(t) + £(t,x(t)),

where te R, A(t)e L(B), and f is a E-valued function de-
fined on R xBE,

The purpose of the paper ics to prove the existence of
bounded solutions of the above equation under the assumption
that A possesses an exponential dichotomy and f satisfies
some regularity contition expressed in terms of the (Kura-
towski-) measure of noncompactness o

2. Preliminaries

The measure of noncompaotness o (X) of a bounded subset X
of B is defined as the infimum of all &£>0 such that there
exists a finite covering of X by sets of diameter<¢. (Kura-
towski |:10] )o For properties of Kuratowski function o the
reader is referred to the monography [8], [11] or [12].

Further, we will use the standard notations. The closure
of a set X, its diameter and its closed convex hull be de-
noted, respectively, by X, diam X und conv X. For a set X of
nappings defined on I we write X(t) = {x(t): xeaf}, P[I] will
canote the image of I under F. If U and V are suvsets of E
«ul t, 8 are real numbers, then tU + sV is the set of all
t. - sv with ue U and ve V,

Denote by C{R, E) the set of all continuous functions
7oon R to E. The set C{R, E) will be considered as a vector
gi-ce endowed with the topology of uniform convergence on
coupact subsets of R,

We shall use the following theorem due to Ambrosetti [1]+

Let I be a compact subinterval of R and Y a bounded equi-
continuous subset of the standard Banach space of continuous

funotions from I to E, Then
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Nonlinear differential equetions 3

o« (LNe(t)s te1}) = sup{al¥(t)): te I}

Our result will be proved by the following fixed-point
theorem of Schauder type (see [5], [6], [13], [14]):

Let * be a closed convex subset of C(R, B). Let ¢ be
a function which assigns to each subset ¥ of ¥ a real number
#(Y) =0 with the following properties:

12 ¢ (Y1‘)<QS(Y2) whenever Y,C Y53

2° ¢(Yu{y}) =¢(¥) for all ye¥*;

3° g (comv Y)<¢(¥);

4° if ¢ (Y) = 0 then Y is compact.

Assume that F: ¥ — X% is a continuous mapping satisfying
$(F[Y])<F(Y) for arbitrary subset Y of ¥ with §(Y)>0, Then
P has a fixed point in ¥,

3. Nfain result

Let A:[R— L(BE) be strongly measurable and Bochner inter-
grable on every finite subinterval of R, We suppose that the
differential linear equation

(x) x'(t) = a(t)x(t)

admits a regular exponential dichotomy (see [:4], Pe233). Next,
denote by G the main Green’s function for (x) (see [4],
Pe240).

Let f: RxE—=E be continuous. idssume that

1f(t,x}ll<m(t) Tor (t,x}eRxE,

where @ 1s e locally infegrapnls fuanction on R with

[ t+1 )
sup m{s)ds: te JR?éIvI.
t ;
Lssume in addition that

) 1 .
o« (FIxX])<sup J{g(t): t e If*h(cx}{))

Iecr any compact subset I of R and each bounded subset X of E,
where g, h are functions of JR, into itself such that g is
continuous, 1 is nondecreasing,
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L= sup{fla(t.za)l g{s)ds: t eR}< oo
R

and Leh(t)<t for t>0.

Theorem, Under the above hypothesec there exists
a bounded solution of {+) on IR.

Proof. We define a mapping F as follows

(Fx)(t) =fG(t,s)f(s,x(sl)ds for xe¢C(R, E).
R

According to Lemma IV,3.1 of [4], there exist positive con-
stants N, v that is

Ic(t,sll < N-e-vlt-sl

for t, s inR . Denote by ¥ the set of all xe C{IR, E) such
that

-y -1
Ix(t)i<K = 2NM(1 - ™)
d
o %o s
||x(1:1) - X(t2)||$ K‘f Ja(s)las +f m(s)ds
t t
1 1

for real t, and t1, P with t1s‘t2. It is easy to see that X
is closed convex bounded subset of C(R, E).
Let x€X¥ o We have

HFx) ()l <
t -4
<N <f e'v(t's)m(s_)ds + f e'v(s't)m(s)ds> =
-00 t
o k41 % k41
= N(Z f e'%m(t+0)d0 + z‘ f e~ "0 m(t~6)do <
k=0 k k=0 k
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oo t+k+1 oo t-k
< N<Z o~k f n(s)ds + Z e'vk j m(s)ds>;;;
k=0 t+k k=0 t~k=-1

0o
< 2N Z_ oK =
k=0
for teR . By Theorem IV.3,2 and Remark IV.3.6 of [4] the

function Fx is a solution of the differential equation

¥ (t) = a(t)y({t) + £(t,x(¢))

on R. Hence

I(Fx) (t) = (Fx)(t,)|<

t

2
éf lla(8) (Fx)(s) + f(s,x(s))lds <
b
t t2

2
= Kf ja(s)] ds +f m{s)ds
t1 t1

whenever t1s tz. Consequently, Fxe X ,
Let u,veX* , Let te¢lR and a>0, Then

I(Fa)(t) ~ (Fv)(t)ll<

g t+a ©0 .
<N<f P f f>e->’1‘-°‘~||f<s,u(s))-f(s.v(snndss

-00 t-a t+8

< Nesup {Hf(s,u(s)) - f{s,v(s))ll: t-assst+a} .

t+a t=a o0
. f e")lt"'slds + 2N<f + f>e'vlt'slm(s)dss
t-a -00 t+a
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< 2Nv'1(1 - e'va)'sup{llf(s,u(s)) -
- f(s,v(s))|l: t-a<s< t+a} + Ke™'8,

It is well known that if f: RxE —= E 1is continuous then the
operator x({+)+—=f(*,x(¢)) from C(R, E) into itself is conti-
nuous, Now, from this fact and the sbove inequality it follows
that our F 1s continuous as a map of ¥ into itself.
Let us put: $(Y) = sup {a(Y(tHx te]R} for a subset Y
of ¥, By the corresponding propsrties of « the function ¢
patisfy the conditions 1% - 3° 1isted in Section 2; 4° follows
¥rom the Arzela-Ascoli theorem (see [15], Theorem IV.10.1).
Assume that Y is a subset of * with ¢{¥)> 0, Let teR
be fixed., Let ¢ >0 be arbitrary., Choose a number .a>0 duch
that Ke™"8< ¢. We have

t-a
u({j G(t,s)f(s,y(s))dss er])S

- 0o

t-a \
< diam <lj G{t,s)f(s,y(8))da: erDé

t-a
< 2N» f e'v(t's)m(a)dés Kea™ V8. ¢

- 00

and analogously

o(<{ f G(t,s8)f(s,y(8))ds: erJ><€ .

t+a
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Now, we shall prove that

t+a
o <[j G(t,s)f(s,y(s))ds: ye Y}>s

t=-a

<n(z)) f 16(t,8) a(s)s,
R

where Z = U {Y(s): t-asssma}.

Indeed, for arbitrary ¢ >0 there exists & 6> 0 such that
|s’ -s”| < 6 with s’, s”¢ [t-a, t] or &, 8”¢ [t, t+a] implies
Ic(t,8’') - G(t,s8”)l <¢ and |g(s’) - g(s8”)|<¢’ . Denote l;y I

the interval |:1;i_1, ti] (i = 1,2,600,2m), where

to = t-a<t1<ooo<tm = t<to.<t2m = t+a

with ti-ti_1<6. Let G4, 74 € I; be points such that

l(t,6,)1 = sup{lG(t,s)l - Ii},

g(t;) = sup {g(s): se Ii},
and let

c, = sup {IG(t,s)I: tmas< sst+a}
and ¢, = sup {g(s): t-ass<t+a}.
By the integral mean value theorem

[t+a
G(t,s) fis,yl(s))ds:s yeY C
t=a

2m
CZ‘ (ti-ti_1) m(u {G(t,s)f[lix Z]: seIiD.
i=1
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Since

o(<U{G(t,s)f[IiX 2]: seIi}><

< sup {lG(t,s)]: Be Ii}ta(fLIix z])
(see appendix), so

(t+a
o<<if G(t,8)f(8,y(8)}: erDé

t=-a

2m
<X <Z (ti-ti_.l) conv (U{G(t,s)f [‘_Iix Z]: seliDg
i=1
2m
< (ti'tiq) sup {lG(t,s)I: seli}'a(f[lix z])<
i=1
2m
< (t;-t5.4) sup {|G(t,s)|= seIi}‘sup[g(s):seli}-h(q(z.))=
i=1
2m
= h(u(Z))-Z (ti-ti_1)|a(t,6i)|g(fi)s
i=1
2m

<a@n-y [ (lets,59) - os,0)lalry) +

i=1 Ii

+ Jolt,8)] | alry) - als)] + |G(t,s)|g(s)>dss

t+a
gh(q(z))-[za(c1+cz)£’ + f 1G(t,s)|g(s)dsJ
t-a

and our claim is proved.
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Because

t-a
F[Y](t)c{f G{t,s8)f(s,y(s))ds: yeY +

- 00

t+a l
+{ f G(t,s)f(s,y(s))ds: ye YJ +

t=-a

o0

|
+ f G(t,s)f{s,y{8))ds: 3¢ YJ},

t+a

we obtain

«(FX(t) )<t + h(cx(Z))f lalt,s)]gls)ds +¢ .
R

Since Y is almost equicontinwous and bounded, we can apply
Ambrosetti’s result to get

a(z2) = sup{cx(Y(SH: t-asssna}éQS(Y).

Henoe

o« (F[Y](t))<2¢ + Len(g(Y)),

and therefore « (F[Y](t))<Leh(d(Y)).

Consequently, ¢ (F [Y]) <L-h(#{Y¥)). Thue all assumptions
of our fixed-point theorsm are satisfied; F has a fixed point
in ¥ which ends the proof.

Remark, Let Sr ={xe B ||X”$I‘}. Our result holds
whenever f is defined on RxS, and M <r{1-8~")/2N. Moreover
if the condition [[f(t,x)ll<m(t) is replaced by |If{t,x)[ <’
on RxS,, then we must assume that M'< rv/2N,

4, Appendix

The object of this appendix is to derive the following
property of the measure of noncompactness o :
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If Q is a continuous mapping from a compact interval I to
L(E) and W is a bounded subset of E, then

a(U{Q(t)W: teIDésup{lQ(t)l: teI} s (W

For this purpose we choose ¢ > 0, Let & =6(6)>0 and
W,C B {(1i=1,2,4+.,m(c)) be such that

la(t') - a(+")] < (sup {Ixl: xew))™e for |¢ -t"|<¢

and

m
W= U Wy with diam Wy <& + (W),
i=1

Divide the interval I in such a way that ’t1< t,<eee<t, with
tip1 - tj<<5 (3=142,000yn=1}, Lot us put X4 = {er: thers
exists a point weW; such that [x=G(t4)w|j< e} £Or i=1,2,000,0
and j=1,25ee¢sylle

We have

U{etew: setfe | ) | Xy 0

i=1 =1

If ||x) - Q(tj)wk | < ¢ (k=1,2) with x € xij and w e W;, then

Hx-l"xznénx‘] - Q(tJ)W1H + "Q(tJ)W1 - Q(ta)wzu +
+1Q(tg)wpmx,y li< 2¢ +|Q(tj)| [l wy=w, Il <
<2¢ + sup{IQ(t)I: te I}‘diam Wy <

<2¢ + [£+o<(W):|'sup{|Q(t)|: teI}.

Therefore
o<<U{Q(t)W: te I})éQ& + [e +o<(W)_]'sup{|Q(t)|: teI},
and we have finished.

- 100 =~



Nonlinear differentiasl equations 11

[ 1]

[ 2]

[ 3]

[ 4]

[ 5]
[ 6]

[ 7]

[ 8]
[ 9]

(10]
[11]

REFERENCES

4, Ambrosetti: Un teorema di esistenza per
le equazioni differenziali negli spazi di Banach, Rend.
Sem. Mat. Univ. Padova 39 {1967) 349-360.

Jo Banas, Ke Goebel: Measure of noncom=-
pactness in Banach spaces, Lect, Notes Pure Applied Math.
60, New York 1980.

4, Col1lina: On the existence of solutions of
ordinary differential equations in Banach spaces, Funkcial,
Ekvac. 14 {1972), 129-136,

JoL. Daleokil, M, Go Kredinzs: Stability
of solutions of ordinary differential equations in Ba=-
nach space, Moscow 1970 (in Russian),

Jo Danes: Some fixed point thecrem, Comment. Math.
Univ, Carolinae 9 (1968) 223-235,

Jo. Dane§ : Ondensifying and related mappings and
their application in nonlinear functional analysis, Theo=~
ry of nonlinear operators, Berlin 1974, 15=56, .

Ke Deimling: On existence and unigueness of
Cauchy'’s problem in infinite dimensional Banach spaces,
Proo. Collog. Math. Soc. Janos Bolyai, Vol. 15 (1975),
Diff, BEgs., 131-142,

K« Deimling: Ordinary differential equations
in Banach spaces, Lect, Notes in Math. 596, Berlin 1977.
Ko Goebel, W. Rzymowskdis: An existence
theorem for the equation x’ = f(t,x) in Banach spage,
Bull,Acad. Polon. Sci., Ser. Sci. Math, Astronom, FPhys.,
18 (1970) 367-370s

Cc. Kuratowski: Sur les espaces completes,
Fund. Math. 15 (1930) 301-309.

Vo. Lakshmikanthamnm, Se Leelast

An introduction to nonlinear differential equations in
abstract spaces, Pergamon Press, 1980,

[12] R Martins: Nonlinear operators and differential

equations in Banach spaces. New York 1976,

- 101 -



12 M. Dawidowski, B, Rzepecki

[13] B.N. Sadovskil: A fixed point principle,
Funkcional Anal. i Prilozen., 1 (1967) 74-76 (in Russianj.

[14] B.N. SadovekiY: Asymptotically compsot and
densifying operators, Uspehi Math. Nauk 27 (1972) 81-146
(in Russian).

[15]R. Sikorski: Funkcje rzeczywiste I, Warszawa
1958,

[16]S. Szufle: Some remarks on ordinary differential
equetions in Banach spaces, Bull, Acad. Polon, Sc¢i., Ser.
Sei, Math, Astronom. Phys., 16 (1968) 795-800,

[17]Se Sz ufla: On the existence of solutions of
differential equations in Banach spaces, ibid., 30 (1982)

507-515.

INSTITUTE OF MATHEMATICS, A. MICKIEWICZ UNIVBRSITY,
60-769 POZNAN, POLAND
Received May 30, 1984.

- 102 -



