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1. Introduction

Roughly speaking, the classical Hodge ~ de Rham decompo=-
sition is the expression of a differentiable form as a sum
of exact and coclosed forms. The Sobolev spaces of forms de-
compose into the direct sums of subspaces of exact and co-
closed forms (see [5] and also [3], [7] for the decompositions
of spaces of Ck+<xforms).

The cruoial point in the proof of Hodge decomposition lies
in the decomposition of space of tensors into the direct sum
of image and kernel of laplacian., This property of laplacian
is also valid for a wide class of differential (and pseudo-
differential) operators, namely, for elliptic operators (see
e.8. Palais [10], Thm 7 in Chapter XI). Moreover, the similar
behaviour as that of the exterior differentiation d 4in
p-covector bundles can also be noticed for operators with
injective symbol acting between vector bundles. D.,G. Ebin [4]
proved the analogous decomposition with respect to a differen-
tial operator D with injeotive symbol as the Hodge decompo-
sition that was constructed by means of d. He bullds the
elliptic operator D*D as a substitute of the laplacian A,

- 77 =



2 J. Rogulski

The above mentioned theorem for elliptic operators is then
applied to prove the generalized Hodge decomposition into

a direct sum of im D and ker D*, Both Authors, Prof. R. Palaise
and Prof. D. Ebin, deal with the operators with smooth ocoeffi-
clents,

In this paper we give the Hodge~like deeomposition for
the operators with ocoeffiocients of Sobolev class Hk. This ge-
neralization is useful for the study of actions of Hilbert-Lie
groups onto Hilbert manifolds., The hslpfulness of this genera-
lization lies in the fact that it ensbles to prove that any
orbit in the Sobolev space of tensoxr fields is a smooth sub-
manifold (see [6] and [8] for examples and details). The pre-
vious results obtained for operators with smooth coefficients
allow to prove that the orbit passing through a smooth element
of space of tensor fields is a submanifold,

The generalization of Hodge decomposition for the diffew-
rential operators with Hk coefficients has also been investigat-
8d by M. Cantor who applies the estimates obtainsd for such
operators by Y. Choquet-Bruhat and D, Christodoulou (see e.g.
[2] and references given there). However, our approach is
quite different and arose from the study of the aotion of the
group of asutomorphisms of a principal bundle onto the spaoce
of connections, We refer also to Cantor’s paper [1] for
several important examples of Hodge-like decompositions
(called: Helmholz decomposition, de Rham decomposition and
Berger~-Ebin decomposition).

2., Basic notions and notation

Let M be a compact, C*, n-dimensional manifold without
boundary. We denote by « a smooth measure on M, Let £ and »
be smooth vector bundles over M provided with fibre metrics
(, )g and ( , )? respectively. For ke Z we denote by Hk(g)
and Hk(Q) the (Hilbert) apaces of sections of Sobolev class
Hk of § and p respectively. The space of smooth sections
of £ will be denoted by C™(£). We refer to Palais [9] for
the basic constructions and results concerned with the Soobolev
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Qperators with Hk coeffioients 3

spaces of seotions. Let J°f, reNU {0}, be the r-jet bundle
off{ , i,e, the vector bundle of r-jess of local seotions of .
We denote by Hom(Jrg,?) the veotor bundle over M, whose fibre
Hom(Jrg ’?)x' xe M, consists of all endomorphisme of the vector

epaces (J"'gy')x and 7 . Obviously, Hom(Jrg,Q) = (Jrg)*e De

21« Definition, AmHmseotionBof
Hom(Jrg,y), me Z, i8 called a differential operator of order r
with H® coefficients.

It is clear thet any differential operator with H® oo-
efficients, say B, naturally defines a linear map C~ (t)——
—=H%(p), whioch we also denote by B,

2,20 Proposition,. Let m>~2’1and let
B:C” (g)——Hm(p) be an r-th order differential operator.
Then B extends, for any -m+r<l<m+r, to a continuous linear
operator

B, : HY(5)—u1"T(p).

1

Proof. The statement follows from the fact that
the multiplication of sections by functions: C*{M)x C™ (p)—
—= C% (p) extends to the continuous bilinear map Hm(M)ka(Q)——
—-—Hk(?) for any -m<k<m,

2.3, Remarkes,

(i) From Rellich’'s lemma and Prop.2.2 it follows imme=~
diately that for B as in 2.2 and for any 1> m+r there exists
a continuous extension of B to the operator Hl(g)—~Hm(Q).

{ii) If B satvisfies the assumptions of 2,2 but is not
go+1 differential operator then a continuous sxtension
Hl(g)—-—Hl'r(rg) for 1< -m+r does not exist.

Palais distinguished in ([10] Chapter VIII, § 1) the spacs
OPL(§,7) of linear operators C¥(§)—=C" (p) by the require-
ment that any operator BeOPr(E,Q) have to continuously extend
to & linear operator Hk(g)*Hk'r(?) for any ke Z. Now, 2,2
and 2,3 imply that a differential operator with ET coeffi-
cients belongs to CP,(§,p) iff it has C® coefficients,
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4 Je. Rogulski

We refer to the mentioned book [10] for the definitions
and constructions of spaces Intr(g,g) and Er(g,p) of opera-
tors. We recall only that Int(§,p) denotes the Selley algebra
and Er(g,p) is the space of r-th order elliptio operators,
The following inclusions hold:

(1) Diff . (§,p)< Int,(§,p)
(2.4) ¢ (ii) OF_4(8,p)C Int, (5 ,0)C OPL(5 ,49)
(i11) En(§40)C Int (5,p)

dere Diff (§,p) denotes the space of r-th order differential
operators (with smooth coefficients). The space Er(g,p)ﬂ
N Diff,(5,p) consists cf all elliptic differential operators
of order r (with smooth coefficients)., Throughout this paper,
an elliptic operator of order r will mean an element of
Ep(5y0)e

Now the fibre metries ( , )5 and ( , )?_defina the 1° sca-
lar products in the spaces of sections of § and p respecti-
vely

< v1,v2>E 1= Jr(v1(x),vz(x))§d#(1)a
M

where v, and v, are sections of} . Similarly one defines < ,>’
for the seations of p . For eny ke NU{0} < ,>% is the conti-
nuous, bilinear, symmetric, positive and nondegenerate form
zn Hk(g), but is not scalar product on Hk(g) for ke N, The
bilinear form <,>% 4is then usually called a weak scalar
product. The weak soalar products <,>% and<,>? allow to de-
fine a formally adjoint operator B* for the r-th order diffe-
rential opserator B with H® coefficients, by the same formula
as in Diff(f,p) - case

(2.5) <B'w, v>5 =< W, Bv>’ for any ve C” (E) and we C~ (p)e

It is not hard to show that therse exists an uniguely defined
differential operator B* 1 C” (p) —=H™T(X) of order r
that satisfies 2.5,
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3. Perturbed slliptic operators

Let L ¢ C=(t)—=C”(p) be an elliptic operator of order
r+1, 1.6 Le B, ,(5,p)s In this section we will consider the
perturbations of L by the differential operators of order =
with HT coefficients, namely, the operators of the form L+B,
where B 1 C®°(t)—=HP(p) is an r-th order differential ope-
rator. In general L+B¢ B, ,(3,p). More precisely, 2.3 and 2.4
imply that IL+Be Er+1 (£4p) if and only if m = oo , that is, in
the ocase when B is g differsntial operatosr with smooth coeffi-
cients (Be Diff,(£,p)). However L+B has some kind of regula-
rity: _

3.1e Prop o sition, Let m>r>0 be integers.
Let m> 2'. If LeEr+1(§ ply, and B : C=(§) —H"(p) is an r-th
order differential operator then the extension (L+B) :H (5)——
— 1(?) exists and (L+B) is a PFredholm operator. More-
over, L+B is reguler in the following meaning

(L+B);1(Hl-r-1(?))cﬂl(§) for any 0<1l<m+r+i,

Proof, First note that (L+B)0 = L, + t°B,, where

HO(E)—>H-r'1(?) is a PFredholm operatcr, B xHo(g)——
-——-H r(rz) is continuous and the canonical inclusion
map ¢ ¢t H r(g)-—H'r'1(?) is & compeot operator, Thus
¢t o By is also compact, so (I..+B)o is a Fredholm operator,
For the seocond part of Proposition we consider the equa=
tion L,v + B,V = w, where we im(L+B) nHl"r'1(?)- Then L v =

=w-Bve If 1 =1 then w -~ Bvel I'(9), so by the regularity
of L (cf. [10, Thm. 5 of Chapter XI]) we obtain that ve H'(:).
Now we prove the inclusion in Proposition for l>1 by induoc~-
tion, If it holds for 1 =1 =1, 1<m+r, and weHl -r-1(?)

then ve HY (g) and B, veHl -r-1(?) (by 2.2), so (W-B v)e

¢ gt -T- “1(p). Thus, by the regularity theorem for elliptic
operators mentioned above, we obtain that ve H (¢), s0 the in-
clusion holds for 1+t, For 1 = O the inclusion is trivial,
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32 Remark, For 1> m+r+1 we obtain that
(L+B);1(Hl'r'1(g))C:Hm+r+1(§) and no more, since for
Ve:Hm+r+1(§) we have Bove:Hm(Q) (see 2.3).

>»3 Corollary. ker(L+B)oC:Hm+r+1(g), 80
ker(L+B)o = ker(L+B)m+r+1.

Using the same arguments as in the proof of 3.1, namely,
recalling Rellich’s 1lemma and the fact that the composi-
tion of a compact operator and a continuous operator is again
a compact operator, one proves that any sxtension

(L+B), Hl(g) —*-Hl'r'1(p)

for 0<1<m+r+1, 18 the Fredholm operator. Here the identity
(L+B)l = Ly+B;_q°t , Where ¢ 3 Hl(g)——*-H1'1(§), is useful,
Since (L+B)1, 1l=0,1,e00,0+T+1, are Fredholm operators, they
have closed images. In other words

(1+8) (11 (5)) c BT (p)

are closed, finitely codimensional subspaces,
Since Le By,  (§,p)COP, 4(¢,p), Proposition 2.2 states
that the image of opsrator

(graph(L+B)0N7(H1(§)x H-r-1(?))

is a subspace of Hl'r'1(g), 1 = 0y1y0ee,m+r+1, On the other

hand, Proposition 3.1 says that the domain of operator
(graph(L+B) ) N (E2(5) x BT 1(p))

is a subspace of Hl(g). Hence the conjunotion of these sta-
tements is equivalent to the following egquality

graph(L+B) N (H°(E) x Hl"r'1(?)) =

= grap(L+s) N (5(g) x B"1(p))
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and this subspace of Hl(g)x Hl'r"1(p) is simply the graph
of (LfB)l, 0<1<m+r+1,

Now we will prove a simple but useful lemma on algebraic
decompositions of a Banach spaca,

3.4, Lemma, Let X be a Banach space and let < , >
be a weak scalar product on X (i,e. a continuous, symmetric
and strictly positive bilinear form). We assume that there
exist two linear subspaces X1, X2CX such that X = X1+K2 and
X1, X2 are < ,> -orthogonal, Then both subspaces X and X2
are closed in X, X,NX, = {0}, i.e. the decomposition
X = X1@X2 is topological, Morseover, X1 and X2 are c¢lossd in
the weak topology defined by <,>.

Proof. Let us denote X, :={yexl<y,y’>=0for
any y’e'X1}. Sinoe X; is the intersection of kernels of the
continuous functionals on X

X: = m kor (X3 y+—e<y,y~> ¢ R)

y'e X
then X; is closed in X, and is also closec} with respect to
the wegk topology. By the assumption Xc X1 « Now let ye X; .
We have y = T30 where Jqe€ X1 and Jo € 1(2. Of course
<F193> = O. On the other hand <F99I> =<F19Tq> +<Fq9¥p> =
=<Y TP so<y1,y1>L= 0. It meaz:s that v, = 0, so y=32ex2.
Thus we proved that x1 c 12, 8o X1 = x2. Replacing the in-
dices 1 and 2 in the above considerations, we obtain that
X, = X,, 80 the lemma follows.

Now we give the theorem on decompositions defined by the
perturbed elliptic operators. This theorem extends the result
presented in ( [10], Thm, 7 of Chapter XI).

3.5%¢ Theorem, Letm>%+randm>2r.Letus

take Le B, ,(E,p) and let B : C”(g)——Hm(rg) be an r-th order
differential operator with E® coefficients, Then for 0<l<m

Hl(?) = ker(L"+B")o€Bim(I;+B)l+r+1.
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Both subspaces in the above dscomposition are closed and ortho-
gonal with respect to the weak socalar product <,>f,
Proof. First note that L¥e Epyq(2,%) and

B¥ : ¢® (p)— H™7T(f) 1is an r-th order differentiasl operator

Hm"rvcoefficients, where m-r>% and m-rﬁr. So L*+B* conti-

nuously extends to the operator (L*+B*)° ¢ HO(?)_..H-I‘-1(€)

(cf. 3.1}, We know by Proposition 3,1 that (1."+13")o is a Fred-
holm operator, so in partioular it has a olosed imsge. Then
the (topologically) adjoint operator (L"+B*); t H"r'1(§)'_..
—=H%(p)' has also the closed image and, moreover,

(x) im(L"+B*); = (ker(L*+B*)°)L,

where the space on the right side is the spacs of all functio=-
nals in H%(p)' vanishing on ker(L*+B*)°. We identify H°(p)'
and Ho(p) by <, >? (applying the Riesz theorem), Since < ,>5

extends to the duality on H'r'1(§)x}{r+1(%), one obtains an
isomorphism Hr”(g) — H'r"1(§)' . Then, composing (I;"+B")'°
with the above isomorphism and the Riesz isomorphism, we obtain
the continuous operator Hr+1(g)——H°(9). This operator is
simply equal (L+B)r+1. Thus, the equality (x) and the above
remarks imply the following decomposition
[o] - * o % .
H°(p) = ker(L"+B )geB:Lm(L+B)r.+1,

where both subspaces are closed and <,>Q ~-orthogonsal,
Now, applying 3.3 to L°+B* instead of L+B and changing m
intoc m-r, we obtain that ker(L*+B*)o = ker(L"+B*)m+1. In par-

ticular, ker{L*+B%) cHl( ) for any O<l<m,
o ?

Let P : H%(p)-—= H®(p) be the orthogonal projector onto
the subspace ker(L*+B") (defined by the above decomposition

of HO(p))s Let we H(p)c H%(p). Then

{wePw]} € im(L+B)r+1c im(L+B)0
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and also (w-Pw)e Hl(g) (since PWe:Hm+1(p)C:H1(p)). By virtue
of Proposition 3.1, we get the inclusion

(L+B) " (w-Pw) c HITH (2,

so (w-Pw)e im(L+B)1+r+1. Thus we obtain the decompositions

HY(p) = ker(L*+B*), + im(I+B)y ...

By Lemma 3.4 both subspaces on the right side are olosed in
Hl(p) and < ,>’-weakly closed.

4, Generalized Hodge decompositions

Throughout this section D denotes a differential operator
of order s>1 with injective symbol (Dé Diff_(§,p)). Then
L := D*D is the elllptic operator, Le&EzB(g g). Let

c (g)——*—H (p) be a differential operator of order (s-1)
with Hk coefficients. In this section we will deal with the
operator D+C : §\——~—Hk(?). The purpose of this section

is to prove the theorem giving a' decomposition of H {p) ana-
logous to the Hodge decomposition., In our considerations the
operator D+C will play the same rnle as the exterior differen-
tiation d in the Hodge theory.

Let us notice that (D+C)* = D*+C™ is the operetor with
Hk'(s'1) coefficients. Hence, by virtue of Proposition 2.2,
for k>v§ + (8-1) the extension (D+C); t Hk(?)——- Hk's(g) does
exist and the composition

L= (D+C)po (D+C) ¢ €% (§)—=H"B()

is the well defined differential operator with Hk"s coeffi=
cients. We have

(D+C)} © (D+C) = D™D + (D§c+c°‘D+c;c),
80 denoting by
B := DLC+C*D+C}C
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we obtain the equalilty
£ = L+ B,

where L is an elliptic operator and B = C* (%)-——Hk's(g) is
a differential operator of order r = 2s-1 with H® coeffi-
cie..ts (m = k-s), Now, applying Theorem 3.5 for the opera-
tor £, we obtain

40 Proposition. Letk>—%+39-1and
k> 58-2, Then for any 1 satisfying the inequality s<l<k

we have
l=-8 »
H (E) = ker( )°$ imoz‘1+s.

Proof. If we substitute m = k-s and r = 28~1 in
Theorem 3.5 then we obtain this statement for o = L+B defined
above.

4,2, Remark, A8 is easily seen, Z*=o, Thus,
by Corollary 3.3, we know that ker(er*)o = ker £ C Hk+s(§).
Hence the decomposition in Proposition 4.1 can be rewritten
in the following form

Hl-s(g) = ker o & im Ly,8 = ker °zl+se im Jl+s°

The subspace ker nz'o ig finite dimensional, since Jo is a Fred-
holm operator (see 3.1).

4,3, Lemma. Let k> -% + 38-1 and k>58-2, Then
for any 8<l<k

- ", R
im Ly, g = im(D*+C )1.

Proof. It is clear that <, . = {(D*+C )1(D+C)l+s'
Thus
o » *
im <Z1,6C im{D™+C )1.
Since for any we Hl(Q) and for any ve Hl+8(p)

<(D¥+C*)lw, v> =<w, (D+C)l+sv>'2 ,
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the subspaces 1m(D*+C*)l and ker(D+C)l+s are < ,> -orthogonal,
We observe that for any ve ker Zise

0 --<v,°z‘l+sv>E =<v, (D*+C*) (D+C); 7> =

= <(D+C)y v, (D4C)y, V>, 80O (D+C)1+sv = 0O,

Thus ker & c:ker(D+C)l+s. The inverse inclusion: ker Lypg D

l+s
:»ker(D+C)1+s is trivial, Henoe ker oy . = ker(D+C)l+B. Since

im(D*+C¥), is weakly orthogonal to ker(D+C);, = ker &, ,
it follows by 4.2 that

»* »*
im{D™+C )1C im °Zl+s'

Composing the above inoclusion with the inverse inclusion ob-
teined before, we prove the lemma,

Now we are ready to state the main result of this paper:

4,4, Theorrem, Let k,8 and 1 be integers sa-
tisfying the following inequalities: k>3 + 3s-1, k>5s-2,
s<l<k., We assume that C : C” (§)—= HX(p) is a differential
operator of order s-1 with H¥ coefficients and D ¢ C™ (5)—
—=~C~{p) is a differential operators of order s with in-
jective symbol, Then

Hl(p) = im(D+C)y, @ kex(D*+C*) .

Both subspaces on the right side are closed in Hl(g). liore=-
over, they are <,>? -orthogonal and closed in the weak topology
defined by <, >,

Proof, It is clear that

H(p) = (D%+0%); ™ (4m(D¥+0*),).

Hence, by lemma 4,3, we obtain

#L(p) = (%), Mam g, 0) = (%), "M (D*4C*) (1a(DeC) |, )) =

im(D+C)l+s + ker(D*+C*)l.
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It is easy to verify that im(D+C); . and ker(D*+C*)l are
<, -orthogonal. Now, applying Lemma 3.4, we prove our asserl=
tion.

4,5 Corollary., lthe operator (D+C)l+s:Hl”W§}—>
——-—Hl(g) has the closed image.

We point out that there exist closed subspaces in Hl(g)
(for 1>1), even finite dimensional, such that <, -orthogo~
nal subspaces to them are not complementary. It is also pos-
sible to construct a continuous linear operator Hl+s(§)———
-—«-Hl(?) that has a closed image, but this image does not
admit a weakly orthogonal complementary subspace in Hl(?).

Concluding, we would like to mention that the result pre-
sented in Theorem 4.4 ocan be easily improved. For instanoce,
the same decomposition we obtain for any DeeInts(g,Q) such
that L := D*D is an elliptic operator. On the other hand,
the generalized Hodge decomposition given in Theorem 4.4 seems
to be sufficient for many applications.
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