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1. In t roduct ion 
Roughly speaking, the c l a s s i c a l Hodge - de Rham decompo-

s i t i o n i s the expression of a d i f f e r e n t i a b l e form as a sua 
of exact and coclosed forms. The Sobolev spaces of forms de-
compose in to the d i r ec t sums of subspaoes of exact and co-
closed forms (see [5] and a lso [3]» [7J f o r t i l e decompositions 
of spaces of Ck+01 forms) . 

The c r u c i a l point i n the proof of Hodge decomposition l i e s 
in the decomposition of space of t ensors in to the d i r e c t sum 
of image and kernel of l ap l ac i an . This property of l ap l ac i an 
i s a l so val id f o r a wide c l a s s of d i f f e r e n t i a l (and pseudo-
d i f f e r e n t i a l ) opera tors , namely, f o r e l l i p t i c operators (see 
e . g . Pa l a i s Qp] , Thm 7 in Chapter XI). Moreover, the s imi la r 
behaviour as that of the e x t e r i o r d i f f e r e n t i a t i o n d i n 
p-covector bundles oan a lso be noticed f o r operators with 
i n f e c t i v e symbol ac t ing between vector bundles. D.G. Ebin [4] 
proved the analogous decomposition with respec t to a d i f f e r e n -
t i a l operator D with i n f e c t i v e symbol as the Hodge decompo-
s i t i o n tha t was constructed by means of d. He bui lds the 
e l l i p t i c operator D*D as a s u b s t i t u t e of the l ap lac ian A. 
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2 J . Rogulekt 

The above mentioned theorem for ell iptio operators i s then 
applied to prove the generalized Hodge decomposition into 
a direot sum of im D and ker D*. Both Authors, Prof. R. Calais 
and Prof. D. Ebin, deal with the operators with smooth c o e f f i -
cients. 

In this paper we give the Hodge-like decomposition for 
li-

the operators with ooeffiaientB of Sobolev olass H . This ge-
neralization is useful for the study of actions of Hilbert-Lie 
groups onto Hilbert manifolds. The helpfulness of this genera-
lization l ies in the fact that i t enables to prove that any 
orbit in the Sobolev spaoe of tensor f ields i s a smooth sub-
manifold (see [6] and L8] 'or examples and details). The pre-
vious results obtained for operators with smooth coefficients 
allow to prove that the orbit passing through a smooth element 
of space of tensor f ields is a submanifold* 

The generalization of Hodge decomposition for the d i f f e -
k 

rential operators with H coefficients has also been investigat-
ed by M. Cantor who applies the estimates obtained for suoh 
operators by Y. Choquet-Bruhat and D. Christodoulou (see e.g. 
[2] and references given there). However, our approaoh is 
quite different and arose from the study of the aotion of the 
group of automorphisms of a principal bundle onto the space 
of connections. We refer also to Cantor's paper [ 1 ] for 
several important examples of Hodge-like decompositions 
(oalledt Helmholz decomposition, de Rham decomposition and 
Berger-Sbin decomposition). 

2. Basic notions and notation 
Let M be a compact, C°° , n-dimensional manifold without 

boundary. We denote by ^ a smooth measure on M. Let | and 2 
be smooth vector bundles over M provided with f i b r e metrics 
( , and ( , )? r e spect ive ly . For ke Z we denote by Hk($) 
and Hk(i?) the (Hilbert) spaces of sections of Sobolev c lass 
H of 5 anc3 2 respect ive ly . The space of smooth sections 
of $ w i l l be denoted by C°°(^) . We r e f e r to Palais [9] f o r 
the basic constructions and resu l t s concerned with the Sobolev 
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apaoes of aeotions. Let J1*?, r e KU j o ] , be the r - j e t bundle 
ofÇ , i . e . the vector bundle of r - j e t s of local sections of £ . 
Ve denote by Hoo(Jr§,p) the veotor bundle over Ji, whose fibre 
Hom(Jr| xeH, consista of a l l endomorphisms of the vector-

spaces (J rÇ) x and $>x. Obviously, Hom( Jr£ t2 ) = (J rÇ)*®?. 

2.1. D e f i n i t i o n . Any Hm section B of 
Hom(Jrç ,{>), meZ, is called a differential operator of order r 
with Hm coefficients. 

It is clear that any differential operator with Hm co-
eff icients, say B, naturally defines a linear map C°°(Ç)—— 
— w h i o h we also denote by B. 

2.2• P r o p o s i t i o n . Let and l e t 
B s C°°(Ç)—— Hm(? ) be an r - th order d i f f e r en t i a l operator. 
Then B extends, f o r any -m+r^ l^m+r , to a continuous l inear 
operator 

B1 : H ^ J ^ H 1 - ^ ? ) . 

P r o o f . The statement fol lows from the fact that 
the multipl ication of sections by functions: C°° {M) * C°°(?)—•-
— - C°° (? ) extends to the continuous bi l inear map Hm{M)xHk(p)— V 
-—H (? } f o r any -m-ék^m. 

2.3. R e m a r k s . 
( i ) From Rellich's lemma and Prop.2.2 i t fo l lows imme-

diately that f o r B as in 2.2 and f o r any l>m+r there exists 
a continuous extension of B to the operator — 

( i i ) I f B sa t i s f i e s the assumptions of 2.2 but i s not 
Hm+"1 dj_f f e r e n-t j_a i operator then a continuous extension 

H 1 " ^ ? ) f o r -m+r does not ex i s t . " 
Palais distinguished in ( [10] Chapter V I I I , § 1) the space 

0 P r o f l inear operators C°° {|)—— C°° (? ) by the require-
ment that any operator BeOPr(Ç,ç>) have to continuously extend 
to a l inear operator H k ( Ç ) — f o r any ke Z. Now, 2.2 
and 2.3 imply that a d i f f e r en t i a l operator with Hm c o e f f i -
cients belongs to OPr(Ç,p) i f f i t has C°° c oe f f i c i en t s . 
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We r e f e r to the mentioned book [10] f o r the d e f i n i t i o n s 
and cons t ruc t ions of spaces In t r (£ ,£>) and E r (^ ,p ) of opera-
t o r s . We r e c a l l only tha t I n t ( $ , ? ) denotes the Sel ley algebra 
and Br(§ ,/?) i s the space of r - t h order e l l i p t i o opera to rs . 
The fol lowing inc lus ions hold: 

(2.4) 

( i ) D i f f r ( $ , ? ) c I n t r ( ^ , ? ) 

( i i ) , ? ) c O P r ( Ç , ? ) 

( i i i ) B r ( ^ f ? ) c l n t r ( ^ ? ) 

Here Diff r(§,{>) denotes the space of r - t h order d i f f e r e n t i a l 
operators (with smooth c o e f f i c i e n t s ) . The space B (|,{>)n 
n D i f f r ( $ , p ) cons i s t s cf a l l e l l i p t i c d i f f e r e n t i a l operators 
of order r (with smooth c o e f f i c i e n t s ) . Throughout t h i s paper, 
an e l l i p t i c operator of order r w i l l mean an element of 

Now the f i b r e metrics ( , and ( , )? def ine the L2 s ca -
l a r products in the spaoes of sec t ions of $ and p r e s p e c t i -
vely 

< v 1 t v 2 > S J . / ( y . j U J . V g U ) ) 5 ¿/¿(x), 
u 

where v^ and Vg are sec t ions of§ • Similar ly one de f ines < t > ? 

f o r the sec t ions of q . For any keNU{o} < i s the c o n t i -
nuous, b i l i n e a r , symmetric, pos i t ive and nondegenerate form 
on H k (^ ) , but i s not soa la r product on H k ( | ) f o r k e N. The 
b i l i n e a r f o r m < , > ^ i s then usually oal led a weak soa la r 
product. The weak soa la r products < ,>* and < , >? allow to de-
f i n s a formally ad jo in t operator B* f o r the r - t h order d i f f e -
r e n t i a l operator B with H® c o e f f i c i e n t s , by the same formula 
as in Diff($»?) - oase 

(2.5) <B*w, =< w, Bv>f f o r any v e C°° ( | ) and w e C°° (f>). 

I t i s not hard to show tha t there e x i s t s an uniquely defined 
d i f f e r e n t i a l operat< 
tha t s a t i s f i e s 2 .5 . 
d i f f e r e n t i a l operator B* : C°° (? )—-H m ~ r (Ç) of order r 
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3. Perturbed e l l ipt lo operators 
Let L i C°° — ( ? ) be an e l l ipt ic operator of order 

r+1, i . e . Lfc »?)• la this section we wi l l consider the 
perturbations of 1 by the di f ferential operators of order r 
with Hm ooeffioients, namely, the operators of the form L+B, 
where B i C°° (E,) — ) is an r -th order di f ferential ope-
rator. In general L+3£ B r + 1 ( | ,? ) . More precisely, 2.3 and 2.4 
imply that L+B e (£»?) i f and only i f m = oo , that i s , in 
the oase when B is a di f ferential operator with smooth coe f f i -
cients (Be D i f f r ( | , p ) ) . However L+B has some kind of regula-
r i ty« 

3.1. P r o p o s i t i o n . Let be integers. 
Let m>| . I f LeE r + 1 (^,£>) , and B : C°° {%) — Hm(?) is an r -th 
order di f ferentia l operator then the extension (L+B) sH°(£)—-_ A 

— ~ (?) exists and (L+B)Q ia a Predholm operator. More-
over, L+B is regular in the following meaning 

(L+B)Q 1 (H l " r " 1 ( j> ) )cH l ( ^ } for any 0 « l ^ m + r + l . 

P r o o f . First note that (L+B)0 = LQ + i ° BQ, where 

L q : H° (| )—-H~ r " " 1 (? ) is a Rredholm operator, B 0 :H ° ($ ) -— 
- — i s continuous and the canonical inclusion 
map i i H ~ r ( p ) — i s a compaot operator. Thus 
t o Bq is also compaot, so (L+B)Q is a Predholm operator. 

For the seaond part of Proposition we consider the equa-
tion LqV + BQV = w, where we i m ( L + B ) 0 n H 1 " 1 " 1 ( ? ) . Then LQv = 

* w - BQV. I f 1 a 1 then w - B 0 v e H " ' r ( p ) , so by the regularity 
of L ( c f . [10, Thm. 5 of Chapter Xl ] ) we obtain that v&H 1 ($ ) . 
Now we prove the inclusion in Proposition for 1> 1 by induc-
tion. I f i t holds for 1 = l ' r 1 , l^m+r, and w 6 H1 ~ r~1 (? ) 
then v e H 1 ' " 1 ^ ] and BQV e H1' ~r~1 (?) (by 2.2), so (w-BQv)e 

e H1 " r " 1 ( ? ) . Thus, by the regularity theorem for e l l ipt io 
operators mentioned above, we obtain that ve H* (ij ) , so the in-
clusion holds for 1+1. For 1 = 0 the inclusion is t r iv ia l . 
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6 J, Rogulski 

3.2. R e m a r k . For 1> m+r+1 wa obtain that 
(L+B)Q1(Hl"r"1(?))cHm+r+l($) and no more, since for 
v 6 H m + r + 1 (^) we have B0v&Hm(?) (see 2.3). 

3". 3. C o r o l l a r y . ker(L+B)qc Hm+r+1($), so 
ker(L+B)0 = ker(L+B)0+p+1. 

Using the same arguments as in the proof of 3*1, namely, 
recalling Rellioh's lemma and the fact that the composi-
tion of a compact operator and a continuous operator is again 
a compact operator, one proves that any extension 

(L+B)^ s H 1 ^ ) —-jjl-r-1 j^^ 

for 0 < 1 ^ m+r+1, is the Fredholm operator. Here the identity 
(L+B) ^ = Lj+B^o t , where i t H 1 ^ ) — H1"1 {%), is useful. 
Since ( L + B ) 1 = 0,1,...,m+r+1, are Fredholm operators, they 
have closed images. In other words 

(L+B)0(Hl(^))cHl-r-1(?) 

are closed, finitely codimensional subspaces. 
Since Le Er+1(^,f))e 0Pr+1(^ proposition 2.2 states 

that the image of operator 

(graph(L+B)0)n (H 1^ ) * H~r~1 (?)) 

is a subspace of H1"^""1 {£ ), 1 = 0,1,...,m+r+1. On the other 
hand, Proposition 3.1 says that the domain of operator 

(graph(L+B)0)n (H°(^)x H 1 " 1 " ^ ) ) 

is a subspace of Hence the conjunction of these sta-
tements is equivalent to the following equality 

graph(L+B)Qn (H°(|) * H 1"*" 1^)) = 

= grap(L+B)on (H 1^ ) x H~r"1(j>)) 
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i *1 <M 1 

and this subspaoe of H (^)vH " (p) is simply the graph 
of (L+B)j, 0 < 1 ^ m+r+1. 

Now we will prove a simple but useful lemma on algebraic 
decompositions of a Banach space. 

3.4. L e m m a . Let X be a Banach space and let < , > 
be a weak scalar product on X (i.e. a continuous, symmetric 
and strictly positive bilinear form). We assume that there 
exist two linear subspaces X^, X 2 c X such that X = X^+X2 and 
X1, X 2

 81,6 < »>-orthogonal. Then both subspaces X., and X2 
are closed in X, X 10 X 2 = {O}, i.e. the decomposition 
X = X^® Xg is topological. Moreover, X1 and X 2 are closed in 
the weak topology defined by <,> . 

P r o o f . Let us denote X1 := jye x|<y,y'> = 0 for 
any y'e X ^ . Since X̂ " is the intersection of kernels of the 
continuous functionals on X 

o P | ker(Xa y i—-cy,y'> e R) 

then X.j is closed in X, and is also closed with respect to 
the we$k topology. By the assumption X 2 c X1 . Now let ye X^ . 
We have y = y1+y2> where y^e X^ and y 2 e Xg. Of course 
<y1,7> = 0. On the other hand<y 1 fy> = <7i»7i> + <y 1 fy 2> = 
= <7l»7-|>f eo<7i»71> = 0« means that 7 1 * 0, so 7 = 7 2 e X 2 . 

J- X 
Thus we proved that X1 c X 2, so X1 a x2. Replacing the in-
dioes 1 and 2 in the above considerations, we obtain that 
X 2 = X.j, so the lemma follows. 

Now we give the theorem on decompositions defined by the 
perturbed elliptic operators. This theorem extends the result 
presented in { [10] , Tho. 7 of Chapter XI). 

3.5. T h e o r e m . Let m> ̂  + r and m> 2r. Let us 
take L e E r + 1 ( ^ ? ) and let B : — - H m ( ? ) he an r-th order 
differential operator with H m coefficients. Then for 0 « l < m 

H1(p) = ker(L*+B*)o © i o ( L + B ) • 
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Both subs paces in the above decomposition are closed and ortho-
gonal with respect to the weak soalar product <,>?. 

P r o o f . First note that L*e and 
B* : (?) — - Hm"r(i;) is an r-th order differential operator 
Hm~r coefficients, where m-r>and m-r^r. So L*+B* conti-
nuously extends to the operator (l*+B*)0 » H°(̂ >) — H~r_1 (£j) 
(cf. 3.1). We know by Proposition 3.1 that (L*+B*)0 is a Ered-
hol'm operator, so in particular it has a closed image. Then 
the (topological^) adjoint operator i H"r"1(|)'—-
——H°(g)' has also the closed image and, moreover, 

(x) im(L*+B*)0 = (ker(L*+B*){J)i , 

where the space on the right side is the space of all functio-
nal in H°(g>)' vanishing on ker(L*+B*)Q. We identify H°(?)' 
and H°(p) by <, >? (applying the Riesz theorem). Since < , 
extends to the duality oh H~r"1(g)x Hr+1(^), one obtains an 
isomorphism Hr+1 (£•) — H'r~1 )' . Then, composing (L*+B*)'0 
with the above isomorphism and the Riesz isomorphism, we obtain 
the continuous operator Hr+1 (̂  )—-H°(p). This operator is 
simply equal (L+B)r+^. Thus, the equality (x) and the above 
remarks imply the following decomposition 

H°(?) = ker(L*+B*)0©im(L+B)rv), 

where both subspaces are closed and < , >2 -orthogonal. 
Now, applying 3»3 to L*+B* instead of L+B and changing m 

into m-r, we obtain that ker(L*+B*)Q = ker(L*+B*)m+1. In par-
ticular, ker(L*+B*) c H1(p ) for any 0 ̂  1 ̂  m. 

Let P : H ° ( g ) — b e the orthogonal projector onto 
the 3ubspace ker(L*+B*)Q (defined by the above decomposition 
of H°(p)), Let we H1(^>)e H°(p). Then 

(w-Pw) e im(L+B)r+1e im(L+B)Q 
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and also (w-Pw)e H2^q ) (since Pw e Hm + 1{p)c H1(p J ) . By v i r t u e 
of Propos i t ion 3*1» we get the inc lus ion 

(L+B) 0 - 1 (w-P W )cH l + r + 1 (Ç) , 

so (w-Pw)e im(L+B)^+ r + 1 . Thus we obtain the decomposition! 

H ^ p ) = ker(L*+B*)Q + in(L+B)1 r 

By Lemma 3.4 both subspaces on the r i g h t side are closed i n 
and < -weakly c losed. 

4. Generalized Hodge decompositions 
Throughout t h i s seot ion D denotes a d i f f e r e n t i a l operator 

of order with i n f e c t i v e symbol (Dé Diffs(Ç,£>) ) . Then 
L := D*D i s the e l l i p t i c opera tor , L e E 2 s ( ^ , ^ ) . Let 
C s —-Hk({>) be a d i f f e r e n t i a l operator of order (s-1) 
with Hk c o e f f i c i e n t s . In t h i s seot ion we w i l l deal with the 

oo k 
operator D+C : C ) H (p ) . The purpose of t h i s sec t ion 
i s to prove the theorem giving a -decomposition of H2(p) ana-
logous to the Hodge decomposition. In our considera t ions the 
operator D+C w i l l play the same r o l e as the e x t e r i o r d i f f e r e n -
t i a t i o n d in the Hodge theory . 

Let us not ice tha t (D+C)* = D*+C* i s the operator with ] f _ ( o _ - 1 ) 

H ' c o e f f i c i e n t s . Hence, by v i r t ue of Proposi t ion 2 .2 , 
f o r k > - | + (s-1) the extension (D+C)*k : Hk(p ) -— Hk~s(% ) does 
ex i s t and the composition 

cT:= (D+C)*ko (D+C) î C°° (§ ) — Hk" s($ ) 

k-s 
i s the well defined d i f f e r e n t i a l operator with H c o e f f i -
c i e n t s . We have 

(D+C)£° (D+C) = D*D + (D*C+C*D+C£C), 

so denoting by 
B := D£C+ C*D + C£C 
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we ob ta in the e q u a l i t y 

« L+ B, 

where L i s an e l l i p t i c ope ra to r and B = C°° ) — H k " s ( g ) i s 
a d i f f e r e n t i a l ope ra to r of order r = 2s-1 wi th Hm c o e f f i -
c i e n t s (m = k - s ) . Now, applying Theorem 3 .5 f o r the opera -
t o r ^ , we ob ta in 

4 . 1 . P r o p o s i t i o n . Let k > y + 3s-1 and 
k > 5 s - 2 . Then f o r any 1 s a t i s f y i n g the i n e q u a l i t y s ^ l ^ k 
we have 

H 1 - B ( g ) = ker(o£*)0© im 

P r o o f . I f we s u b s t i t u t e m * k - s and r = 2s-1 i n 
Theorem 3 .5 then we o b t a i n t h i s s ta tement f o r oiT = L+B def ined 
above. 

4 . 2 . R e m a r k , As i s e a s i l y seen , Thus, 
by Coro l la ry 3 . 3 , we know t h a t ker(0r*)Q = ker =rQc H k + S { ^ ) . 
Hence the decomposit ion i n P r o p o s i t i o n 4 .1 can be r e w r i t t e n 
i n the fo l lowing form 

H 1 " 8 ^ ) = k e r ^ 0 © i m ^ 1 + a = ker JT1+8© im ^ . 

The subspace ker o?0 i s f i n i t e d imens iona l , s ince <XQ i s a Fred-
holm ope ra to r (see 3 . 1 ) . 

4 . 3 . L e m m a . Let k> ^ + 3s-1 and k > 5 s - 2 . Then 
f o r any 8 < U k 

im =T1+S = imiD^+C*)^. 

P r o o f . I t i s c l e a r t h a t o T 1 + s = (D*+C*)1(D+C)1+S. 
Thus 

im c ? 1 + s c im(D*+C*)1. 

Since f o r any we H 1 ^ ) and f o r any ve H 1 + S (p ) 

<(D*+C*)1w, v>$ = <w, (D+C)1+Sv>
? , 
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the subspaoes im^+C*)^ and ker(D+C)1+g are <-orthogonal. 
We observe that for any v e ker 

0 - < v , =<v, (D"+C,i)1(D+C)1+8v> = 

= <(D+C)1+BV, (D+C)1+SV>, SO (D+C)1+8V « 0. 

Thus ker ker(D+C)1+s. The inverse inclusions ker ^ 
3ker(D+C)1+g is trivial. Hence ker = ker(D+C)1+s. Since 
io(D*+C*)1 is weakly orthogonal to ker(D+C)1+ß = ker ¿i+Bt )*+C* 
it follows by 4.2 that 

im(D*+C*)2c im =?1+s. 

Composing the above inolusion with the inverse inclusion ob-
tained before, we prove the lemma. 

Now we are ready to state the main result of this paper: 
4.4. T h e o r e m . Let k,s and 1 be integers sa-

tisfying the following inequalities: k> -j + 3s-1, k»5s-2, 
s-sjl^sk. We assume that C : C°° (ij)—- Hk(f>) is a differential 
operator of order s-1 with H^ coefficients and D : — 
—-C°°{{>) is a differential operators of order a with in-
fective symbol. Then 

H 1 ^ ) = im(D+C)1+s© ker(D%C*)1. 

Both subspaces on the right aide are closed in H 1 ^ ) . More-
over, they are < -orthogonal and closed in the weak topology 
defined by < , >?. 

P r o o f . It is clear that 

HX(?) = (D*+C*)l-1(im(D*+C*)l). 

Hence, by Lemma 4.3, we obtain 

H1(i>) = (DJf+C*)l-1(im»ri+g) . (D*+C")l~1((0%Cw)l(im(D+C)l+g)) = 

= im(D+C)1+s + ker(D*+C*)^. 
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12 J. Rogulski 

It is easy to verify that im(D+C)1+g and ker^+C*)^ are 
<r,>? -orthogonal. How, applying Lemma 3.4, we prove our asser-
tion. 

4.5. C o r o l l a r y . rhe operator (D+C)1+S:H1+S{|)— 
—H^"(£>) has the closed image. 

We point out that there exist closed subspaces in 
(for 1>1), even finite dimensional, such that -orthogo-
nal subspaces to them are not complementary. It is also pos-
sible to construct a continuous linear operator H* + s(£)—— 

•l 
—»-H (p) that has a closed image, but this image does not 
admit a weakly orthogonal complementary subspace in 

Concluding, we would like to mention that the result pre-
sented in Theorem 4.4 oan be easily improved. For instanoe, 
the same decomposition we obtain for any D6lnts(^,p) such 
that L s= D"*D is an elliptic operator. On the other hand, 
the generalized Hodge decomposition given in Theorem 4.4 seems 
to be sufficient for many applications. 
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