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1. Fixed point theorems for ordered sets go back to a
theorem found in 1927 by Knaster and Tarski and presented in
Knaster [6] (see [6], Lemme (L)). That theorem, stating that
if h 1is a monotone mapping of a family of sets into itself
and A a set such that h(A)C A, then there exists a set DcA
such that h(D) = D, can be regarded as a step in the process
of consecutive generalisations of a theorem due to Bansch [2]
(see [2], Théoreme 1), among them Kuratowski [7] and Tarski
[12] (in Banach-Tarski [3] the use of the Banach theorsm
formed an essential ingredient of the apperatus), Sikorseki
[10] generalized finelly the Banach theorsm to 6-complete
Boolean algebras.

Tarski found in 1939 and published in 1955 (see [13], "the
lattice - theoretical fixpoint theorem"; announced in [14])

a generalisation of the Knaster~Tarski theorem to lattices
showing, in fact, that every complete lattice has the fixed
point property (meaning that each mapping f: L —L of a com-
plete lattice L into itself such that f(x)> f(y) whenever
x>y has a fixed point x , i.e., f(xo) = X,) and setting the
direction for the subsequent research (see [4] for the proof
of the converse theorem, i.e., that in the realm of lattices
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2 L.T, Polkowski

the fixed point property implies completeness and [ji] for

a generalization to Dedekind - complete structures). Many
authors, following the idea of Tarski, have proposed various
generalizations of the Tarski theorem and new concepts wers
developed. We do not intend to go into details here, a survey
of the literature on this subjeot along with a discussion of
some new ideas appears in Rival [10]; an exposition and com-
ments on the historical development of the subjeot will be
found in Dugundji and Granas [5]. Let us only mention here

a problem that has been posed, viz,, to characterise those
ordered sets that have the fixed point property (cf. [jo],
Problem 1).

2. We consider here finite ordered sets. For a finite
ordered set P, we consider the set < (P) of all non-empty chains
of elements of P and we define a graph G(P) having Z(P) as the
set of vertices. We give in terms of G(P) a condition, suffi-
cient for P to have the fixed point property. We conjecture
this condition to be alsc necessary. 4s an application, we
consider the class of dismantlable finite ordered sets - as
shown in Rival [9] (see [9], Corollary 2) those sets have the
fixed point property; we show that every dismantlable finite
ordered set satisfies our condition,

Following Kuratowski and Mostowski ES], by a graph G on
a get of vertices V we mean an antireflexive and symmetric
relation GC:V2 and, for a vertex v, we denote by K(v), resp.
L{(v), the star of v in G, resp. the antistar of v in G,
i.e.,

K(v) = {ye V] (v, yle G} and L{v) ={ yevl(v, y)¢ G}!

we shall occasionally write K{v, G) to denote the star of v
in G when two or more graphs are discussed. We let G’ = V2‘\G
and we shall say that G’ is the complement of the graph G. We
shall use occasionally the symbol V(G) to denote the set V
of vertices of the graph G and, for a finite set X, we denote
oy [X| the cardinality of X.
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Fixed point property 3

Our terminology concerning fixed point theory follows
that of [5]; in particular, a mapping f: P —P of an ordered
set P into itself is said to be isotone if x>y implies f(x)=
=f(y) for each pair x, y of elements of P.

3. To begin with, consider a non-empty finite ordered
set P. We define a graph G(P)C X (P)2 by letting

G(P) = {(K, L)e < (P)2IKNL = (6}.

We start with the feollowing proposition, For g graph G on a
set V, by an endomorphism h: G — G (mod G) of the complement
G' of the graph G modulo the graph G we shall mean a mapping
h of the set V into itself such that (v, h{v))e G for each
veV and if v, e L(vg), then h(v1)e L(h(vz)) for each pair

Vis Vo of elements of V {(such an h 1is to be understood ss
an endomorphism of the relational system <V, G>, cf, [8],
“Che II, § 10, satisfying an additional requirement).

Proposition 1. Let P be a finite ordered
set, If there exists an isotone mapping f: P — P that has no
fixed point, then there exists an endomorphism h: G(P) —=
—=G{P) (mod G(P)).

Proof., It suffices to observe that if an isotone
mapping f: P—=P has no fixed point, then LNf(L) = ¢ for
each chein L of elements of P and let h(L) = f{L)} for each
Le L(P),

4., We now consider a graph G on a set V. We show that the
problem of existence of an endomorphism of G' modulo G can be
reduced to the problem of the existence of an endomorphism
k: G(win)'—=G(min) (mod G(min)) for a minimsl, in a senss,
subgraph G{min) of the graph G.

For ve V and for we K(v), we shall say that w is an
attractor for v 1if the following condition is satisfied:
for each ue L{v), either we K(u) or there exists z ¢ K(u)
such that wel(z).
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For veV, we denote by K*(v) the set of attractors for v,
i.0.,

K*(v) = {we&K(v)I w is an attractor for v};

we shall occasionally write K*(v, G) when two or more graphs
are concerned. The notion of an attraotor can be used to etate
a condition, necessary for the existence of an endomorphism
of ¢' modulo G. :
Proposition 2. If there exists an endomor=
phism h: G¢'—= G’ (mod G), then K¥(v)f£ ¢ for every veV.
Proof. Indeed, if there was v e V with K*(vo) = ¢,
then h(vo) could not be an attractor for Voo 8 contradiction,
We shall say that a graph G on a set V satisfies condi-
tion (4) if K*(v) # ¥ for every veV,
For e graph G on a set V, we consider the set X(K) =
= {K(v)lve V} ordered by inclusion < . We shall say that
a vertex veV is G-minimal if the star K(v) is a minimal ele=-
ment in the ordered set X(G). For a subset W of the set V,
we define a subgraph G|!W by letting

Glw = {(x. y)e W(x, 3)ecf.

Lettdng V* = {veV| v is G-minimal} and G* = GIV*, we define
the subgraph G* of G. The following theorem shows that G can
be reduced to G* when the problem of the existence of an endo-
morphism of G' modulo G is concerned.

"The orem 1. &n endomorphism h: G'— G’ (mod G)
exists if and only if an endomorphism k:(G*) —= (G*)' (mod G )
exists,

Proof. We suppose first that an endomorphism
h: G'—= G’ (mod G) exists and we check that the thres following
auxiliary statements are true.

Statement I, Let vertices u,, w,, u,, W, be
such that u,e L(w1), K(uz)c:K(u1) and K(WZ)C:K(W1). Then w2
heve u, € L{w,).
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Fixed point property 5

Statement 11, Let vertioces v, w4 and W, be
such that w, is an attractor for v and K(w2)c:K(w1). Then
L2 is an attractor for v.

It should be noted, in particular, that if w,e K*(v),
then there exists a G-minimal vertex w,e K*(v) with the pro=-
perty that K(wy)CK(w,).

Statement 111, Let versices Vis Wqy B4y Vo Wy
and u, be such that v, is an attractor for Vis Wy is an attrac-
tor for v,, K(u1)c K(w1),'K(u2)c:K(w2) and w1<sL(w2). Then u,
is an attractor for v, u, is an attraotor for v, and u;e L(uzh

It should be observed, in partigular, that if wy 1s an
attractor for v,, W, is an attractor for v, and w,e L(wz),
then there exists G-minimal vertices u, and uo with K(u1)c
C K(w,) and Kluy)c K(we) such that u, is an attractor for
Vqs u, is an attractor for v, and u,e L(uz).

Returning to the endomorphism h: G'—=G'(mod G), for each
ve V, we choose a vertex k(v) such that

(i) € k(v)e K(v) and K(k(v))c K(h(v));

(ii) k(v) is G-minimal,

Thie defines k: G'— G (mod G); it follows from (1) that
(v, k(v))e G for each ve V and Statement III along with (i)
and (ii) implies that, for a pair v,, v, of vertices of G such
that v,e L(vz), we have h(v1)e L(h(vz)) and thus k(v1)e
€ L(k(v2)). The restriction k|V™ defines an endomorphism
k: (6*)—=(G*)' (mod G¥).

To prove the converse, suppose that there exists an endo-
morphism k: (G*)— (6*) (mod G*) and observe that the follow-
ing statement holds.

Statement iv, Let vertices v, w and w, be such
that v is an attractor for w and K(w)c K(w1). Then v is
an attractor for Wae

For ve VN\V¥, choose a vertex 1l(v}) such that

(iii) K(2(v))cK(v);

(iv) 1(v) is G-minimal,
and extend 1 to V by letting 1l(v) = v for ve V™,
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Statement IV permits us to define h: G'—~G' (mod G) by
letting

h(v) = k(1{v)) for veV;

clearly, (iii) implies that (v, h(v)) ¢ G for each ve V and
if vertioces Vqis V, are such that Ve L(v2), then, by State-
ment I, 1(v,)e L(1(vp)) and thus h(v,)e L(h(v,)) which com-
pletes the proof.

It should be noted that the sscond part of the proof of
Theorem 1 ylelds the followling extension property of endo=
morphisms, _

Corollary 1. For each endomorphism h:(G*)—=
—= (G*)' (mod G*) there exists an endomorphism h: G'— G’ (mod G)
such that h(v) = h(v) for each ve V¥and h(V) = h(V*).

To carry the reduction further, consider a graph G over
a set V along with an squivalence relation ¥ defined by
letting vXw if K(v) = K(w) for each pair v, w of elements
of V. For each class of equivalence v,, the graph (}IvJc is
empty (cf. Remark after Statement I in the proof of Theorem 1)
and this fact permits us to define a new graph G, on the
set V, of equivalence classes of X as follows

(Vs Wy)e Gy if and only if (v, w)e G.

The following proposition permits us to identify in G ver-
tices whose stars are equal when the problem of existence of
an endomorphism of G' modulo G is concerned.

Proposition 3. An endomorphism h: ¢ —

— G’ (mod G) exists if and only if an endomorphism
k: Gy — Go¢ (mod Gx) exists.
The proof is obvious.
The tower of a finite graph G is a sequence G’:’,(}1,...,Gk

of graphs such that G, = G, Gj+

= (G;)x; we denote G, by the symbol G(min), Theorem 1 along
with Proposition 3 implies the following

1= (GS‘)JC for j<k and G =
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Proposition 4, There exists an endomorphism
of G' modulo G if and only if there exists an endomorphism
of G(min)’ modulo G(min).

5e Wa state here a fixed point theorem for ordered sets.
Proposition 1 and Proposition 4 imply

Theorem 2. Let P be a finite ordered set, If
there is no endomorphism of G(P)(min)’ modulo G(P)(min), then
P has the fixed point property.

Proposition 2 ylelds

Corollary 2., If G(P)(min) does not satisfy
condition (A), then P has the fixed point property; in parti-
cular, if [V(G(P)(min))| = 1, then P has the fixed point pro-
perty.

Remark 1, It may be observed that it follows from
the above discussion that each vertex of the graph G{(P)* is
a maximal chain of elements of P; in partioular, if no element
of P is simultaneously minimsl and maximal, then no chain of
cardinslity equal to 1 is a vertex of G(P)*,

6. To give an application of results of Section 5, we
consider finite ordered sets having the property of dismantla-~
bility (see [1], for the proof that those sets have a stronger
fixed point property). We recall that an element a of an
ordered finite set P is said to be irreducible if either a
has exactly one predecessor or a has exactly one successor
and that P is sald to be dismantlable if P can be represented
as the sat {30,31,a2,...,an} with a, irreducible in P anda a;
irreducible in P\\{ao,a1,...,aj_1} for j = 1,25e04,0=1, We
show that every dismantlable finite ordered set P has the pro=-
perty that no endomorphism of G(P)' modulo G(P) exists.

Proposition 5 If a finite ordered set P
is dismantlabla, then |V(G(P){(min)}) = 1.

Proof. By induction n = [P|. We begin with the
case n = 2 and in this case the proposition is manifest., We
assume that the proposition is true in the case when n<k
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and consider a dismantlable set P with |P| = k+1, i.e0.,
P = {30'31""’3‘1:}’ where a, is irreducible in P and aj is
irreducible in P\{a 1819000,8s

3_1} TOP 3 = 1,2,000 kn1s
Clearly, P.I = P\{aof is dismantlable, hence, by the inductive
assumption, |V(G(P4)(min))| = 1. We examine graphs G(P)* and
G.(P1)*; to this end, we consider sets < (P) and I(P1). For

a chain LCP, which has the property that LU{ o} is a chain
of elements of P we let L* = LU {ao}; we let <« = oZ’(P ) and we

denote by ; the set {Le | L* is defined}. For chor1, we

let M7= {L | Leﬂ}. The following sets of chains form a
partition of the set «(P):

(a) the set o ;

(b} the set J?;

(c) the set {{ao}} ;

it follows that
(1) K(L*, G(P))

K(L, G(P1)) for each L e Z,;

(11) X(L, G(P)) = K(L, 6(P,))U [K(L, &(P,)) 0 °o1]*u {{ao}}
for each L¢ £, which implies the following two state-
ments.

Statement I, IfLeJandL¢J1,thenLiB
G(P)=minimal if and only if L is G(P1)-minimal.

Stetement II, IfLe Ly then L™ is G(P)-mi-
nimal when L 1is G(P1)-minima1.

Statements I and II along with Remark 1 and the irredu-
cibility of a, imply that the graph G(P)* can be produced from
the grapn G(P, )* by replacing those L for which L™ is defined
with L™ and adding L* that are G(P)-minimal with L not G(Py)~
-minimal and thus, by Remark 1 again, G(P)** = G(P,)™, which,
by the inductive assumption, is sufficient to complete the

proof.

7o In Theorem 2 and Corollary 2, ahlove, some conditions
for a finite ordered set P sufficient for P to have the fixed
point property are stated. We conjecture that the condition
stated in Theorem 2 is also necessary.
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Conjecture. & finite ordered set P has the fixed point
property if and only if there is no endomorphism of G(P)(amin)
modulo G(P)(min),

It should be observed that the proof of Proposition 5 can
be carried on in a more general setting, viz., we shall call
a class P of finite ordered sets decomposable if for each
Pe P there exists an element ac P such that P\{a}e P ;
clearly, Proposition 5 remains true for any decomposable
class P with the property that every P in 2 has the fixed
point property.

The interplay between ordered sets and graphs revealed
in Section 4 turns our attention to the gquestion of existence,
for a given graph é, of an endomorphism of G modulo G. 4s
shown in Proposition 2 the condition that G satisfy condition
(o) is necessary but it ie not sufficient as the following
example shows,

Example 1. LetV={a, b, ¢, d, e, f, g, h, i}
and G = {(a, d), (e, e), (b, £), (b, &), (c, h), (c, i),

(a, &), (e, £}, %4, i), (e, n), (£, h), (8, i)}. The graph G
satisfies condition (A) and yet there is no endomorphism of
G modulo G.

The following proposition clarifies the role played by
condition A. For a set V and a natural number k, we let
[VJk = {ACZVIlAI = k}. Let G be a graph on a set V; we say
that G admits k - seleotion if, for each A e[v]k, there exists
a mapping £f: 4 —V such that f(v)e K*(v) for each ve & and,
for each pair Vi Vo of elements of 4, if Vi€ L(v2), then
£{vy)e L(f(v,)).

Proposition 6., For each finite graph G we
have: G admits 2-selection if and only if G™ satisfies condi-
tion (4).

Proof. If G admits no 2~selection consider a pair
Vqs Vy Of vertices such that vy€ L(va) and w, € K(w2) for each

w, e K*(v1) and every w,e¢ K*(v2); one can suppose that v, and

v, are G-minimal of. Statements I and IV in the proof of

-73 =
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Theorem 1 and thus K*(v1, G¥) = ¢ = K*(vz, G*). To prove the
converse, suppose that G admits 2-selection and consider a
G-minimal vertex v as well as a G-minimal vertex we K*(v, G).
For each G-minimal vertex ue L(v) choose a G-minimal vertex
E.le K*(u, G); clearly, He L(w) and thus we K*(v, G¥) so that

G* satisfies condition (A) and the proposition is proved.

One cannot proceed further along the lines of Proposi-
tion 6 as Example 1 shows: the graph G therein admits no
3-selection.

The following problem deserves thus attention not only
in the graph - theoretical context - in the light of Theorsem 2
ite solution would shed 1light on the structure of finite
ordered sets having the fixed point property. By Theorem 1,
we can restrict ourselves to graphs whose vertices are all
minimal,

Problen 1o Let G be a finite graph and G =
= G(min). What condition on the set X(G) = {K(v)lve V(G)}
is equivalent to the existence of an endomorphism of G’ mo-
dulo G? )

Let us observe that Problem 1 can be stated in terms of
choice functions, viz,, let X be a finite set and K =
= {K(x)lxe X} a cover of X such that x ¢ K(x) for each xeX,
if xeX{y), then yec K(x) for each pair x, y of elements of
X and K(x)NK(y) # ¢ # K{y) \K(x) for each pair x, y of ele~-
ments of X; what condition on K is equivalent to the existen-
ce of a choice function h for K such that, for each psair
X, y of slaments of X, if x¢ K(yi, then k(x) ¢ K{h{y})?

Problem 1 has a counterpart for infinite graphs.

Problem 2, Characterise those infinite graphs
having the property that there exists an endomorphism of the
complement modulo the given graph.

Let us finally observe that the results stated above are
valid for infinite ordered sets having the property that there
exists a naftural number k such that each ochain of elements
of the given set intersects at most k other chains,
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