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1, Fixed point theorems f o r ordered s e t s go back to a 
theorem found in 1927 by Knaster and Tarski and presented i n 
Knaster [6] (see [6]» Lemme (L) ) . That theorem, s t a t i n g tha t 
i f h i s a monotone mapping of a family of s e t s i n t o i t s e l f 
and A a set such tha t h(A)c A, then there e x i s t s a se t DcA 
such tha t h(D) = D, can be regarded as a s tep in the process 
of consecutive gene ra l i s a t i ons of a theorem due to Banaoh [2] 
(see [_2~], The ore me 1) , among them Kuratowski [7] and Tarski 
[12] ( in Banach-Tarski [3] the use of the Banaoh theorem 

formed an e s s e n t i a l ingredient of the appara tus ) . S ikorski 
Qio] general ized f i n a l l y the Banaoh theorem to 8-complete 
Boolean a lgebras . 

Tarski found in 1939 and published in 1955 (see [13], "the 
l a t t i c e - t h e o r e t i c a l f i xpo in t theorem"; announced i n [14]) 
a gene ra l i s a t i on of the Knaster-Tarski theorem to l a t t i c e s 
showing, in f a c t , t ha t every complete l a t t i c e has the f ixed 
point property (meaning tha t each mapping f : L —— L of a com-
plete l a t t i c e L in to i t s e l f such tha t f ( x ) > f ( y ) whenever 
x > y has a f ixed point xQ , i . e . , f (x Q ) = x0) and s e t t i n g the 
d i r e c t i o n f o r the subsequent research (see £4] f o r the proof 
of the converse theorem, i . e . , tha t in the realm of l a t t i c e s 
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2 L.T. Polkowski 

the fixed point property implies completeness and [15] for 
a generalization to Dedekind - complete structures). Many 
authors, following the idea of Tarski, have proposed various 
generalizations of the Tarski theorem and new concepts were 
developed. We do not intend to go into details here, a survey 
of the literature on this subject along with a discussion of 
some new ideas appears in Rival [10] ; an exposition and com-
ments on the historical development of the subject will be 
found in Dugundji and Granas [5]. Let us only mention here 
a problem that has been posed, viz., to characterise those 
ordered sets that have the fixed point property (cf. [10], 
Problem 1). 

2. We consider here finite ordered sets. For a finite 
ordered set P, we consider the set<^*(P) of all non-empty chains 
of elements of P and we define a graph G(P) having •Z'(P) as the 
set of vertices. We give in terms of G(P) a condition, suffi-
cient for P to have the fixed point property. We conjecture 
this condition to be also necessary. As an application, we 
consider the class of dismantlable finite ordered sets - as 
shown in ftival [9] (see |jj], Corollary 2) those sets have the 
fixed point property; we show that every dismantlable finite 
ordered set satisfies our condition. 

Following Kuratowski and Mostowski [_8], by a graph G on 
a set of vertices V we mean an antireflexive and symmetric n 
relation GcT and, for a vertex v, we denote by K(v), reap. 
L(v), the star of v in G, resp. the antistar of v in G, 
i.e., 

K(v) = {ye V | (v, y)e G} and L( v) = { y e V I (v, y) 4 g} J 

we shall occasionally write K(v, G) to denote the star of v 
f o 

in G when two or more graphs are discussed. We let G' = V \G 
and we shall say that G' is the complement of the graph G=, We 
shall use occasionally the symbol V(G) to denote the set V 
of vertices of the graph G and, for a finite set X, we denote 
by IXI the cardinality of X. 

- 66 -



Fixed point property 3 

Our terminology concerning fixed point theory follows 
that of [ 5 ] ; in particular, a mapping f: P — ~ P of an ordered 
set P into itself is said to be isotone if x^y implies f(x)> 
^f(y) for each pair x, y of elements of P. 

3 . To begin with, consider a non-empty finite ordered 
set P. We define a graph G(P)c ¿(p)2 by letting 

We start with the following proposition. For a graph G on a 
set V, by an endomorphism h: G'—•- G' (mod u) of the complement 
G' of the graph G modulo the graph G we shall mean a mapping 
h of the' set V into itself such that (v, h(v))e G for each 
v e V and if v^ e L(v2), then h(v1)e L(h(v2)) for each pair 
v.j, Vg of elements of V (such an h is to be understood as 
an endomorphism of the relational system <V, G'> , cf. [ _ Q ~ ] , 
Ch. II, § 10, satisfying an additional requirement). 

P r o p o s i t i o n 1. Let P be a finite ordered 
set. If there exists an isotone mapping f: P — P that has no 
fixed point, then there exists an endomorphism h: G(P)'—-
—~G(P) (mod G(P)). 

P r o o f . It suffices to observe that if an isotone 
mapping f: P—«-P has no fixed point, then LHf(L) = 0 for 
each chain L of elements of P and let h(L) = f(L) for each 
Le <*T(P). 

4. We now consider a graph G on a set V. We show that the 
problem of existence of an endomorphism of G' modulo G can be 
reduced to the problem of the existence of an endomorphism 
k: G(min)'—-G(min)' (mod G(min)) for a minimal, in a sense, 
subgraph G(min) of the graph G. 

For ve V and for we K(v), we shall say that w is an 
attract or for v if the following condition is satisfied? 
for each ueL(v), either we K(u) or there exists zeK(u) 
such that w e L(z)* 
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4 L.T. Polkowski 

For v e V , we denote by K*(v) the set of a t t r a c t o r s f o r v, 
i . e . , 

K*(v) = | w e K ( v } | v i s an a t t r a c t o r f o r v j j 

we s h a l l occasional ly wri te K*(v, G) when two or more graphs 
are concerned. The notion of an a t t r a o t o r can be used to s t a t e 
a oondi t ion , neoessary f o r the exis tenoe of an endomorphism 
of G' modulo G. 

P r o p o s i t i o n 2. I f there e x i s t s an endomor-
phism h : G '— G'(mod G), then K * ( v ) / 0 f o r every v e V. 

P r o o f . * Indeed, i f there was vQe V with K*(vQ) ® 0, 
then h(vQ) could not be an a t t r a c t o r f o r vQ , a c o n t r a d i c t i o n . 

We s h a l l say that a graph G on a se t V s a t i s f i e s condi-
t i o n (A) i f K*(v) J ft f o r every v e V. 

For a graph G on a se t V, we consider the se t 3C(k) = 
= {k(V)IV6 v} ordered by inc lus ion c . We s h a l l say t h a t 
a ver tex v e V i s G-minimal i f the s t a r K(v) i s a minimal e l e -
ment in the ordered s e t X ( G ) . For a subset W of the se t V, 
we def ine a subgraph GlW by l e t t i n g 

G|W = { ( * , y ) e W2 | (x, y ) e g}. 

Let t ing V* = { v e V | v i s G-minimal} and G* = GlV*t we def ine 
the subgraph G* of G. The following theorem shows tha t G can 
be reduced to G* when the problem of the exis tence of an endo-
morphism of G' modulo G i s concerned. 

T h e o r e m 1. An endomorphism h: G'—^G'(mod G) 
e x i s t s i f and only i f an endomorphism k:(G*)'—^(G*)' (mod G ) 
e x i s t s . 

P r o o f . We suppose f i r s t tha t an endomorphism 
h : G'—«-G'(mod G) e x i s t s and we check tha t the three fol lowing 
aux i l i a ry statements are t r u e . 

S t a t e m e n t 1. Let v e r t i c e s u^, w^, u 2 , w2 be 
such tha t u.j e L(w^), K( u2) c K( u.j) and K(w 2)cK(w 1) . Then wc 
have UjE Lfwj)« 
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Fixed point property 5 

S t a t e m e n t I I . Let v e r t i c e s v , w1 and w2 be 
such that w1 i s an a t t rac tor f o r v and K(w2)c K(w.|). Then 
Wg i s an a t trac tor f o r v . 

I t should be noted, i n part icu lar , that i f w1e K*(v), 
then there e x i s t s a G-minimal vertex w 2 eK*(v ) with the pro-
perty that K(w 2)c K(w.,). 

S t a t e m e n t I I I . Let v e r t i c e s v 1 , w 1 , u,,, v 2 , w2 

and u2 be such that w1 i s an a t t rac tor f o r v 1 t w2 i s an a t t r a o -
t o r for v 2 , K(u.j )c K(w^), K f u g l c ^ ) and w. , eL(w 2 ) . Then a1 

i s an a t t rac tor for v 1 , u2 i s an a t traotor for v 2 and u 1 e Lfug). 
I t should be observed, i n par t i cu lar , that i f w^ i s an 

a t t rac tor f o r v.,, w2 i s an a t t rac tor f o r v 2 and w ^ L(w2) , 
then there e x i s t s G-minimal v e r t i c e s u1 and u2 with K(u.j)c 
c K(w1) and K (u 2 ) cK (w 2 ) suoh that u1 i s an a t t rac tor f o r 
v .j , u2 i s an a t t rac tor f o r v 2 and u., e Llug) . 

Return ing to the endomorphism hs G' —— G'(mod G), f o r each 
v e V , we choose a v e r t e x k(v) suoh t h a t 

( i ) e k ( v ) e K(v) and K ( k ( v ) ) c K ( h ( v ) ) j 
( i i ) k(v) i s G-minimal. 
This d e f i n e s kr G ' -— g ' (mod G)j i t f o l l o w s from ( i ) t h a t 

(v , k ( v ) ) e G f o r each v e V and Statement I I I along wi th ( i ) 
and ( i i ) i m p l i e s t h a t , f o r a p a i r v^ , v 2 of v e r t i c e s of G suoh 
t h a t v ^ L f v g ) , we have h ( v 1 ) £ L (h (v 2 ) ) and thus k f v ^ J e 
e L ( k ( v 2 ) ) . The r e s t r i c t i o n k l v * d e f i n e s an endomorphism 
k: (G*)' — ( G * ) ' (mod G*}. 

To prove the conver se , suppose t h a t t he re e x i s t s an endo-
morphism k; (G*)'—- (G*)' (mod G*) and observe t h a t the f o l l o w -
ing s ta tement h o l d s . 

S t a t e m e n t IV. Let v e r t i o e s v , w a n i w^ be such 
t h a t v i s an a t t r a c t o r f o r w and K(w)c K(w.j). Then v i s 
an a t t r a c t o r f o r w ^ 

For v e V W * , choose a ve r t ex l ( v ) such, t h a t 
( i i i ) K ( l ( v ) ) c K(v); 
( i v ) l ( v ) i s G-minimal, 

and extend 1 t o V by l e t t i n g l ( v ) = v f o r v e V*. 
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6 L.T. Polkowski 

Statement IV permits us to define h: G '—- G' {mod G) by 
l e t t i ng 

h (v ) * k ( l { v ) ) f o r v e V| 

c l ea r l y , ( i l l ) implies that ( v , h ( v ) ) e G f o r eaoh v e V and 
i f vert ices v^, v2 are such that v^e L ( v g ) , then, by State -
ment I , L(v.|)€ L ( 1 (V 2 ) ) and thus h { v 1 ) e L ( h ( v 2 ) ) which com-
pletes the proof. 

I t should be noted that the second part of the proof of 
Theorem 1 y ie lds the fol lowing extension property of endo-
morphisms. 

C o r o l l a r y 1. For each endomorphism ht(G*) '— 
— ( G * ) ' (mod G*) there exists an endomorphism hj G'—~G'(modG) 
such that h (v ) = h (v ) f o r each v e V*and ii(V) = h ( V * ) . 

To carry the reduction further , oonsider a graph G over 
a set V along with an equivalence re l a t ion X defined by 
l e t t ing v X v i f K(v) = K(w) f o r each pair v , w of elements 
of V. For each class of equivalence v x , the graph G|vx i s 
empty ( c f . Remark a f t e r Statement I in the proof of Theorem 1) 
and this fact permits us to define a new graph G^ on the 
set Vx of equivalence classes of X as fo l lows 

(vx, wx) e G^ i f and only i f ( v , w)e G. 

The fol lowing proposition permits us to ident i fy in G ver -
t ices whose stars are equal when the problem of existenoe of 
an endomorphism of G' modulo G i s concerned. 

P r o p o s i t i o n 3. An endomorphism ht G —— 
—— G' (mod G) exists i f and only i f an endomorphism 
ks G'x ~ g £ (mod Gx) ex i s t s . 

The proof i s obvious. 
The tower of a f i n i t e graph G i s a sequence G ,G 1 , . . . ,G j c 

of graphs such that GQ = G, = fo r k and Gk = 

= ( g £ ) x ; we denote G^ by the symbol G(min). Theorem 1 along 
with Proposition 3 implies the fol lowing 

70 -



Fixed point property 7 

p r o p o s i t i o n 4. There e x i s t s an endomorphism 
of G' modulo G i f and only i f there e x i s t s an endomorphism 
of G(min)' modulo G(min). 

_5. We s t a t e here a f ixed point theorem f o r ordered sets* 
Proposi t ion 1 and Proposi t ion 4 imply 

T h e o r e m 2. Let P be a f i n i t e ordered s e t . I f 
there i s no endomorphism of G(P)(>min)' modulo G(P)(min), then 
P has the f ixed point property. 

Proposi t ion 2 y i e l d s 
C o r o l l a r y 2. If G(P)(min) does not s a t i s f y 

condi t ion (A), then P has the fixed point property} in p a r t i -
c u l a r , i f I V(G(P)(min) )l = 1, then P has the f ixed point pro-
per ty . 

R e m a r k 1. I t may be observed tha t i t fol lows from 
the above discussion tha t each ver tex of the graph G(P)* i s 
a maximal chain of elements of P; in p a r t i c u l a r , i f no element 
of P i s simultaneously minimal and maximal, then no chain of 
c a r d i n a l i t y equal to 1 i s a vertex of G(P)*. 

j>. To give an app l i ca t ion of r e s u l t s of Section 5, we 
consider f i n i t e ordered s e t s having the property of dismant la-
b i l i t y (see [ l ] , f o r the proof tha t those s e t s have a s t ronger 
f ixed point proper ty) . We r e c a l l tha t an element a of an 
ordered f i n i t e set P i s said to be i r r educ ib le i f e i t h e r a 
has exact ly one predecessor or a has exact ly one successor 
and that P i s said to be dismantlable i f P can be represented 
as the set j a

0 » a i » a 2 » • • • » a n ) a
0 i r r educ ib l e in P ana a^ 

i r r educ ib l e in P \ | a
0 » a

1 » • • • » a j _ i | f o r 3 = 1 , 2 , . . . , n - 1 . We 
show that every dismantlable f i n i t e ordered set P has the pro-
perty tha t no endomorphism of G(P)' modulo G(P) e x i s t s . 

P r o p o s i t i o n 5. If a f i n i t e ordered se t P 
i s dismantlable», then | V(G(P) (min))| = 1. 

P r o o f . By induct ion n = | P | . We begin with the 
case n = 2 and in t h i s case the proposi t ion i s manifes t . We 
assume tha t the proposi t ion i s t rue in the case when n i k 
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8 L . T . Polkowski 

and c o n s i d e r at d i s m a n t l a b l e s e t P wi th |Pl = k+1, i . e . , 
F = | a 0 , a ^ , . . . » a ^ j , where aQ i e i r r e d u c i b l e i n P and a^ i s 
i r r e d u c i b l e i n P \ |a , a 1 , . . . » a ^ | f o r j = 1 , 2 , . . . , k - l . 
C l e a r l y , P^ = P \ { a Q [ i s d i s m a n t l a b l e , h e n c e , by the i n d u c t i v e 
a s s u m p t i o n , | V ( G ( P 1 ) ( m i n ) ) I = 1 . We examine graphs G ( P ) * and 
G{ F^ ) * ; to t h i s end, we c o n s i d e r s e t s = ^ ( P ) a n d . / f P ^ . F o r 
a c h a i n L c p ^ which has the proper ty t h a t LU |a0} i s a c h a i n 
o f e l e m e n t s o f P we l e t L * = LU {aQ J ; we l e t = «¡"(P^) and we 
denote bycf^ the s e t { l g c H L* i s d e f i n e d ] . F o r J l c < £ ^ t we 

l e t { l * | l e i i ) , The f o l l o w i n g s e t s o f c h a i n s form a 
p a r t i t i o n o f t h e s e t < / ( P ) : 
( a ) the s e t <£ ; 
( b ) the s e t c?*; 
( c ) the s e t { { a j } { 
i t f o l l o w s t h a t 
( i ) K ( L * , G(P) ) = K(L, G(P^)) f o r each L e } 

( i i ) K(L, G(p) ) = K(L, G( P^) ) U [K(L , G(P. , ) ) 0 { { a Q } } 
f o r each L i / , which i m p l i e s t h e f o l l o w i n g two s t a t e -
ments . 

S t a t e m e n t I . I f L e / and L 4 ^ » t h e n L i s 
G ( P ) - m i n i m a l i f and only i f L i s G ( P 1 ) - m i n i m a l . 

S t a t e m e n t I I . I f L e then L * i s G ( F ) - m i -
nimal when L i s G ( P 1 ) - m i n i m a l . 

S t a t e m e n t s I and I I a long w i t h Remark 1 and the i r r e d u -
c i b i l i t y o f aQ imply t h a t the graph G ( P ) * can be produced f r o m 
the graph G ( P J X by r e p l a c i n g t h o s e L f o r which L * i s d e f i n e d 
wi th L * and adding L * t h a t a re G(P) -min imal w i t h L not G ( P . , ) -
- minimal and t h u s , by Remark 1 a g a i n , G ( P ) * * = G ( P . , ) * * p which , 
by the i n d u c t i v e a s s u m p t i o n , i s s u f f i c i e n t t o complete t h e 
p r o o f . 

_7. I n Theorem 2 and C o r o l l a r y 2 , ahove , some c o n d i t i o n s 
f o r a f i n i t e ordered s e t P s u f f i c i e n t f o r P t o have the f i x e d 
point proper ty a r e s t a t e d . We c o n j e c t u r e t h a t t h e c o n d i t i o n 
s t a t e d i n Theorem 2 i s a l s o n e c e s s a r y . 
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Conjecture. A f i n i t e ordered set P has the fixed point 
property i f and only i f there i s no endomorphism of G ( P ) ( m i n ) 
modulo G(P)(min). 

I t should be observed that the proof of Proposition 5 can 
be car r ied on in a more general s e t t i n g , v i z . , we shal l c a l l 
a c l a s s J0 of f i n i t e ordered s e t s decomposable i f for each 
P e there e x i s t s an element ae P suoh that P \ { a } e P ; 
c l e a r l y , Proposition 5 remains true for any decomposable 
c l a s s P with the property that every P in IP has the fixed 
point property. 

The interplay between ordered s e t s and graphs revealed 
in Section 4 turns our a t tent ion to the question of ex is tence , 
for a given graph G, of an endomorphism of G modulo G. As 
shown in Proposition 2 the condition that G s a t i s f y condition 
(A) i s necessary but i t i s not s u f f i c i e n t as the following 
example shows* 

E x a m p l e 1. L e t V = { a , b , c , d, e , f , g , h, i ] 
and G = { ( a , d ) , ( a , e ) , (b, f ) , (b, g ) , ( c , h ) , ( c , i ) , 
(d, g ) , ( e , f ) , *(d, i ) , ( e , h ) , ( f , h ) , (g , i ) } . The graph G 
s a t i s f i e s condition (A) and yet there i s no endomorphism of 
G mod ulo G. 

The following proposition c l a r i f i e s the ro le played by 
condition A. For a set V and a natural number k, we l e t 
[ v ] k = {AcV| IAI = k } . Let G be a graph on a set V; we say 
that G admits k - s e l e c t i o n i f , f o r each A e [v]k, there e x i s t s 
a mapping f : A——V suoh that f ( v ) e K*(v) f o r each v e A and, 
for each pair v^, v 2 of elements of A, i f v ^ L f V g ) , then 
f ( v ^ ) 6 L(f(Vg))• 

P r o p o s i t i o n 6 . For each f i n i t e graph G we 
have: G admits 2 - s e l e c t i o n i f and only i f G* s a t i s f i e s condi-
t ion (A). 

P r o o f . I f G admits no 2 - s e l e c t i o n consider a pair 
v . , v„ of 

v e r t l o e s suoh that v^ e LiVg) and ŵ  £ K(w2) f o r each 

w^e K ( v 1 ) and every Wgf K ( v 2 ) ; one can suppose that v1 and 

Vp are G-minimal o f . Statements I and IV in the proof of 
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Theorem 1 and thus K*(v.,, G*) = 0 = K*(v2, G*). To prove the 
converse, suppose tha t G admits 2 - se l eo t ion and consider a 
G-minimal vertex v as wel l as a G-minimal ver tex we K*(v, G). 
For each G-minimal ver tex ue L(v) choose a G-minimal ver tex 
u.j 6 K*(u, G); c l e a r l y , ueL(w) and thus weK*(v, G*) so that 

G* s a t i s f i e s condi t ion (A) and the proposi t ion i s proved. 
One cannot proceed f u r t h e r along the l i n e s of Proposi-

t i o n 6 as Example 1 shows: the graph G the re in admits no 
3 - s e l e c t i o n . 

The following problem deserves thus a t t e n t i o n not only 
in the graph - t h e o r e t i c a l context - in the l i g h t of Theorem 2 
i t s so lu t ion would shed l i gh t on the s t ruc tu re of f i n i t e 
ordered se t s having the f ixed point property . By Theorem 1, 
we can r e s t r i c t ourselves ta graphs whose v e r t i c e s are a l l 
minimal. 

P r o b l e m 1. Let G be a f i n i t e graph and G = 
= G(min). What condi t ion on the set 3C(G) = {k(V) |ve V(G)} 
i s equivalent to the exis tence of an endomorphism of G' mo-
dulo G? 

Let us observe tha t Problem 1 oan be s ta ted in terms of 
choice func t ions , v i z . , l e t X be a f i n i t e se t and K = 
= | K(x) | x e X} a cover of X suoh tha t xtfK(x) f o r each x e X , 
i f x e K ( y ) , then y e K(x) f o r each pai r x, y of elements of 
X and K(x) \K(y) 4 0 4 K(y) \K(x) f o r each pair x, y of e l e -
ments of Xj what condi t ion on K i s equivalent to the ex i s t en -
ce of a choice funct ion h f o r K such t h a t , f o r each pair 
x , y of elements of X, i f x ^ K ( y ) , then k(x) i K(h(y)) ? 

Problem 1 has a counterpart f o r i n f i n i t e graphs. 
P r o b l e m 2. Character ise those i n f i n i t e graphs 

having the property that there e x i s t s an endomorphism of the 
complement modulo the given graph. 

Let us f i n a l l y observe tha t the r e s u l t s s ta ted above are 
val id f o r i n f i n i t e ordered s e t s having the property tha t there 
e x i s t s a na tu ra l number k such tha t each chain of elements 
of the given set i n t e r s e c t s at most k other chains . 
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