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In t h i s paper we d e f i n e c l a s s e s of Boolean a l g e b r a s 
(BA's f o r s h o r t ) by imposing c o n d i t i o n s on the g e n e r a t i o n 
of i d e a l s . Demanding a l l i d e a l s of a r i n g t o be f i n i t e l y g e -
n e r a t e d , l e a d s t o the impor tan t c l a s s of Noe the r ian r i n g s . 
For BA's , however, t h i s g i v e s no th ing new, s i n c e i t l e a d s 
t o the c l a s s of f i n i t e a l g e b r a s . Trying a g a i n , we demand a l l 
i d e a l s of a BA t o be countab ly g e n e r a t e d . The c l a s s ob ta ined 
t h a t way i n c l u d e s a l l coun tab le a l g e b r a s and some more, f o r 
a r e a s o n t h a t w i l l become c l e a r i n s e o t i o n 1 we c a l l them 
Lind«15f a l g e b r a s . 

S t a r t i n g wi th a coun tab le one i t i s easy t o f i n d a s e t of 
pa i rwise d i s j o i n t g e n e r a t o r s f o r a g iven i d e a l . Consequent ly , 
the L inde ld f a l g e b r a s belong to the c l a s s of BA's a l l i d e a l s 
of which are d i s j o i n t l y g e n e r a t e d . These are the main s u b j e c t 
of t he paper . 

There i s a d i f f e r e n t approach t o new c l a s s e s of 3A 's from 
the t o p o l o g i c a l s i d e . I t i s based on the o b s e r v a t i o n t h a t sub -
spaces of Boolean spaces do not n e c e s s a r i l y have the p r o p e r -
t i e s which one i s used t o from wel l -behaved s p a c e s . For example 
they may f a i l t o be normal . This s u g g e s t s the c o n s i d e r a t i o n 
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2 L. Heindorf 

of Ba's whose Stone spaces s a t i s f y some t o p o l o g i c a l property 
h e r e d i t a r i l y . 

The c l a s s we are i n t e r e s t e d in can be obtained i n both 
ways. I t t u r n s out t h a t each i d e a l of a BA i s d i s j o i n t l y ge -
nera ted i f f i t s Stone space i s h e r e d i t a r i l y paracompact. 
The r e a d e r i s supposed t o have a working knowledge of Boolean 
a lgebra theory . Espec ia l ly the bas ic f a c t s about Stone d u a l i t y 
(correspondence of i d e a l s and open s e t s , po in ts and u l t r a f i l -
t e r s , e t c . ) are used throughout the paper without f u r t h e r 
exp l ana t i on . They can be found i n [ 5 ] . 

Most of our r e s u l t s are more or l e s s easy consequenoes 
of well-known topo log i ca l theorems. One more reoent of them 
i s due to é a p i r o v s k i i and has not y ë t found i t s way i n t o the 
monographs. For the r e a d e r s oonvenienoe we give i t wi th f u l l 
p roof . The o the r e s s e n t i a l t opo log i ca l re -su l t s are a l l quoted 
from the monograph of Engelking [4 ] . The r eade r i s supposed 
t o have i t a t hand. Our t o p o l o g i c a l terminology i s i n accor -
dance with t h a t book. 

The author whishes t o thank J .D. Monk and the r e f e r e e f o r 
some h e l p f u l remarks on the f i r s t ve r s ion of t h i s paper . 

0 . Ro ta t iona l convent ions : 
Cl,¡6- ,cC denote Boolean a lgeb ra s ; X, Y, Z t h e i r r e s p e c t i v e 

Stone spac&s. I f u s e f u l , po in ts of X are t r e a t e d as u l t r a -
f i l t e r s of a . However, i n most cases we cons ider ol as the 
a lgebra of clopen subse t s of X. 

We use 0 , 1,A ,V , - f o r the Boolean ope ra t ions , a -b means 
the same as a A-b . I f we d e a l ' w i t h an a lgebra of s e t s , then 
the usual n o t a t i o n f ï , U , \ i s a l so used, a , y3, y , . . . denote 
o r d i n a l s ; x , A c a r d i n a l s ; and i , j , k , . . . n a t u r a l numbers. 

101 s tands f o r the c a r d i n a l i t y of the se t C. 

1. Dualjization and d e f i n i t i o n s 
T h e o r e m 1 .1 . Let l e d be an i d e a l and UcX the 

corresponding open s e t . Then the fo l lowing condi t ions are 
equ iva len t ) 
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Boolean algebras 3 

(1) I is countably generated. 
(2) The subspaoe U has the Lindelof property. 
(3) U is an Fff in X. 
I f one of these conditions is satisfied, then I has a pairwise 
disjoint, countable set of generators. 

P r o o f . (1) —— (2). A countable union of compact 
sets is always Lindelof. 
( 2 ) — - ( 3 ) . U is even a countable union of compact sets. 
(3) —^(1 ) . Suppose U = l̂ J F where each F is olosed in X, 

n<6j 
hence conpaat. I t is easy to find clopen sets AQ such that 
F CA cU. Then U = l̂ J A . So I is generated by {a |n<co|. 

n<o 
Setting Bq = Aq, B = A

n + i x LJ Bm, we arrive at a countable 
m̂ n 

disjoint set of generators for I . 
T h e o r e m 1.2. Let l e a be an ideal, UcX the 

corresponding open set. I has a disjoint set of generators 
i f f the subBpace U is paracompact. 

P r o o f . I f I is disjointly generated, then U is the 
disjoint union of compaet clopen subepaces and, therefore, 
paracompact ( [4],5.1.30).. 

Suppose now that U is paracompaot. Being locally compact 
i t can be represented as a union of pairwise disjoint open 
subsets each of which has the Lindelof property ( [4], 5.1.27). 
By 1.1 each of the parts is a disjoint union of clopen sets 
and so is U. 

Applied to a l l ideals of a given algebra the preceding 
theorems yield 

C o r o l l a r y 1.3. The following conditions are 
equivalentj 
(1) Each ideal of OL is countably generated* 
(2) Each open subs pace of I is Lindelof. 
(3) X is perfectly normal ( i . e . , normal and al l closed sub-

sets are G^K 
C o r o l l a r y 1.4. Each ideal of CJt is dis jointly 

generated i f f each open subspace of X is paracompact. 
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4 L. Heindorf 

I t i s an easy exeroise to see tha t in both cases the r e -
s t r i c t i o n to open 8ubspaces i s unnecessary, i . e . X i s even 
h e r e d i t a r i l y Lindelof r e s p . paraoompact. We use the words pa-
racompact (po) algebra and Lindelof a lgebra in accordance 
with the co ro l l a r i e s* 

Note tha t a BA i s Lindelof i f f i t i s pc and s a t i s f i e s the 
oco. Clea r ly , a l l countable BA's are Lindelof , henoe pc* Next 
we give an a l t e r n a t i v e cha rac t e r i z a t i on of the Lindelof pro-
per ty . I t spares us the cons idera t ion of yet another c l a s s 
of BA's. 

P r o p o s i t i o n 1 .5 . A BA i s Lindelof i f f each 
of i t s i dea l s i s generated by a chain . 

P r o o f . One d i r e c t i o n i s t r i v i a l because every 
countably generated idea l can be generated by a chein . 

Suppose each idea l of & i s generated by a chain . F i r s t 
we prove tha t 01 s a t i s f i e s the occ. Otherwise, there were 
a family ( a ^ i ^ ^ of non-zero pairwise d i s j o i n t elements. 

Let B c at be a chain generat ing the same i d e a l . Then a l l s e t s 
S(b) • { « | a aA b 4 o} are f i n i t e , a l l a < c o 1 f a l l in some S(B) 
with b € B , and S ( b ) c S ( c ) f o r b é c . We conclude tha t co1 would 
be the union of an increas ing sequence of f i n i t e s e t s , which 
i s not t r u e . 

Every l i n e a r ordering has a c o f i n a l well-ordered subse t . 
Bach c o f i n i t e subchain generates the same i d e a l . Consequently, 
a l l Idea l s of OL are generated by well-ordered chains . This 
implies tha t (X i s Lindelof Bince every well-ordered chain in 
a ccc algebra i s countable . 

Applied to one-point s e t s 1 .3 . (3 ) implies that the Stone 
spaces of Lindelof algebras are f i r s t countable. This i s not 
t rue f o r pc algebras in genera l , but we have 

P r o p o s i t i o n 1 .6 . I f d i s pc, then X i s a 
Fréchet space ( i . e . , x e C \ C implies the exis tence of a s e -
quence c n e C converging to x ) . 

P r o o f . Consider CcX and x e C \ C . The prime idea l 
corresponding to X \ { x } i s d i s j o i n t l y generated. Therefore , 
we f ind pairwise d i s j o i n t non-empty clopen U a , cx<x such that 
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Boolean algebra 5 

X\{x} « U Ua. C must meet i n f in i t e l y many U«, sinoe eaoh 
a< ae 

f i n i t e union of them i s closed and does not contain x. So 
we can choose different and c e C fl Ua . It i s then easy 

n 
to see that (o„)„ converges to x* n co 

E x a m p l e 1.7. (1) Inf in i te complete algebras 
cannot be paracompaot, for , in their Stone spaces, eaoh con-
verging sequence i s eventually constant* 

(2) If M i s an uncountable subalgebra of a free one, 
then (X i s not po. This follows from Efimov's resul t that 
dyadic Freohet spaces are metrizable ( [3 ] , Theorem 26, stronger 
resu l t s are in [4], 3.12.12). 

In connection with our notion of a pc algebra i t i s natu-
r a l to ask for strongly (weakly) paracompact algebras (with 
the obvious def in i t ion) . 

Strong paracompactness gives nothing new because every 
dis joint cover i s s t a r - f i n i t e . 

On the other hand, there are weakly paracompact BA's that 
are not pc (see example 6.4 below). In the presenoe of the 
occ the two notions, however, coinoide. Indeed, every point-
- f i n i t e open cover of a local ly oompact ccc space i s countable 
( [1] , Proposition 1) * 

2. Operations on pc algebras 
T h e o r e m 2.1. The c lass of pc BA's i s closed 

under homomorphic images' and subalgebras. 
P r o o f . If i s a homomorphio image of Ol , then Y 

i s a subspace of X. If X i s hereditar i ly paracompact, then so 
i s Y, If & i s a subalgebra of Ol , then there i s a closed 
mapping f of X onto Y. Consider an open subset U of Y. 
V = f"1(U) i s open in X, hence paracompact. f|V remains a 
closed mapping, which implies the paracompactness of U by 
virtue of the Michael theorem ([4]» 5®1•33)• 

P r o p o s i t i o n 2.2. Let at be po and sa t i s f y 
thea?-chain condition ( i . e . , every dis joint subset of 01 has 
power o e ) . If & i s either a subalgebra or a homomorphio 
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6 L. He indor f 

image of Oi , t h e n s a t i s f i e s t h e x - o h a i n c o n d i t i o n , t o o . 
I n p a r t i c u l a r , i f at i s L i n d e l o f , t h e n & i s L i n d e l o f . 

P r o o f . The a s s e r t i o n on s u b a l g e b r a s i s o b v i o u s . 
Cons ide r & = or/1 f o r some i d e a l I and suppose , by c o n t r a d i c -
t i o n , t h e e x i s t e n o e of e l e m e n t s a a , a o e s u c h t h a t a a e I , bu t 
a a A a^ e I , f o r a l l a. 4 ft* 

Let J be t h e i d e a l g e n e r a t e d by { a a | a < a : } and f i x a d i s -
j o i n t s e t of g e n e r a t o r s { | / 3 < A } f o r J . a must be l e s s 
t h a n x , s i n c e <X s a t i s f i e s t he * - c h a i n c o n d i t i o n . E v e r ; b^ 
i s covered by f i n i t e l y many a« . C o n s e q u e n t l y , * of them 
s u f f i o e t o g e n e r a t e J . Without l o s s of g e n e r a l i t y we can a s s u -
me t h a t {a a | o (<; \ ] g e n e r a t e s J . Then we f i n d a 1 . . , « n < such 
t h a t a 1 « a^ v . . . v a ^ . 

• * « ! n 
T h e r e f o r e , a^ = ( a^ A a^)V . . . v ( a a A a^) and , s i n c e each 

a ^ A a ^ b e l o n g s t o I , so does a ^ , c o n t r a d i c t i o n . 

Th i s p r o p o s i t i o n shows a g a i n t h a t uncoun tab le f r e e BA's 
canno t be pc , because they a r e o c c , but have non-ccc homo-
morphic images . The same h o l d s f o r t h e power - se t a l g e b r a 
o n c j . On the o t h e r hand , t h i s a l g e b r a i s i somorph ic t o the 
d i r e c t product of c o u n t a b l y many c o p i e s of t h e two-e lement 
a l g e b r a . We oonclude t h a t paracompaotneBS i s not p r e s e r v e d 
by ( i n f i n i t e ) d i r e o t p r o d u o t s . 

P r o p o s i t i o n 2 . 3 . F i n i t e d i r e o t p r o d u c t s and 
a r b i t r a r y weak d i r e c t p r o d u c t s of pc a l g e b r a s a r e pc . 

P r o o f . The a s s e r t i o n c o n c e r n i n g f i n i t e p r o d u o t s 
i s o b v i o u s . Suppose jg i s a f a m i l y of pc a l g e b r a s w i t h 

Stone spaoes X a . Denote t h e i r weak produc t by E a « and i t s 
<x<3t 

Stene space by X. Then X i s homeomorphic t o t he o n e - p o i n t com-
p a c t i f i o a t i o n of ffi X a . I t i s an easy e x e r o i s e t o see t h a t X «<ae ^ 
i s h e r e d i t a r i l y paracompaot provided a l l X a a r e . 

Be fo re c o n t i n u i n g , t he r e a d e r should r e c a l l t h e conoept 
of a supe ra tomic BA. Th i s p r o p e r t y oan be o h a r a o t e r i z e d i n 
t e rms of a t r a n s f i n i t e sequence of i d e a l s a t t a c h e d t o 
each BA i n t he f o l l o w i n g way: 
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Boolean algebras 7-

I 0 ( « ) = ( o } , 
I a + 1 ( a ) = the ideal generated by 

(aeor| a/I a (a ) is an atom of < X / I a ( O t ) } , 

17(0l) = U I « ( « ) , for limit ordinals r . 
a is superatomic i f f I f t (a ) = (X for some a . The f i r s t of 
such Ot is an Invariant of 01. 

Now we use the operations considered so fear to produce 
many paracompaot algebras. 

T h e o r e m 2.4. For each infinite cardinal z there 
are 2* non-isomorphic pc BA's of power*. 

P r o o f . We start with an auxiliary construction 
formerly used by Pal jut in [ t o ] . 

Suppose at,» are BA's; p,q ultrafilterB of (X resp.<#-. 
Then | ( a , b ) e a ^ | a t p i f f b&q } is easily seen to „be a sub-
algebra of OlxX-, which we denote by (#,p) v (<£,q). To visualize 
this operation topologically, oonsider p and q as points 
of the Stone spaces X resp. 7. The Stone space of (ct,p) v (£,q) 
is what topologists oal l a bouquet, the factor space of X®Y 
resulting from the identification of p and q. Being a.sub-
algebra of their product, the bouquet of two pc algebras is po. 

Put • | o , l l , X = with each J* « , 
O l ' <X- t - l X X 

Sr-f - f o r a limit ordinal y» 

A simple induction shows that each Ax is a superatomic 
pc algebra of power + u with !„(•£„) prime. Denote the 
corresponding u l t ra f i l ter by q a . Let cx denote the countable 
atomless BA and f i x some ultra f i l ter p o f « , To prove the 
theorem, let S c x be an arbitrary subset. From the algebra 
a B = where 

« < * 

(tt,p) v (¿^.q^), i f « e S 
£• = a 

ex. , otherwise. 
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8 L. Heindorf 

CJl i s DC and has power ae. Moreover, i t i s not hard to see o * 
that S oan be recovered from the isomorphism type of otQ, (Ima-
gine the Stone space and note that the ordinal is a topolo-
gical invariant of the point resulting from the ident i f i ca -
tion of p and q a ) . 

E x a m p l e 2.5. Let SAFC denote the smallest class 
of BA's containing the two-element one and being closed under 
f in i te direct products and arbitrary weak direct products. 
Then SAFC is identical with the class of a l l superatomic para-
compact algebras. 

(Hint: Let be superatomio and pc. Consider the ideal 
I = | b e ̂  | b=0 or for a l l 0 < a ^ b ¿ laeSAPc } . Show that ^ / I 
cannot contain an atom. Then I = <£, consequently e SAPC). 

3. Two more examples 
E x a m p l e 3.1. Let JP be a oardinal. We already 

know that there are 2* pc algebras of cardinality ae. By now, 
a l l our examples have many countable principal ideals . Next 
we construct a pc algebra 2 such that fo r a l l bei?\{o} 
| { a e a < b } | = a?. Namely, $ i s the subalgebra generated 
by a l l sets U n ( f ) = {g e ae" | g | n = f I n } in the power-set alge-
bra on f and n run over and CJ , respectively. There 
is no d i f f icu l ty in checking that two generators are either 
dis joint or one contains the other. More precisely, U n ( f ) cum ( g ) 
i f f n^m and f|m = g|m. Prom this i t easily follows that each 
element of X- can be written as a f in i te union of elements of 
the form 

u*(f,x ¿1 vgi) 
with n and g j n = f in . (We allow n = 0 and m = 0 ) . Ele-
ments of that form w i l l be called primitive. 

To prove paracompactness, consider an ideal Call 
an element of I prime of size n i f it is of the form 

U n ( f ) U n+1 ( g i ) a n d t h e r e i s n o U n ( f ) X U., Un+1 ( h i> i n I * 
!Again we allow m = 0 ) . 
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Boolean algebra 9 

Mote that two prime elements of the same size are either 
identical or disjoint. We claim that I is generated by its 
prime elements. To see this, consider a primitive element 

m 
U = u n ( f ) x U un belonging to I* By induction on 

i=1 i 
k = max|n^|-n we prove that U is covered by a f in i te union 

m 
of prime elements. In case k = 1 we have U = U f l ( f ) \ l^l U^ig.^) 

and i t is easy to see that U is contained in one prime ele-
r im ^ ment. For k > l U can be written as U n ( f ) \ U un+1^6i 'J U 

m r m i 1=1 

U U U . ^ ( g j X M U (g, } | and the induction hypothesis 
j=1 L n+i 0 ^ i 

applies to each element in braokets. 
Put = ji and choose, by induction, to ce a maximal 

pairwise disjoint set of prime elements of size n disjoint 
to a l l elements of i j A.,. I t is then easily seen that Î J A 

j«n 15 n<o 
is a pairwise disjoint set generating I . 

E x a m p l e 3.2. (CH) In ¡14] Shelah used CH to 
produce a very peculiar BA. In the following we describe a 
rough version of his method, which guarantees the Lindelof 
property only. I t has the advantage of being easily visualized 
and i t keeps one essential part of what is done in [l4]* 

We start with the countable atomless BA oi conceived as 
the algebra of clopen subsets of X. Let Ua ,a <0^ = 2", be 
an enumeration of a l l open subsets of X. Choose, by induction, 
points x0(,a<co1 such that 

U p t U,gU {xfi \/i <«} . y9<a i > 

This is possible by the Baire Category Theorem, since each 
i r Uj8 («U^NU/j) is nowhere dense. Now f i x regular open sets 
Cw such that C^X Ĉ  = {x w } . (To find one, represent X\ {x w } 

as t_J V with V non-empty, disjoint, clopen, and put 
n<o 

Ca * l̂ J V„ ) . Let us note that a l l the delicacy of Shelah's 

construction l ies in the proper choice of the C^. 
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10 L. Heindorf 

Denote by jI the subalgebra of the r e g u l a r - o p e n a l g e b r a 
on X (ooneult [ 5 , §4] f o r the d e f i n i t i o n ) generated by OL 

and |c<x|<x<w^|. This i s the desired a l g e b r a . F i r s t we oheok 
that each element of % oan be w r i t t e n as 

1 m n 

V v V ( V c * > v V < ® k - V 
i « 1 j«=1 3 k=1 K 

where ^ « ^ j » 0 ^ a r e elements of Cf. This i s based on the ob-
servat ion that each element of & has (as a regular open s e t ) 
s boundary consist ing of f i n i t e l y many x w ' s , which can be s e -
parated by elements of a , Notice that Cw a a and a - Ca are 
both clopen, hence elements of 01 , whenever x a 4 a» 

As an example we g ive a representat ion of C^ a Cq a - C^ 
in the desired form. Choose, a ,b , ce 01 pairwise d i s j o i n t , 
with a v b v c = 1 and x^ e a, x^ e b, e c . Then we have 

Ca A A - Cy = [ (C 0A C^A - Cy) A a] V [(Co, A 0,0 a - Cg.) a b] v 

V [(Co( A C^ A - Cy) A c j = 

= [cw A (Ĉ s A a) a (a-C r ) ] .v [c^ a (Co, a b)A (b-Cj.)]* 

V [CWA c ) A [Cfi A c ) A - C r ] . 

This i s the desired form, sinoe a l l expressions in parenthesis 
are elements of Ol . 

Let Ic<Sf be an ideal and U c X the open set corresponding 
to I not. We claim thot I i s generated by the countable set 
d n « ) U |a A C^ 6 11 a 6 « , x a e Er u} U {a-Co, e I I a ea, x^eFr u } . 
'j.'o see th i s , consider an element D e l of the form b a Cw or 
b-Ca with I t U. Ksgarded as an open s e t , D i s contained 
in U, consequently, Dc U, But D c D U { x a | and x ^ U X U , hence 
even DcU, bir.ce D i s compact, there i s a clopen a with 
D c a c U , C lear l y , a e I n (X and D-̂  a in the sense of 5? . A s i -
milar argument shows t n a t # / I i s countable whenever I i s a 
dense i d ea l . This prooerty implies r e t rac t i veness (see sec-
t ion 6 below} . 
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Boolean algebras 11 

4. Chains In paracompact algebras 
An important class of BA's arises from linear orderings. 

Let (A,< ) be a linear ordering. The set of all finite unions 
of left-closed, right-open intervals [a^b^U ...U [an«bn)t 
with ai,bie At){ + <»], forma together with flf a BA under the 
set-theoretical operations. It is called the interval algebra 
on A and denoted by ¿7(A). The reader ma? consult [9] for 
details on interval algebras. There he will find a proof of 
the important fact that the topology of the Stone space of 
an interval algebra can be generated by a linear ordering. 

T h e o r e m 4.1. Let (A,< ) be a linear ordering. 
¿7(A) is pc iff each convex subset U of A contains a ooantable 
subset, which is cofinal and coinitial in U. In particular, 
if (A,< ) is ccc, then<?(A) is pc. 

P r o o f . If the condition on the order is violated, 
then either cô  or its reverse can be (order-theoretically) 
embedded into A. Then cj.J+1 can be (topologically) embedded 
into the Stone space of C'(A). But this is impossible if it 
is freahet. To prove sufficiency, oonsider an ideal Ic^fA). 
Put U = U |[a,b) | [a,b)e l}cA. For a,beU define a~b iff 
Lmin(a,b),max(a,b))e I. Obviously, ~ is an equivalence rela-
tion whose classes are convex subsets of A. We want to find 
pairwise disjoint intervals [aa,ba) e I such that eaoh 
[a,b)e I is covered by a finite number of them. 

If Ca,b) e I, then [a,b) is contained in one equivalence 
class u n d e r T h i s shows that we can handle eaoh of these 
classes separately, that is, we can assume that U itself 
consists of just one class. 

Several cases are possible. The others being similar, we 
confine ourselves to the one in whioh U has no first but 
a last element, say b. It splits into two subcases according 
to whether [-oo,b) belongs to I or not. b€U implies the 
existence of some d>b (possibly <*») with [b,d)el. b * max U, 
hence (b,d) ® 0. In the first subcase we find U = C-°o,d) 
and I is even principal. If [-<»,b)<£I, then we take, by 
assumption, a strictly decreasing coinitial sequenoe aQ. 
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Clearly, U = [aQ ,d )U LJ [ s n + i » a n ) t and these are the desired 
intervals. n<CJ 

R e m a r k 4.2. (1) It may seem that we have proved 
¿7(A) to be even Lindelof. This is not true, since oan have 
uncountable many equivalence classes. Even i f A is ccc ( i . e . , 
every family of pairwise disjoint open intervals is countable), 
¿7(A) need not be Lindelof. 

(Hint: Take the lexicographic order of reals x { o , l } ) . 
(2) I f , on the other hand, ¿'(A) is coo, then A must be 

ccc nad thus c7(A) is Lindelof. There is a much stronger r e -
sult in this respect* Prom Theorem 2 in [8] it follows that 
each ccc subalgebra of an Interval algebra is Lindelof. 

The interval algebra on the reals is Lindelof and has car-
dinality 2". Next we show that this is the maximum. 

P r o p o s i t i o n 4.3. (1) If « i s a po interval 
algebra, then \a\ ^ |Xk 2W. 
(2) Every chain in a po algebra has power at most 2". 
(3) Every well-ordered ohain in a po algebra is countable. 

P r o o f . (1) \ai\ < |X| is independent of paracompact-
ness. X is a linearly ordered Prechet space, hence f i r s t 
countable. Sinoe i t is also compact, |xl« 2U follows iV"m 
Arhangel'skii 's Theorem ( [ 4 ] , 3.1.29). 
(2) follows immediately from (1) and 2.1. 
(3) i s an immediate consequence of 4.1 and 2.1. 

So f a r , a l l our examples of pc algebras have had many 
countably generated u l t ra f i l ters . The next theorem shows 
that the reason is not our lack of imagination. The proof 
given below is due to the referee. It is much simpler than 
the original one that proved density only. 

T h e 0 r e m 4.4. I f <X i s pc, then the set PC of 
countably generated u l t fca f l i ters ( i . e . , points of countable 
character) is dense and of the second category in X. 

The fo l lowing argument i s used twice in the proof of 4*4 
and, there fore , we separate i t as 

L e m m a 4.5. I f GcX i s a closed, nowhere dense G^, 
then GcFC. 
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P r o o f * Consider x e G and ohoose families (A a) a < z 

and (Bn)n<CJ of disjoint, clopen, non-zero subsets of X such 
that X \ G = U B_ and X\{x} « U L , Sinoe each Bn is 

n<" n «<iE a 

covered by a finite number of Ac's, the sets S(n) « 
* jcx |Bnn a w 4 0} are all finite. Moreover, all A a intersect 
some Bn, beeause G is nowhere dense. This implies a?o 
• L J S(n). So * must be oountable, as was to be shown. 

P r o o f of 4.4* First we show that FC is dense in X* 
Consider acgr clopen Ucj, if u contains an isolated point, 
then FCflU 4 0* Otherwise, consider a maximal chain C of 
clopen, non-void subsets of U. By 4*1 C has a countable co-
initial subchain* Therefore, 0 ^ G = H C i s a closed G5. 
Since U contains no isolated point and C iB maximal, G must 
be nowhere dense. By the lemma, GcFC, hence FCHU + 0. 
If FC were a first-category set, then one could find a closed 
G^, say H, disjoint from FC. Since FC is dense, H would be 
nowhere dense. But then HcFC, by the lemma, a contradiction. 

R e m a r k 4 . 6 . Every basic clopen subspace U of X 
meets the assumption of the theorem. Therefore, FCHU is of 
the second category in U, and FC is even of the second cate-
gory at each point of X. 

5. Cardinal functions 
Many cardinal functions for B a ' s have been introduced and 

extensively studied in recent years. Some of the results ob-
tained so far (e.g. 1.7 (2) or 4.3) can be restated in terms 
of cardinal functions. In this section we want to add some new 
ones. The key to these results is a strong topological theo-
rem due to Sapirovskii (Theorem 2.1 of [13] ). Sinoe it has not 
yet found its way into the monographs and the original paper 
is not too widespread, we give the full proof of the special 
case we need. 

T h e 0 r e m 5.1. Suppose ot is po and satisfies the 
-chain condition for some A with cf(^)>co1. Then each dense 
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subset C of X has a subset D which is s t i l l dense and has 
cardinality less than a . 

P r o o f . Suppose C = X. For a we choose inducti-
vely subsets Cwc C and families Ba of pairwise disjoint clopen 
subsets of X such that: 
(1) |Ca|< A and |BW|< A 
(2) C ac C/3 for a </3 
(3) X\C a = UBa 

(4) I f K is a f inite subfamily of U Ba and n K / 0, then 
C^ n 0 K 4 0. " < f i 

• Suppose Cqi, Bo a r e constructed for cx<yQ<w.|. (1) and 
A < u* < c f U ) imply | U Ba|<A * Therefore, the number of f i -

' a</3 
nite subfamilies K to be considered at step y3 is less than A. 
Since H K is open and C is dense, we oan choose c^ e HKnC 
provided that D K is not empty. Put Ca = L J Call -fcrrl Kc a<)3 I " 

c L J B «t f in i te , OK / S i n c e A is pc, there is a 'dis joint 
OK/3 ' 

family B^ of non-empty clopen sets such that XXCyg = U By3. 
The "X -chain condition yields I B ^ ^ A . The set D = U 0a is 

a subset of C of cardinality less than 7*. To prove D » X, 
suppose, by contradiction, the existence of some xeXXD. 
Clearly, x%X\CQ[t hence xeU w , for some Ua e Btt. By construc-
tion, Cac XXUq,. Since X is Prechet, we have D = LJ Ca, 

hence Dc LJ (X\UW ) . By compactness, a f inite union is suf -

fioient to cover D, say D c ( X \ U a )U . . . U (X\U a ) . Fix Borne 

y3> c x , a Q and consider K = J Uw , . . . »U^ }• n K is not empty, 
^ 1 n' 

since it contains x. Therefore, at stage /3 of the construc-
tion we chose oKeC n flK. Thus DO H K 4 0, contradicting 
D c X \ H K , 

From 5.1. we now obtain results for the following cardinal 
functions: 
c(a) = sup 11 BI | B is a disjoint subsets of (X 
d {Ol) = inf | |c»-| | £ is a dense subalgebra o f « 

(cel lular ity ) 
(density) 
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T h e o r e m 5 . 2 . I f 01 i s po, then ot con t a in s a d i s -
j o i n t subse t of c a r d i n a l i t y c ( « ) , i . e . , the supremum i s 
a t t a i n e d . 

P r o o f . This i s d e a r i f c(ot) i s a successor o r w , 
For c(oi) s i n g u l a r , the proper ty does not depend on paracom-
pactness and i s known ( o f . [ 6 ] , Theorem 3*1) . Suppose now t h a t 
c(oi) i s a r e g u l a r l i m i t c a r d i n a l . Then c f ( c ( « ) ) = c(ct)>co^. 
I f c(arj were not a t t a i n e d , then 5 .1 would y i e l d a dense subset 
of X of some c a r d i n a l i t y l e s s than o(c*). But t h i s i s imposs ib l e . 

T h e o r 9 m 5 . 3 . I f Oi i s po, then c(«r)^ I wl-g c ( a ) w . 
P r o o f . ¿ ¿ I X I ho lds f o r a l l B A ' b . To prove 

I X|i£ c(oe)w, suppose f i r s t t h a t c(oi) i s uncountable . Then 
of{c(MJ+J> and 5.1 y i e l d s a dense subse t D of X with 
I c{w). Prom the f a c t t h a t X i s Freohet we conclude t h a t 
| X| = o(ar)w. Consider now the Lindelof c a s e , i . e . , 
c(Ctf) s c o . 5.1 can be appl ied to ^ = cog and y i e l d s a dense 
subse t of c a r d i n a l i t y l e s s thanco2« As i n the f i r s t c a s e , 
I X U w " = co" = c [Otf. 1 • 

T h e o r e m 5 . 4 , I f ot i s pc and c t h e n 
o (ot) = I f ot i s L i n d e l o f , then d ^ ) « ^ . 

P r o o f . We prove the f i r s t s ta tement and i n d i c a t e 
the changes in the Lindelof oase i n b r a c k e t s . 5.1 y i e l d s a 
dense subset D of X wi th |D| = o(a) [ iDl^co. , ] . For each x e D 
f i x a family B„. of c lopen s e t s such t h a t j x l = fl B_ and X i J i i X 
[ B _ U c ( a ) r | B , k c d " | . I t i s e a s i l y seen t h a t M B_ gene ra t e s XI LI XI -J x e D 

a dense subalgebra of ot . Consequently, d ( a ) ^ |D|* 

•sup |B I « c(a)'c(a) = c ( « ) . < |D| • cô co . The inverse 
i n e q u a l i t y c(ce)^d(C?) i s obvious and does not depend on para -
compactness. 

R e m a r k 5 . 5 . In the previous proof we have e s t a -
b l i shed t h a t d(C?) i s equal to the dens i ty c h a r a c t e r of X pro-
vided t h a t Ul i s pc. 

T h e o r e m 5 .6 . I f ot i s pc, then ot has exao t ly 
2 c ( a ) i d e a l s . 
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P r o o f . A family of o (a) pairwise disjoint elements 
of at gives, obviously, rise to different ideals. On 
the other hand, each ideal is generated by < o (a) elements. 
Therefore, their number is bounded by \oi\ = 
= 2 ° ^ . 

R e m a r k s 5.7. (1) Consider some cardinal a?>2w 
and let ot denote the free BA of cardinality ae. Then o (at) =cj, 
lori = d(Ot) = 3P, and a has 2* ideals. This shows that 5.3, 
5.4, and 5*6 do not hold for non-pc algebras. 

(2) A non-pc counterexample to 5.2 is the free product 
of the sequence cxit a?< A , where A is a regular limit cardinal 
and the algebra of finite and cofinite subsets of ae. For 
details see ([6], example 6.5). 

(3) The second statement of 5.4 cannot be improved in ZFC. 
If there is a Suslin line, then its interval algebra is Lin-
delof, but does not have a oountable dense subalgebra. On the 
other hand, MA+1CH implies that eaoh perfectly normal, oom-
pact space is separable (of. [6], chapter 5), so each Lindelòf 
algebra has a countable dense subalgebra. 

6. normality and retractiveness 
Recall that a topological spaae is normal iff eaoh pair 

of disjoint closed sets can be separated by open neighbourhoods, 
Every Stone space is oompact, hence normal, but this neet not 
be true of subspaoes. Normality considerations were already 
used implicitly in Boolean algebra theory but never made ex-
plicit. The reason may be that this notion does not have a 
nice description in Boolean algebraic terms. 

We call an ideal I c cr normal iff the corresponding open 
subspace Uc-X is normal. We say that at is normal provided 
that all its ideals are normal (i.e., if X is a hereditarily 
normal space). Finally, an extension at<z% will be called 
normal iff eaoh ideal of a generates a normal ideal in . 

Topologists have established many relations between para-
compaotness and normality of topological spaces. We use some 
of them to find connections between our Boolean algebraic 
notions* 
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T h e o r e m 6 . 1 . M i a po i f f a l l i t s ex tens ions 
are normal. In p a r t i c u l a r , a l l pc a lgebras are normal. 

P r o o f . Suppose ot to be pc, l e t ot<z£ be an ex ten-
s i o n , and consider an i d e a l i c c f . Let J be the i d e a l g e n e r a t -
ed by I- i n %> . Since I i s d i s j o i n t l y genera ted , so i s J . 
There fo re , the open subspace of the Stone space of £ c o r r e s -
ponding to J i s a sum of compact spaces , hence normal. I f 
every extens ion of ot i s normal, then , in p a r t i c u l a r , so i s 
the standard extens ion a rc6?*a ( f r e e product ) . Consider an 
i d e a l I of or and the corresponding open subset U of X. 
I n 0l*ut I genera tes an i d e a l which the open se t U* XcX* X 
corresponds t o . (Hecall t ha t the Stone spaoe of ot*ut i s c a -
non ica l ly homeomorphio to X*X) . The open subspace U* X i s 
normal by assumption. As normality i s always i n h e r i t e d by 
closcd subspaces, U* U i s normal, too . The paracompactness 
of U now fo l lows from Tamano's Theorem ( [4] , 5 . 1 . 3 8 ) . 

R e m a r k 6 .2 . Bvery order topology i s h e r e d i t a r i l y 
normal ([43» 2 .7 .5)» which impl ies t ha t every i n t e r v a l a l g e -
bra i s normal. 4 .3 immediately y i e l d s examples of normal 
non-po BA's. The problem becomes more d e l i c a t e i f we r e s t r i o t 
our a t t e n t i o n to ccc a lgeb ras . Under CH the answer i s known. 
In [7] the re i s an example of a l o c a l l y compact, zero-dimen-
s i o n a l , (even h e r e d i t a r i l y ) s epa rab le , h e r e d i t a r i l y normal, 
non-Lindelof space. I t s one-point compac t i f i ca t ion i s the Stone 
space of a normal, ccc , non-pc BA. 

T h e 0 r e m 6 . 3 . The fol lowing condi t ions are equ i -
va len t s 
(1) a i s L inde lof . 
(2) cjt*& i s pc (Linde lof ) f o r each countable BA#. 
(3) a * » i s pc (Lindelof ) f o r some countable BA i f . 
(4) (M*Z i s normal f o r each countable BA . 
(5) i s normal for some countable Ba <5?. 

P r o o f . (1) — - (2) . Let I c a * ^ be an idea l . 

Since ot i s Lindelof, each has a countable set of genera-
-T t -i a obviously generated by the set 

For each b e consider the ideal 

which i s countable 
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( 5 ) — ~ ( 1 ) : T h i s i s the Boolean t r a n s l a t i o n of K a t e t o v ' s 
r e s u l t s t a t i n g t h a t f o r X * Y t o be normal i t i s n e c e s s a r y 
t h a t X i s p e r f e c t l y normal prov ided t h a t Y c o n t a i n s a c o n v e r g -
i n g sequence ( [ 4 ] » 2 . 7 . 1 5 ) « A l l the o t h e r i m p l i c a t i o n s a r e 
e i t h e r obv ious or immediate oonsequenoes of 6 . 1 . 

E x a m p l e 6 . 4 . Le t at and £ be the a l g e b r a s of 
f i n i t e and c o f i n i t e s u b s e t s o f u and c j^, r e s p e c t i v e l y . £ i s 
not L i n d e l o f , t h u s o t * & i s not normal , l e t a lone pc . But the 
S tgne s p a c e o f « * » i s h e r e d i t a r i l y wekly paraoompact 
( [ 4 ] , 5 . 3 . B ) . Denote by oin the s u b a l g e b r a of at g e n e r a t e d by 
the f i r s t n atoms and l e t denote the s u b a l g e b r a o f & 
g e n e r a t e d by | P < « } . i s c o u n t a b l e , hence L i n d e l o f . 

i s paracompaot , a s i t i s i somorphic t o # n + \ Obv ious ly 

6T*J5- = U = U « ) . We conc lude t h a t c o u n t a b l e 

unions of pc a l g e b r a s and uncountab le unions of L i n d e l o f a l g e -
b r a s need not be p c . On the o t h e r hand , i t i s o b v i o u s t h a t a 
c o u n t a b l e union of L i n d e l o f a l g e b r a s i s L i n d e l o f a g a i n . 

A Boo lean a l g e b r a 01 i s s a i d t o be r e t r a c t i v e i f f f o r each 
epimorphism gs Ot—~£ t h e r e i s a monomorphism f t Jfi— (X such 
t h a t g o f s i d . D e t a i l s on r e t r a c t i v e BA ' s can be found i n 
| j l ] and [ 1 2 ] . I n the l a n g u a g e of S tone s p a c e s we have the 
f o l l o w i n g e q u i v a l e n t d e f i n i t i o n s 

a i s r e t r a c t i v e i f f f o r each c l o s e d F c . X t h e r e i s a r e -
t r a c t i o n f : X — F , i . e . , a c o n t i n u o u s map which i s i d e n t i c a l 
on F . 

Many p r o o f s of n o n - r e t r a c t i v e n e s s ( e . g . i n [12] ) made im-
p l i c i t use of the f o l l o w i n g 

P r o p o s i t i o n 6 . 5 . R e t r a c t i v e BA' s a r e normal . 
P r o o f . Let U c X be open and l e t F , G be c l o s e d 

( i n U) s u b s e t s of U wi th F fl G = 0 . By d e f i n i t i o n , t h e r e a r e 
F ' , G' c l o s e d i n X such t h a t F = F 'D U and G = G' n U. C o n s i d e r 
a r e t r a c t i o n f s X—— F'U G' . An ea sy argument shows t h a t 
u n f " 1 ( F ' \ G ' ) and UO f 1 ( G ' \ P ' ) a r e the d e s i r e d n e i g h b o u r -
hoods s e p a r a t i n g F and G i n U. 
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Next we give an example showing that normality does not 
imply retraotiveness in general. 

E x a m p l e 6,6. Let a denote the interval algebra 
on the reals and » the finite-oofinite algebra on to . By 
6.1, » is normal. The non-retractiveness of cx*% follows 
from a general theorem in [12], but can be rapidly seen di-
rectly« Identify 7, the Stone spaoe of withco+1. Baoh real 
number r will be oonsidered as the point (i.e., ultrafil-
ter) a) of X. Let r n, n<co be an enumeration of 
the rationale and denote by P the closed subset I*{u)U 
U j(rn,n) | n<u} of X* Y. Suppose there were a retraotion 
f: I* Y——^ P. For each n there must be some e n> 0 such that 
f([rn,rn+ ) x {n}) = |(rn,n)}. There will be some real number 
r w such that we have rfl< i ^ c r ^ ^ for infinitely many n 
(Remember your first lessions of calculust). As the point 
(r^co) belongs to F, there must be a <5> 0 and a natural num-
ber H such that f(Cr^.r^+tf) x {i>n})c [r^.r^+1) * Y. Take any 
n> N such that rfl< r w < rn+en. Then, on the one hand, ffir^n))» 
» (rn,n) and, on the other hand, f((ru,n))e [ru,rw+1)* Y. 
This is a contradiction, since [rw,rw+1). 

7. Open problems 
In spite of considerable efforts ( [ 1 1 ] , [12]) the question 

whether the free product of two uncountable BA's oan be re-
tractive is still open. The same problem is interesting for 
normal and pc algebras. In the following we list the more or 
less obvious observations that one can make. 

(1) a * » normal ifcplies a, & Lindelof. This follows from 
the already mentioned result of Katetov ( [ 4 ] , 2.7.15). 

(2) cx*-a Lindelof implies Of countable. Indeed, if 01*01 • 
is Lindelof, then the diagonal is a ttj in X« X. By a theorem 
of Sneider ([4], 4.2.B), X must be metrizable. 

(3 ) o t * u i * o i normal implies 01 countable. This is a combi-
nation of (1) and (2). 

(4) (MA+1CH) ot*ut parecompact implies ot countable. This 
follows from M ) and (2), because under KA+1CK the ccc is 
multiplicative ([6], Theorem 5.5). 
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P r o b l e m 7*1* Can the free product of two uncoun-
table B A ' b be paraoompact (normal)? The 8tone spaoe of a ho-
momorphlo image of ot can be embedded into X. Therefore, homo-
morphio images of normal algebras are normal. 

P r o b l e m 7.2» Is every subalgebra of a normal 
algebra normal again? 

We have already mentioned (4.2. (2) and 6.2) that coc sub-
algebras of interval algebras are Lindelof, whereas this is 
not necessarily true for normal ones. Retraotiveness l ies 
inbetween these properties, and this motivates 

P r o b l e m 7.3. Is there a retractive, ccc, non-
-Lindeldf BA? 

The interval algebra on the reals shows that there are 
po algebras oi with c(at) = cj and \0l\ - co". Taking the direct 
produot with the algebra of f inite and cofinite subsets of 
co.| we obtain a pc algebra £ with c(£) « co1 and |<£.| = 
(This example has been pointed out to me by J.D. Monk). For 
bigger oardinals we abk 

P r o b l e m 7.4. For which cardinals ae are there 
pc algebras of cellularity a? and power zu? 

The number of non-isomorphio pc algebras of cellularity s 
is bounded below by 2* (proof of 2.4) and above by 2*" (5.3) . 
In the Lindelof oase the upper bound is attained, since there 
are enough subalgebras of the interval algebra on the reals 
( [ 2 ] , §4). For bigger cardinals i t would be interesting to 
know 

P r o b l e m 7.5. How many non-isomorphic pc a lge-
bras of c e l lu l a r i t y ae are there? 

The last problem has been suggested by the re f e ree in 
connection with his improvement of 4.4. 

P r o b l e m 7.6. Does there ex is t a hered i tar i l y 
paracompact Boolean spaoe in which the set of a l l points with 
uncountable character i s of the second category? 
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