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In this paper we define classes of Boolean algebras
(BAs for short) by imposing conditions on the generation
of ideals, Demanding all ideals of a ring to be finitely ge-
nerated, leads to the important class of Noetherian rings,

For BA ‘s, however, this gives nothing new, since it leads

to the class of finite algebras., Trying again, we demand all
ideals of a BA to be countably generated. The class obitained
that way includes all countable algebras and some more. For
a reason that will become clear in section 1 we call them
Lindelbf algebras.

Startipg with a countable one it is easy to find a set of
pairwise disjoint generators for a-given ideal. Conssequently,
the Lindelsf algebras belong to the class of BA's all ideals
of which are disjointly gsnerated. These are the main subject
of the paper.

There is a different approach to new classes of BA s from
the topological side., It is based on the observation that sub=
spaces of Boolean spaces do not necessarily have the proper-
ties which one is used to from well-behaved spaces. For example
they may fail to be normal. This suggests the consideration
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2 L. Heindorf

of BA's whose Stone spaces satisfy some topologioal property
hereditarily.

The class we are interested in can be obtained in both
ways. It turns out that each ideal of a BA is disjointly ge~
nerated iff its Stone space is hereditarily paracompact.

The reader is supposed to have a working knowledge of Boolean
algebra theory. Especially the basic facts about Stone duality
(correspondence of ideals and open sets, points and ultrafil-
ters, etc.) are used throughout the paper without further
explanation. They can be found irn [5].

Most of our results are more or less easy consequences
of well-known topological theorems. One more recent of them
is due to éapirovskii and has not yét found its way into the
monographs, For the readers convenience we give it with full
proof. The other essential topological results are all quoted
from the monograph of Engelking [4]. The reader is supposed
to have it at hand. Our topological terminology is in accor-
dance with that book.

The suthor whishes to thank J.D. Monk and the referee for
some helpful remarks on the first version of thie paper,

0. Notational conventions:

A, 4 £ denote Boolean algebras; X, Y, 2 their reapective
Stone spaces. If useful, points of X are treated as ultra-
filters of ¢, However, in most cases we consider (I as the
algebra of clopen subsets of X,

We use 0, 1,A ,V , ~ for the Boolean operations., a~b means
the same as a A=b, If we deal with an algebra of sets, then
the usual notmtionN,U, N\ is also used. ¢, B, 7, ... denote
ordinals; 2, A cardinalsj and 1, j, k, +ss natural numbers.

|C] stands for the cardinality of the set C.

1. Dualjization and definitions

Theoremnm 1.1, Let IcUx be an ideal and UC X the
corresponding open set., Then the followlng conditions are
equivalent:




Boolean algebras . 3

(1) I is countably generated.
(2) The subspace U has the Lindeldof property.
(3) U is an Fs in X,
If one of these conditions is satisfied, then I has a pairwise
disjoint, countable set of generators.
Proof. (1)—(2). 4 countable union of compact
sets is always Lindelsf.
(2) —(3). U is even a countable union of compact sets.
(3) —(1). Suppose U = LJ F, where each F, 1s closed in X,

n<w
hence compaoct, It is easy to find clopen sets An such that

F,cA,cU. Then U = ng A e So I is generated by {Anln<a4.

= AN
n+ An+1 &EL Bm' we arrive at a countable

disjoint set of generators for I.

Theorenmn 1.24 Let IC X be an ideal, UCX the
eorresponding open set, I has a disjoint set of generators
iff the subspace U is paracompaat,

Proof. If I is disjointly generated, then U is the
disjoint union of compact clopen subspaces and, therefore,
paracompact {[4],5.1.30). .,

Suppose now that U is paracompact., Being locally compact
it can be represented as a union of pairwise disjoint open
subsets each of which has the Lindelsf property ([4], 5.1.27).
By 1.1 each of the parts is a disjoint union of clopen sets
and 8o is U,

Applied to all ideals of a given algebra the preceding
theorems yleld

Corollary 1.3. The following conditions are
equivalent: '

(1) Each ideal of (¢ is countably generated,

(2) Each open subspace of X is Lindelsf.,

(3) X is perfectly normal (i.e., normal and all closed sub-
sets are Gg).

Corellary 1.4, Each ideal of & is disjointly
zenerated iff each open subspace of X is paracompact,

Setting B = A , B
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4 L. Heindorf

'It is an easy exercise %0 see that in both cases the re~
striction to open subspaces is unnecessary, i.e., X is even
hereditarily Lindelof resp. paracompact, Weuse the worde pa-
racompact (poc) algebra and Lindelosf algebrg in accordance
with the corollaries.

Note that a BA is Lindelof iff it is pc and satisfies the
cco, Clearly, all countable Ba’s are Lindelof, hence pc. Next
we give an alternative characterization of the ILindelof pro=-
perty. It spares us the consideration of yet another class
of BA s,

Proposition 1.5, A BA is Lindelof iff each
of its ideals is generated by a chain.

Proof. Gne direction is trivial beoause every
countably generated ideal can be generated by a chein,

Suppose each ideal of ¢ is generated by a chain, First
we prove that « satisfies the coc. Otherwise, there wers

a family (ao()cMQ1 of non-zero pairwime disjoint elements.

Let BC U be a chain generating the same ideal. Then all sets
S(b) ={x| a,Ab # 0} are finite, all x<w, fall in some S(B)
with be B, and S(b)c S(e) for b<c. We conclude that w, would
be the union of an increasing sequence of finite sets, which
is not true.

Bvery linear ordering has a cofinal well-ordered subset,
Each cofinite subchain generates the same ideal, Consequently,
all ldeals of & ars genersted by well-ordered chains. This
implies that & is Lindeldf since every well-ordered chain in
a ccc algebra is countable.

Applied to one-point sets 1.3.(3) implies that the Stone
spaces of Lindeldf algebras are first countable, This is not
true for pc algebras in general, but we have

Proposition 1.6, If & is pc, then X is a
Fréchet space (1.8., xcC\C implies the existenoce of a se~
quence ¢, e C converging to x). _

Proof. Consider CcX and xe¢ C\C, The prime ideal
corresponding to X‘\{x} is disjointly generated. Therefore,
we find pairwise disjoint non-empty clopen U,, x<2% such that
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Boolean algebra 5

x\\{x} = L,J U, C must meet infinitely many U,, since each

xX< @
finite union of them is closed and does not contain x, So

we can choose different x <@ and o € CNU, « It is then easy
n

to see that (°n)n<a) converges to X

Example 1.7. (1) Infinite complete algebras
cannot be paracompsat, for, in their Stone spaces, each con=
verging sequence is eventually constant,

(2) If & is an uncountable subalgebra of a free one,
then & is not po. This follows from Efimov’e result that
dyadic Frechet spaces are metrizable ([3], Theorem 26, stronger
results are in [4], 3.12.12),

In connection with our notion of a pc algebra it is natu-
ral to ask for strongly (weakly) paracompact algebras (with
the obvious definition).

Strong paracompactness givea nothing new because svery
disjoint cover is star-finite,

On the other hand, there are weakly paracompact BA s that
are not pc {see example 6.4 below). In the presence of the
occ the two notions, however, coinoide. Indeed, every point-
~-finite open cover of a locally compact ccc space is countable
([1], Proposition 1).

2. Operations on pc algebras

Theorem 2.1, The class of pc BA s is closed
under homomorphic images‘énd subalgebras.

Proof., If & is a homomorphic image of ¢«r , then Y
is a subspace of X, If X 1s hereditarily parecompact, then so
ie Y, If % 1is a subalgebra of <r , then there is a closed
mapping f of X onto Y. Consider an open subset U of Y.

v = £~ NU) is open in X, hence paracompact. £|V remains a
closed mapping, which implies the paracompactness of U by
virtue of the Michael theorem ([4], 5.1¢33)e

Froposition 2420 Let o be pe and satiefy
the ¢ ~chain condition (i.e., every disjoint subset of & has
rower <¥), If ¥ is either a subalgebra or a homomorphio

- 47 -



6 L. Heindorf

image of ¢z , then % satisfies the ®-chain condition, too.
In particular, if oz is Lindelof, then % is Lindelof.
Proof. The assertion on subalgebras is obvious,
Consider & = or/I for some ideal I and suppose, by contradic-
tion, the existence of elements a,, «< such that a, ¢ I, but
ay r8pel, for all « B
Let J be the ideal generated by {aa|a<:z} and fix a dis-
joint set of generators {bplﬂ<l} for J. 2 must be less
than 2, since (I satisfies the ¥ -chain condition. Every bg
is covered by finitely many a,. Consequently, A of them
suffice to ganerate J, Without loss of generality we can assu-
me that {aq]u<a} generates J. Then we find<x1,...,qn<:h such

that ,a}‘s 8a1V XX A" aun~ .
Therefore, a, = (a, A a&,)v... v(a, na,) and, since each
1 n

a, A 8, belongs to I, so does a,, contradiction.

[+ 4
t This proposition shows again that uncountable free BA's
cannot be pc, because they are cce, but have non-ccc homo-
morphio images. The same holds for the power-set algsebra
on we On the other hand, this algebra is isomorphic to the
direct product of countably many copies of the two-elemant
algebra. We conclude that paracompactness is not preserved
by {(infinite) direct products.
Proposition 2.3 Finite direect products and
arbitrary weak direct products of po algebras are pe,
Proof., The assertion concerning finite products
is obvious. Suppose (a&hx<z is a family of pc¢ algebras with

Stone spaces X,. Denote their weak product by 2: a, anddts

X<
Stene space by X, Then X is homeomorphic to the one~-point com~-

pactification of ga:xq' It is an easy exercise to see that X
. x

is hereditarily parecompact provided all X, are.

Before continuing, the reader should recall the concept
of a superatomic BA. This property oan be characterized in
terms of a transfinite sequence of ideals Iu(a) attached to
each BA in the following way:
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Ib(a) = {o}v
L () = the ideal generated by

{aeozl a/I,(a) 4is an atom of (ll/Ia((/l)},

I{a) = UrI (1), for limit ordinals 7.
a 1is superatomic iff I () = & for some o, The first of
such U/ is an invariant of .,

Now we use the operations considered so far to prodace
many paracompact algebras,

Theorem 2.4, For each infinite cardinal =z there
are 2% non~isomorphic pc B4 s of power =,

Proof. We start with an auxiliary construction
formerly used by Paljutin [10].

Suppose U, £ are BA 's; P,q ultrafilters of A resp.&.
Then {(a,b) euxs| ae p iff beq} ia easily seen to . be a sub-
algebra of Ux%, which we denote by (d,p)v (¥,9). To visualize
this operation topologically, consider p and g as points
of the Stone spaces X resp. Y. The Stone space of (xyp) v (#,9)
is what topologists o0all a bouquet, the factor space of X®Y
resulting from the identification of p and q., Beling a sub=-
algebra of their product, the bougquet of two pc algebras is pe.

Put ¥, = {0,1}, 2 ., = E:.,r , with each £y = %y,

2 Zyy for a limit ordinal Te
a< g ’

A simple induction shows that esach 2y is a superatomic
pc algebra of power <|«! + w with I, (%) prime. Denote the
corresponding ultrafilter by q,. Let & denote the countable
atomless BA and fix some ultrafilter p of ., To prove the
theorem, let SC # be an arbitrary subset. From the algebra
a, = 3_ <&, where

x<¥

(dyp)v (& ,9,)s if xeS
[;.—.
o » Otherwise,
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8 L. Heindorf

a is pe and has power ¥, Moreover, it is not hard to see

that S ocan be recovered from the isomorphism type of Ao (Ima=
gine the Stone space and note that the ordinal o is a topolo=~
gical invariant of the point resulting from the identifica~
tion of p and q4).

Example 2454 Let SAPC denote the smallest class
of BA's containing the two~-element one and being closed under
finite direct products and arbitrary weak direat products.
Then SAPC is identical with the class of all superatomic para-
compact algsbras.

(Hint: Let & be superatomic and pc. Consider the ideal
I={be2|b=0 or for all 0<a<b F|acSAEC|. Show that /I
cannot contain an stom. Then I =2, consequently £ ¢ SAPC).,

3. Two more examples

Example 3.1, Let # Dbe a cardinal, We alresdy
know that there are 2% pc algebras of cardinality #, By now,
all our examples have many countable principal ideals. Next
we construct a pc algebra £ such that for all beﬁ\{o}
]{a ¢ #| a< b}l =%, Namely, # 1s the subalgebra generated
by all sets Un(f) = {ge ¢®| gln = fln} in the power-set alge-
bra on ¥, f and n run over ¥ and w, respectively. There
is no difficulty in checking that two generators are sither
disjoint or one contains the other. More precisely, Un(f)cUm(g)
iff n>m and flm = g|m. From this it easily follows that each
element of ¥ can be written as a finite union of elements of
the form

m
Un(f)\ j_L=)1 Uni(gi)

with n;>n and g4ln = fin, (We allow n = 0 and m = 0). BEle-
ments of that form will be called primitive.

To prove paracompactness, consider an ideal ICJZ, Call
an element of I prime of size n if it is of the form

n n-1
1 l 3
bn(f)\:%;/1 Un+1(gi) and there is no Un(f)\\kzg Un+1(hi) in I.

{4gain we allow m = O),
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Boolean slgebra 9

Note that two prime elements of the same size are either
identical or disjoint, We cleim that I is generated by its
prime elements. To see this, consider a primitive element

m
U = Un(f)\\§;% Uni(gi) belonging to I. By induction on

k = max{ni}-n we prove that U is covered by a finite union

n+1(gi)’
and it is easy to see that U is contained in one prime ele-

m
of prime elements. In case k = 1 we have U=U_ (f)\| J U
£

m, 9
: . [ NI . ,
ment, For k>1 U can be written as LUn(f) {;4 Un+1(gi,J J

m m
U §;4 [Un+1(sj)\\i;4 Uni(gi)J and the induction hypothesis
applies to each element in brackets,

Put 4 = ¢ and choose, by induction, Apii
pairwlse disjoint set of prime elements of size n disjoint

to ce a maximal

to all elements of \xj 4:;e It is then easily seen that kj Ay
J<n J n<w
is a pairwise disjoint set generating I,

Example 3.2, (CH) In [14] Shelah used CH to
produce a very peculiar BA. In the following we describe a
rough version of his method, which guarantees the Lindelof
property only. It has the advantage of being easily visualized
and it keeps one essential part of what is done in [14].

We start iith the countable atomless BA & conceived as
the algebra of clopen subsets of X. Let Uy, x <w, = 2, be
an enumeration of all open subsets of X, Choose, by induction,
points X X <@y such that

Xo ¢ ﬁL)mFr UsU{xplp<c}.

This is possible by the Baire Category Theorem, since each
Fr Ug (=ﬁﬁ\~Uﬂ) is nowhere dense. Now fix regular open sets

C, such that Cu\ Gy = {x,}. (To find one, represent X \{x.|
as EJ Vn with Vn non-empty, disjoint, clopen, and put
n<ow

c = UUJ Voa)e Let us note that all the delicacy of Shelan’s
n<ow
construction lies in the proper choles of the C,.
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10 L. Heilnerf

Denote by ¥ the subalgebra of the regular-open algebra
on X (ooneult [5, §4] for the definition) generated by «
and {C,lx<w}. This is the desired algebra. First we cheok
that each element of # oan be written as

1 m n
\/ agv \/ (by A Gy Yv\/ (ey=Cy )
1=1 =1 d ke k
where ai,bj,ck are elements of . This is based on the ob~
servation that each element of # has (as a regular open set)
z boundary consisting of finitely many x, S, which can be se-
parated by elements of & , Notice that C,ra and a - Cy are
both clopen, hence elements of (! , whenever x,¢ a.

48 an example we give a representation of Cy ACga =~ Cx
in the desired form, Choosa, a,b,ce pairwise disjoint,
with avbve = 1 and x,¢ a, Xge by, X, ecc. Then we have

CxACpn=Cyp= [(GACaa=Cx)ralv[{CanCan=-Cxrlnh]v
v[{CxrCgna=Cylac] =
= [Cy A (Cgna)a(a=Cyllv [Cpn (Conb)a(baCyllv
vCun c)n(Can cinaCpl.

This is the desired form, since all expressions in parenthesis
are slements of & ,

Let IC# be an ideal and UcX the open set corresponding
to INU, Ve claim that I is generated by the countable set
(Inw)uy {a/\Co(eII aed, Xy€PFr U} U {a-Co( € I| aea, x,eFr U}.
10 see this, consider an element De I of the form ba Cy or
b-Cy With x,¢ ir U. Hegarded as an open set, D is contained
in'U, conseguently, DC U, But _DCDU{xa} and x,¢ U\U, hence
ever DCU, tince D is compact, there is a clopen a with
DCacUlU, Clearly, aeINU and D<a in the sense of & « & 8i=
zilar argument shows that & /1 is countable whenever I is a
dense ideal. This procerty implies retractiveness (see sec-
tion € below).
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4, Chains in paracompact algebras

An important class of BA's arises from linear orderings.
Let {(A,< ) be a linear ordering. The set of all finite unions
of left-closed, right-open intervals [a,,b,)U «.cU [ag,b,),
with a,,b; € AU{t =}, forma together with # a BA under the
set=-theoretical operations. It is called the interval algebra
on A and denoted by --7{(4). Ths reader may consult [9] for
details on interval algebras. There he will find a proof of
the important fact that the topology of the Stone space of
an interval algebra ocan be generated by a linear ordering.

Theorem 4.1, Let (A,<) be a linear ordering,
J(A) is pe iff each convex subset U of A contains a countable
subset, which is cofinal and coinitial in U, In particular,
if (A,<) is cco, thend (A) is po.

Proof. If the condition on the order is violated,
then either w, or its reverse can be (order=-theorstically)
embedded into A. Then w,+1 can be (topologically) embedded
into the Stone space of v{(4)., But this is impossible if it
is Préchet., To prove suffioiency, consider an ideal IC&(A),
Put U = U {[a,b) | [a,b)e I}C A, For a,belU define a~b iff
[min(a,b),max(a,b)) e I, Obviously, ~ is an equivalence rela~
tion whose classes are convex subsets of A, We want to find
pairwise disjoint intervals [a,,b,) € I such that each
[a,b)e I is covered by a finite number of them.

If [a,b) eI, then [a,b) is contained in one equivalence
class under~, This shows that we can handle each of these
¢lasses separately, that is, we can assume that U itself
consists of just one class.

Several cases are possible, The others being similar, we
confine ourselves to the one in which U has no first but
a lagt element, say b. It splits into two subocases according
to whether [~o,b) belongs to I or note beU implies the
existence of some d>b (possibly o) with [b,d)e I. b = max U,
hence (b,d) = ¢, In the first subcase we find U = [~o0,d)
end I is even principal. If [~ ,b)¢ I, then we take, by
assumption, a strictly decreasing coinitial sequence a

n.
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12 L. Heindorf

Clearly, U = [ao,d)LJ I [an+1,an), and these are the desired
intervals, R=o

Remark 4.2. (1) It may seem that we have proved
J(A) to be even Lindeldf, This is not true, since ~ c¢an have
uncountably many equivalence classes., Even if A is ccc (i.e.,
every family of pairwise disjoint open intervals is countable),
&(A) need not be Lindelsf,

(Hint: Take the lexicographic order of reals x{0,1}).

(2) If, on the other hand, & (A) is coo, then A must be
coc nad thus #(A) is Lindelof., Therse is a much stronger re-
sult in this respect. From Theorem 2 in [8] it follows that
sach ccc subalgebra of an interval algebra is Lindeldf.

The interval algebra on the reals is Lindeldf and hae car-
dinality 2“., Next we show that this is the maximum,

Proposition 4.3, (1) If & is a pc interval
algebra, then ol < [ Xl< 2%,

(2) Bvery chain in a pc algebra has power at most 2%,
(3) Every well-ordered chain in a po algebra is countable.

Proof. (1) |al <|X| 4is independent of paracompact-
ness. X is a linearly ordered Frechet space, hence first
countable. Since it is also compact, |X|< 2¢ follows 1y~ m
Arhangel ‘skii ‘s Theorem ([4], 3.1.29).

(2) follows immediately from (1) and 2.1.
(3} ie an immediate conssguence of 4,1 and 2,1,

So far, sll our examples of pc algsbras have had many
countably generated ultrafilters., The next theorem shows
that the reason is not our lack of imagination, The proof
given below is due to the referee. It is much simpler than
the original one that proved density only.

Theorem 4.4, If & is pc, then the set FC of
countably generated ultrafilters (i.e., points of countable
character) is dense and of the second category in X.

The following argument is used twice in the proof of 4.4
and, therefore, we separate it as

Lemma 4.5 If GCX is a closed, nowhere dense Gg,
then GC FC,
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Proof. Consider xe¢G and choose families (Aq)u< 2

and (Bn)n<w of disjoint, clopen, non-zero subsets of X sush
that x\G = U B, and X\{x} = O‘L(}Q A+ Since each B is

n<w
covered by a finite number of A, 8, the sets S(n) =

= {o( BN Ay # ¢} are all finite, Moreover, all A, intersect
some Bn, because G is nowhere dense. Thie implies %=
= U S(n), So ¥ must be oountabls, as was to be shown,

n<w

Proof of 4.4. First we show that FC is dense in X,
Consider any oclopen UC X, If U contains an isolated point,
then PFCNU ¢ ¢ Otherwise, comsider a maximal chain C of
clopen, non-voild subsets of U, By 4,1 C has a countable co-
initial subchain, Therefore, ¢ # G = N C is a closed Gs.
Since U contalns no isolated point and C is meximal, G must
be nowhere dense. By the lemma, GC FC, hencs FCNU # ¢.

It FC were a first-category set, then one could find a closed
Gs, say H, disjoint from FC. Since FC is dense, H would be
nowhere dense., But then HCFC, by the lemma, a contradiction,

Remark 4,6. BEvery basic clopen subspace U of X
meets the assumption of the theorem, Therefore, FCNU is of
the second oategory in U, and FC is even of the second cate-
gory at each point of X,

5« Cardinal functions

Many cerdinal functions for Ba‘s have been introduced and
extensively studied in recent years. Some of the results ob-
tained so far (e.g. 1.7 (2) or 4.3) can be restated in terms
of cardinal functions. In this section we want to add some new
ones. The key to these results is a strong topological theo-
rem due to Sapirovskii (Theorem 2.1 of [13]). Since it has not
yot found its way into the monographs and the original papser
is not too widespread, we give the full proof of the specisl
case we need.

Theorenm S50% Suppose & 1is po and satisfies the
2=-chain condition for some A with cf(2}>—w1. Then each dense
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14 L, Heindorf

subset C of X has a subset D which is still dense and has
cardinality less than 2,

Proof. Suppose C = X, Foru <w, we choose inducti-
vely subsets C,C C and families B, of pairwise disjoint clopen
subsets of X such that:

(1) |Cxi< A and |Byi<A

(2) Coc Cp for o< 3

(3) X\Cq = UBgy

(4) If K is a finite subfamily of U B, and N K # ¢, then

Cﬁﬂ NK ¥ e

- Suppose Cy, By are constructed for a<p<w,. (1) and
P<ug < cf{A) imply |qU B, <A ¢ Therefore, the number of fi-

nite subfamilies K to be considered at step A3 is less than A,
Since N K is open and C is dense, we can choose oy € NKnC
provided that N K is not empty. Put Csz = U}6 Co U {cK|

X<

c LJﬁ By, finite, NK # (6}. Since A is po, there is a disjoint
X<

family Bg of non-empty clopen sets such that X\Cs = U Bg.
The A ~chain condition yields [Bgl<A. The set D = Co is
* <Ly
a subset of C of cardinality less than A, To prove D = X,
suppose, by contradiction, the existence of some xe X\D.
Clearly, xe X\ Co(, hence xe Uy, for some Uy,e B,. By construc=-
tion, C,C X\ Uge Since X is Frechet, we have D = U Cocr
0(<(,,)1

hence DC U (X\Ug)e By compactness, & finite union is suf-
o<

1 _ _
fioient to cover D, say Dc(XN\U, JU «.s U(X\Uy )o Pix some
1

n
PB>xXqseseroy and consider K = {Uo(1,...,Uo(n}. N K is not empty,

since it contains x, Therefore, at stage 3 of the construc-
tion we chose oy e C N NK, Thus DNNK # ¢, contradicting
bcX\NK,

From 5.1, we now obtain results for the following cardinal
functions:
clor) = sup {IBI |B is a disjoint subsets of &
d(or) = inf {I.,ﬁl | # is a dense subalgebra of «

(cellularity)
{density)
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Theorem 5.2, If ot is po, then U contains a dis-
joint subset of cardinality c(¢), i.e., the supremum is
attained,

Proof. This is clear if c¢(uf) is a successor or w,
Por o) singular, the property does not depend on paracom-
pactness and is known (of. [6], Theorem 3:1). Supposes now that
o{xt) is a regular limit cardinal, Then cf{c(x)) = cla)>w.

If c¢(w) were not attained, then 5.1 would yield a dense subset
of X of some cardinality less than o(¢t). But this is impossible.

The orem 5.3, If & is po, then clw)< lul<e(a)®.

Proof. cf{a)<lal <IXl holds for all BA's. To prove
| X|< e{w)®, suppose first that c¢(x) is wncountable. Then
cf(c(OL)+)>w1 and 5,1 yields a dense subset D of X with
| Dl< ¢{). From the fact that X is Frechet we conclude that
|X| = |D]< D% eo(x)”, Consider now the Lindeldf case, i.e.,
e(#) =w. 5.1 can be applied to A =w, and yields a denss
subset of oardinality less thanw,. As in the first case,
!Xléw“; = w®ea cla)”,

Theorem 5.ie If « is pc and cd%);mu1, then
ofr) = dlar), If a is Lindeléf, then d(a)<w,.

Proof, We prove the first statement and indicate
the changes in the Lindelof oase in brackets. 5.1 yields a
dense subset D of X with |D| = o(w) [IDI<w,]. For each xeD
fix a family Bx of clopen sets such that {x} = N Bx and
(B |<cla) [|Bgl<w]s It is easily seen that L B, generates
a dense subalgebra <& of O/ . Consequently, d(u)< |Zi< [D]e
*sup [B_|< cla)-cla) = clu). [dl)<]Z] < IDl*wsw 4]+ The inverse
inequelity e{w)< d(¢) is obvious and does not depend on pare-
compactness.

Remark 5.5 In the previous proof we have esta=-
blished that d{(®) is ‘equal to the density character of X pro-
vided that & is pc.

Theorem 5,6, If o is pe, then O has exactly
2¢{®) j4ea1s,
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Proof. A family of o{w) pairwise disjoint elements
of O gives, obviously, rise to 2¢ @) different ideals. On
the other hand, each ideal is generated by < o(a) elements,
Therefore, their number is bounded by |01|°(U()g o(crl)w"’(w) ='
= pofa),

Remarks 5,7. (1) Consider some cardinal z >2¢
and let ¢ denote the free BA of cardinality ®. Then o(at) =w,
lal = a(cr) =2, and o has 2% ideals, This shows that 5.3,

5.4, and 5.6 do not hold for non-pc¢ algebras,

(2) & non=-pc counterexample to 5.2 is the free produot’
of the sequence (,, <) , where 2 is a regular limit cardinal
and p the algebra of finite and cofinite subsets of z. For
details see ([6], example 6.5).

(3) The second statement of 5.4 cannot be improved in ZFC.
If there is a Suslin line, then its interval algebra is Lin=-
delof, but does not have a countable dense subalgebra, On the
other hand, MA+1CH implies that each perfectly normsl, com=
pact space is separable (of. [6], chapter 5), so each Lindelsf
algebra has a countable dense subalgebra.

6. Normality and retractiveness

Recall that a topological space is normal iff esch pair
of disjoint closed sets can be separated by open neighbourhoods.
BEvery Stone space is compact, hence normal, but this neet not
be true of subspaces. Normality considerations were already
used implicitly in Boolean algebra theory but never made ex-
plicit, The reason may be that this notion does not have a
nice description in Boolean algebraic termse.

We call an ideal I <& normal iff the ocorresponding open
subspace UcX is normal, We say that & is normal provided
that all its ideals are normal {i.e., if X is a hereditarily
normal space). Finally, an extension a/C¥ will be c¢alled
normal iff each ideal of & generates a normal ideal in 2,

Topologists have established many relations between para-
compactness and normality of topological spaces. We use some
of them to find connections bstween our Boolean algebralc
notions,
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Theorem 6.1, ' is pc iff all its extensions
are normal. In partiocular, all pc algebras are normal,

Proof. Suppose ¢ to be pc, let wwC £ be an exten=-
sion, and consider an ideal IC U, Let J be the ideal generat-
ed by I-in ¥ . Since I is disjointly generated, so is J.
Therefore, the open subspace of the Stone space of £ ocorres-
ponding to J is a sum of compact spaces, hence normal, If
every extension of & is normal, then, in particular, so is
the standard extension acu~a (free product). Consider an
ideal I of ¢ and the corresponding open subset U of X,
In U*0 I generates an ideal which the open set Ux XCTXx X
corresponds to. (Recall that the Stone space of Uxwu is ca-
nonically homeomorphic to Xx X)e The open subspace Ux X is
normal by assumption, As normality is always inherited by
closed subspaces, Ux U is normel, too. The paracompactness
of U now follows from Tamano s Theorsm ([4]s 5.1.38).

Remark 6,2, Bvery order topology is hereditarily
normal ([ 4], 2.7.5), which implies that every interval alge-
bra is normal, 4.3 immediately yields examples of normal
non-pe BA ‘s, The problem becomes more delicate if we restriot
our attention to ccc algebras. Under CH the answer is known.
In [7] there is an example of a locally compact, zero-dimen=-
sional, (even hereditarily) separable, hereditarily normal,
non-Lindelof space. Its one-point compactification is the Stone
space of a normal, ccc, non-pc BA.

Theorem 6.3 The following conditions are equi-
valent:

(1) o is Lindelosf.

(2) xx2 is pc (Lindelof) for each countable BA Z.
{3} wx£ 1s pec {Lindeldsf) for some countable BA £,
(4) ox¢ is normal for each countable BA £.

(5) =% is normal for some countable Ba £,

Proof. (1) —= {2). Let IC x££ be an ideal,
For each b e # consider the ideal I, = {ae(/ll axbe I}C(/l.
Sinsze O 1is Lirdsicf, eech Ib has s countable set of genera-
tere, say Jb’ I is cbviocusly generated by the set
{",ﬁ b| ae Jb, beéf«}, which is countable.
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(5) —=(1): This is the Boolean translation of Katetov's
result stating that for XxY to be normel it is neeeasary
that X 1s perfectly normal provided that Y containe a ¢onvarg-
ing sequence ([4], 2.7.15). 411 the other implications are
either obvious or immediate consequences of 6.1,

Example 6,4, Let #x and £ be the algebraé of
finite and cofinite subsets of « and w,, respectively. £ is
not Lindelsf, thus %% is not normal, let alone pc, But the
Stgne space of wx & 1g hereditarily wekly paracompact
([4], 5.3.B). Denote by &, the subalgebra of ¢! gensrated by
the first n atoms and let £, denote the subalgebra of %
generated by {{s}| p <=} . a2, is countable, hence Lindelsf.
an*.Yr is paracompaot, as it is isomorphic to $n+1. Obviously
Ux g = U (anx.z) = U (rx&Z,)s We conolude that counteble

n<o 0(<¢,)1
unions of pc algebras and uncountable unions of Lindeldf alge=-
bras need not be pce On the other hand, it is obvious that a
countable union of Lindelof algebras is Lindalof again.

A Boolean algebra & is said to be retractive iff for each
epimorphism g: —£ there is a monomorphism fs £ ——d such
that g of = id. Details on retractive BA s can be found in
[11] and [12]. In the language of Stone spaces we have the
following equivalent definitions '

a is retractive iff for each closed FC.X there is a re-
traction-f: X —=F, i.e., a continuous map which is identical
on F,

Many proofs of non-retractiveness (e.g. in D2]) made im-
plicit use of the following

"Proposition 6.5 Retractive BA’'s ere normal,

Proof. Let Uc X be open and let F, G be closed
(in U) subsets of U with FNG = ¢ By definition, there are
F', G' closed in X such that F = F'NU and G = G'N U, Consider
a retraction f: X——F'U G', An esasy argument shows that
Uﬂf'1(F'\G’) and UN f'1(G'\F’) .are the desired neighbour=-
hoods separating F and G in U,
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Next we give an example showing that normality does not
imply retractiveness in general,

Example 6,6, Let o denote the interval algebra
on the reals and # the finite-aofinite algebra on w. By
6e1, ¥ £ is normal. The non-retractivensss of (x~+£ follows
from a general theorem in [12], but can be rapidly seen di-
rectly: Identify Y, the Stone space of ¥, withw +1. Eaoh real
number 1 will be considered as the point (i.e., ultrafil-
ter) {ae alre a} of X. Let Tpy B<W be an enumeration of
the rationals and denote by F the closed subaet Ix{u}U
U {(rn,n)l n<m} of XxY., Suppose there were a retraction
f: XxY—7F, For each n there must be some en>0 such that
£{lr vyt ) {n}) = {(rn,n)}. There will be some real number
r,, such that we have Pu< T, < T 4En for infinitely many n
(Remember your first lessions of calculusl!). As the point
(r,,w) belonge to F, there must be a §> 0 and a natural num=
ber N such that f£(lx,,r, +6) x {1>N} )c [r,,yr,+1) x Yo Take any
n> N such that r <r, <r +e o Then, on the one hand, f((xr,,n))=
= (r,,n) and, on the other hand, £((r,,n))e [r,,r,+1) x Y.
This is a contradiction, since r ¢ [r,,x, +1).

7. QOpen problems

In spite of considerabls efforts ([11], [12]) the question
whether the free product of two uncountable BA's can be re-
tractive is still open. The same problem is interesting for
normel and pc algebras. In the following we list the more or
less obvious observations that one ocan make, '

(1) 0% ¢ normal idplies &, ¥ Lindeléf, This follows from
the already mentioned result of Katetov ([4], 2.7.15).

(2) axa Lindelof implies & countable, Indeed, if w=w -
is Lindelof, then the diagonal is a G5 in X x X, By a theorem
of Sneider ([4], 4.2.B), X must be mstrizabls,

{3) ot *x Ut ot normal implies ¢ countable. This is a combi=-
nation of (1) and (2).

(4} (KA+TCH) Or»0t parscompact impliss ¢ countable. This
fellowe from {1) and (2}, because under Ka+1CH the ccc is
mnltiplicative ([6], Theorem 5.5).
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20 L. Heindorf

Problem 7.1. Can the free product of two uncoun-
table BA s be paracompact (normal)? The Stone space of a ho-
momorphic image of ¢/ can be embedded into X, Therefore, homo-
morphic images of normal algsbras are noraal,

Problenm 7.2. Is every subalgebra of a normal
algebra normal again?

We have already mentioned (4.2.(2) and 6.2) that coc sub-
algebras of interval algebras are Lindelof, whereas this is
not necessarily true for normal ones, Retractiveness lies
inbetween these properties, and this motivates

Problem 7.3 Is there a retractive, ccc, non-
~Lindelof BA?

The interval algebra on the reals shows that there are
pc algebras O with ¢{(0) = w and [ Ul = w?”. Taking the direct
produot with the algebra of finite and cofinite subsets of
w4 we obtain a pc algebra ¥ with c(2¢) = v, and |g| = w‘i’.
{This example has been pointed out to me by J.D, Monk), For
bigger cardinals we ask

Problem 7.4, For which cardinals » are there
pc algebras of cellularity x and power 2“7

The number of non-isomorphio pc algebras of cellularity =
is bounded below by 2% (proof of 2.4) and above by 2%° (5.3},
In the Lindelof case the upper bound is attained, since there
are enough subalgebras of the interval algsbra on the reals
([2], §4). For bigger cardinals it would be interesting to
know

Problem 7.5 How many non-isomorphic pc alge=-
brags of cellularity = are there?

The last problem has been suggested by the referee in
connection with his improvement of 4.4.

Problem 7.6 Does there exist a hereditarily
paracompact Boolean space in which the set of all points with
uncountable charaocter is of the second category?
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