

Kazimierz Urbanik

JOINT DISTRIBUTIONS AND COMMUTABILITY OF OBSERVABLES

*Dedicated to the memory
of Professor Roman Sikorski*

In the quantum probability theory the σ -field of random events is replaced by the lattice of orthogonal projectors in a separable infinite dimensional Hilbert space H . A countably additive function from this lattices to the unit interval constitutes a state, the non-commutative analogue of a probability measure. The Theorem of Gleason [4] asserts that every state is of the form $\pi \mapsto \text{tr } \pi T$, where π runs over all projectors and T is a probability operator on H , i.e. a positive linear operator of unit trace. Conversely, every probability operator determines a state by the Gleason formula. From now onwards let S stand for the set of all states, i.e. all probability operators on H . We shall denote by T_1 the space of all nuclear linear operators acting in H with the norm $\|T\|_1 = \text{tr}(TT^*)^{1/2}$. Of course S is a closed and convex subset of T_1 .

In quantum theory to every physical quantity or observable there corresponds a self-adjoint not necessarily bounded linear operator on H . By O we shall denote the set of all observables. Given $A \in O$, the probability distribution of A at the state T is defined for all Borel subsets E of the real

line R by the formula $P_T^A(E) = \text{tr } \pi_A(E)T$, where π_A is the projector-valued spectral measure associated with A , i.e.

$A = \int_R \lambda \pi_A(d\lambda)$. The characteristic function of P_T^A , i.e. its Fourier transform \hat{P}_T^A is then given by the formula

$$\hat{P}_T^A(\tau) = \text{tr } e^{i\tau A}T \quad (\tau \in R).$$

A system A_1, A_2, \dots, A_k ($k \geq 2$) of observables is said to be regular if there exists a dense linear manifold D in H such that for arbitrary real numbers $\alpha_1, \alpha_2, \dots, \alpha_k$ the operator $\sum_{j=1}^k \alpha_j A_j$ is well defined on D and is essentially self-adjoint, so that the probability distribution of $\sum_{j=1}^k \alpha_j A_j$ at every state T is well defined. Of course, all systems of bounded observables are regular. The set of all regular systems $A = (A_1, A_2, \dots, A_k)$ of observables will be denoted by O_k . Further, we shall use the following notation. For $a, b \in R^k$ $\frac{1}{2}(a, b)$ will denote the inner product in R^k , $|a| = (a, a)^{\frac{1}{2}}$ and $a \in R^k$ and $A \in O_k$ $(a, A) = \sum_{j=1}^k \alpha_j A_j$ if $a = (\alpha_1, \alpha_2, \dots, \alpha_k)$ and $A = (A_1, A_2, \dots, A_k)$. Of course, $(a, A) \in O$. In [10] I introduced the concept of the joint probability distribution for $A \in O_k$. Namely, a Borel probability measure P_T^A on the k -dimensional Euclidean space R^k is said to be the joint probability distribution of the system A of observables at the state T if for every $a \in R^k$ the projection of P_T^A onto the real line defined by $x \mapsto (a, x)$ ($x \in R^k$) coincides with $P_T^{(a, A)}$. It is clear that the joint probability distribution is uniquely determined provided it exists. Moreover, the characteristic function of P_T^A is given by the formula

$$(1) \quad \hat{P}_T^A(t) = \text{tr } e^{i(t, A)}T \quad (t \in R^k).$$

Given $A \in O_k$, by $S(A)$ we shall denote the set of all states T for which P_T^A exists. It is evident that $T \in S(A)$ if and only if the function $t \mapsto \text{tr } e^{i(t, A)}_T$ ($t \in \mathbb{R}^k$) is continuous and positive definite on \mathbb{R}^k . Hence it follows that always $S(A)$ is a convex and closed in the topology of \mathcal{T}_1 subset of S . It may happen that $S(A)$ is empty.

A relation between the existence of joint probability distribution at every state and the commutability of observables is given by the following statement.

Let $A \in O_k$. Then $S(A) = S$ if and only if A consists of commuting observables, i.e. observables with commuting spectral measures.

For observables with purely point spectrum this statement was proved in [10]. Recently, an elementary proof was given by Ruymgaart [9]. Without any restriction on the spectrum a proof can be found in [5] and [7]. In the more general framework of quantum logics the theorem was proved by Varadarajan [12].

Let I be the unit operator on H . Given $a, b \in \mathbb{R}^k$ and $A \in O_k$ we shall use the notation

$$aA + b = (\alpha_1 A_1 + \beta_1 I, \alpha_2 A_2 + \beta_2 I, \dots, \alpha_k A_k + \beta_k I)$$

where $a = (\alpha_1, \alpha_2, \dots, \alpha_k)$, $b = (\beta_1, \beta_2, \dots, \beta_k)$ and $A = (A_1, A_2, \dots, A_k)$. It is clear that $aA + b \in O_k$. Moreover,

$$(2) \quad \text{tr } e^{i(t, aA+b)}_T = e^{i(t, b)} \text{tr } e^{i(at, A)}_T$$

where $a, b, t \in \mathbb{R}^k$, $T \in S$, $t = (\tau_1, \tau_2, \dots, \tau_k)$ and $at = (\alpha_1 \tau_1, \alpha_2 \tau_2, \dots, \alpha_k \tau_k)$. By formula (1) we have the following lemma.

Lemma 1. If $a = (\alpha_1, \alpha_2, \dots, \alpha_k) \in \mathbb{R}^k$, $\alpha_j \neq 0$ ($j=1, 2, \dots, k$) and $b \in \mathbb{R}^k$, then $A \in O_k$ if and only if $aA + b \in O_k$ and $S(A) = S(aA + b)$.

Let $A \in \mathcal{O}_k$. We say that A fulfills the probabilistic commutation condition if there exists a system $B \in \mathcal{O}_k$ consisting of commuting observables such that $P_T^A = P_T^B$ for all $T \in S(A)$.

By Lemma 1 and formulas (1) and (2) we have the following simple lemma.

Lemma 2. If $a = (\alpha_1, \alpha_2, \dots, \alpha_k) \in \mathbb{R}^k$, $\alpha_j \neq 0$ ($j=1, 2, \dots, k$), $b \in \mathbb{R}^k$ and $A \in \mathcal{O}_k$, then A and $aA+b$ fulfil or do not fulfil the probabilistic commutation condition simultaneously.

Using the method introduced by Ruymgaart in [9] we shall prove the following theorem.

Theorem 1. Let $A \in \mathcal{O}_k$ and A consists of one-sided bounded observables with purely point spectrum. Then A fulfills the probabilistic commutation condition.

Proof. If $S(A)$ is empty, then our assertion is obvious. Consequently, we assume that $S(A)$ is non empty. Moreover, by Lemma 2, we may assume without loss of generality that $A = (A_1, A_2, \dots, A_k)$ where all observables A_j ($j=1, 2, \dots, n$) are non-negative. Let E_j be the spectrum of A_j , which under our assumptions coincides with the set of all eigen values of A_j . Consequently E_j is at most denumerable and for any $T \in S(A)$ the probability measure $P_T^{A_j}$ is concentrated on E_j . Thus for any $T \in S(A)$ the joint probability distribution P_T^A is concentrated on at most denumerable set $E = E_1 \times E_2 \times \dots \times E_k$. Hence we get the formula

$$(3) \quad \hat{P}_T^A(t) = \sum_{e \in E} e^{i(t, e)} P_T^A(\{e\}) \quad (t \in \mathbb{R}^k).$$

Further, for any $a \in \mathbb{R}^k$ the probability measure $P_T^{(a, A)}$ is concentrated on the set $(a, E) = \{(a, e) : e \in E\}$ and, by (1) and (3)

$$(4) \quad \hat{P}_T^{(a, A)}(\tau) = \hat{P}_T^A(\tau a) = \sum_{e \in E} e^{i\tau(a, e)} P_T^A(\{e\}).$$

Let F be the subset of R^k consisting of all elements $a = (\alpha_1, \alpha_2, \dots, \alpha_k)$ with linearly independent coordinates $\alpha_1, \alpha_2, \dots, \alpha_k$ over the denumerable field generated by the set $\bigcup_{j=1}^k E_j$. It is clear that F is dense in R^k . Moreover for $a \in F$ the mapping $e \mapsto (a, e)$ from E onto $\{(a, e)\}$ is one-to-one. Consequently, for $a \in F$ we have the formula

$$P_T^{(a, A)}(\tau) = \sum_{e \in E} e^{i\tau(a, e)} P_T^A(\{(a, e)\}).$$

Taking into account (4) we infer that

$$(5) \quad P_T^{(a, A)}(\{(a, e)\}) = P_T^A(\{e\}) \quad (T \in S(A), e \in E, A \in F).$$

Since F is dense in R^k we can find an element $b \in F$ with positive coordinates. Let π be the spectral measure associated with (b, A) , i.e. $(b, A) = \int_{(b, E)} \lambda \pi(d\lambda)$. Then for the domain of (b, A) we have the inclusion

$$D((b, A)) \subset D = \left\{ x: \sum_{e \in E} (b, e)^2 \|\pi(\{(b, e)\})x\|^2 < \infty \right\}$$

which shows that the set D is dense in H . Using the notation $e = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_k)$ we put

$$B_j = \sum_{e \in E} \varepsilon_j \pi(\{(b, e)\}) \quad (j=1, 2, \dots, k).$$

Since $\varepsilon_j^2 \beta^2 \leq (b, e)^2$ ($j=1, 2, \dots, k$) where $\beta > 0$ and all coordinates of b are greater than β , we infer that $D(B_j) \supset D$ ($j=1, 2, \dots, k$) which shows that $B = (B_1, B_2, \dots, B_k) \in \mathcal{O}_k$. The observables B_1, B_2, \dots, B_k commute with one another and $(a, B) = \sum_{e \in E} (a, e) \pi(\{(b, e)\})$ for every $a \in R^k$. Consequently, by (5)

$$\begin{aligned}\hat{P}_T^{(a, B)}(\tau) &= \sum_{e \in E} e^{i\tau(a, e)} \text{tr} \pi(\{(b, e)\}) T = \\ &= \sum_{e \in E} e^{i\tau(a, e)} P_T^A(\{e\}) \quad (T \in S(A)),\end{aligned}$$

and, by (4), $\hat{P}_T^{(a, B)} = \hat{P}_T^{(a, A)}$ for every $T \in S(A)$ and $a \in R^k$.

This yields the equation $P_T^B = P_T^A$ for all $T \in S(A)$ which completes the proof.

Our next aim is to show that this result cannot be extended to all systems A from O_k . Namely, we shall prove that the pair of canonical observables does not fulfil the condition in question.

Given a subset X of T_1 , by $[X]$ we shall denote the linear subspace of T_1 spanned by X .

First we shall prove the following simple lemma.

Lemma 3. If $A \in O_k$ and A fulfills the probabilistic commutation condition, then

$$S(A) = S \cap [S(A)].$$

Proof. Let $A, B \in O_k$, B consists of commuting observables and $P_T^A = P_T^B$ for all $T \in S(A)$. Let S_0 be the set of all operators T from T_1 for which the equation

$$(6) \quad \text{tr } e^{i(t, A)} T = \text{tr } e^{i(t, B)} T$$

holds for all $t \in R^k$. It is clear that S_0 is a linear subspace of T_1 and, by (1), $S(A) \subset S_0$. Consequently, $[S(A)] \subset S_0$. Since for every $T \in S$ the right-hand side of (6) is continuous and positive definite on R^k , we infer that for every $T \in S \cap [S(A)]$ the left-hand side of (6) is also continuous and positive definite on R^k . In other words we have the inclusion $S(A) \supset S \cap [S(A)]$. The converse inclusion is obvious which completes the proof.

From Theorem 1 and Lemma 3 we get the following corollary.

Corollary. Let $A \in \mathcal{O}_k$ and A consists of one-sided bounded observables with purely point spectrum. If $[S(A)] = \mathcal{T}_1$, then A consists of commuting observables.

By a pair of canonical observables we mean a pair $C = (P, Q)$ for which there exists a dense linear manifold D in H contained in the domains of P, Q and invariant under P, Q . When restricted to D , the observables P, Q satisfy the Heisenberg commutation relation $PQ - QP = iI$ and the operator $P^2 + Q^2$ is essentially self-adjoint. From von Neumann [8] and Dixmier [2] results it follows that $C \in \mathcal{O}_2$ and the function $t - \text{tr } e^{it(C)} T$ ($t \in \mathbb{R}^2$) is continuous for all $T \in \mathcal{T}_1$ ([1], Proposition 3). Put $\tilde{T}(t) = \text{tr } e^{it(C)} T$ ($t \in \mathbb{R}^2, T \in \mathcal{T}_1$). Then, by (1) $\hat{P}_T^C = \tilde{T}$ and, consequently, $T \in S(C)$ if and only if \tilde{T} is positive definite on \mathbb{R}^2 . Let \mathcal{T}_2 be the space of all Hilbert-Schmidt operators on H with the norm $\|T\|_2 = (\text{tr } T T^*)^{\frac{1}{2}}$. Obviously, $\mathcal{T}_1 \subset \mathcal{T}_2$ and $\|T\|_2 \leq \|T\|_1$ for $T \in \mathcal{T}_1$. It is well-known ([6], Chapter 5) that the map $T \rightarrow \tilde{T}$ ($T \in \mathcal{T}_1$) extends uniquely to a linear isometric transformation from \mathcal{T}_2 onto the space $L^2(\mathbb{R}^2)$ of all complex-valued square integrable with respect to the Lebesgue measure functions on \mathbb{R}^2 with the norm

$$\|f\|_2 = ((2\pi)^{-1} \int_{\mathbb{R}^2} |f(t)|^2 dt)^{\frac{1}{2}}. \text{ Moreover}$$

$$(7) \quad \tilde{T}^*(t) = \overline{\tilde{T}(-t)} \quad (t \in \mathbb{R}^2, T \in \mathcal{T}_2).$$

Let A be the subset of \mathcal{T}_2 consisting of all operators T with continuous \tilde{T} vanishing at ∞ . The set A with the norm

$$\|T\| = \|T\|_2 + \max \{|\tilde{T}(t)| : t \in \mathbb{R}^2\}$$

becomes a Banach space. Moreover, we have the inclusion

$$\mathcal{T}_1 \subset A \subset \mathcal{T}_2.$$

Further, A is a Banach algebra under the convolution $*$ defined by setting

$$(8) \quad \widetilde{T}^*U = \widetilde{T}\widetilde{U} \quad (T, U \in S)$$

(see [11]). Given, $a, b \in \mathbb{R}^2$, $a = (\alpha_1, \alpha_2)$, $b = (\beta_1, \beta_2)$ we put $\Delta(a, b) = \alpha_1\beta_2 - \alpha_2\beta_1$. A complex-valued function f on \mathbb{R}^2 is said to be Δ -positive definite if for arbitrary vectors $t_1, t_2, \dots, t_n \in \mathbb{R}^2$ the $n \times n$ matrix $f(t_j - t_k)_{j,k=1}^n$ is positive definite. An analogue of Bochner's Theorem asserts that $f = \widetilde{T}$ for a certain $T \in S$ if and only if f is Δ -positive definite, continuous at the origin and $f(0) = 1$ ([6], p.243). It is clear that fg is Δ -positive definite whenever f is positive-definite and g Δ -positive definite. Hence and from (8) we get the following lemma.

Lemma 4. If $T \in S$, $U \in T_1$, $\widetilde{U}(0) = 1$ and \widetilde{U} is positive definite, then $T^*U \in S$.

Further, using (7), we infer that for every pair $T, U \in S$ the product $\widetilde{T}\widetilde{U}$ is positive definite. Consequently, by Lemma 4 and formula (8) we get the next lemma.

Lemma 5. If $T \in S(C)$ and $U \in S$, then $T^*U \in S(C)$.

We are now in a position to prove the following lemma.

Lemma 6. $[S(C)] = T_1$.

Proof. For every complex number γ with $\operatorname{Re} \gamma > 0$ we define the operators G_γ from T_2 by setting $\widetilde{G}_\gamma(t) = e^{-\gamma/4|t|^2}$ ($t \in \mathbb{R}^2$). It is known ([6], Chapter 5) that for real $\gamma \geq 1$ G_γ are Gaussian probability operators and, consequently, $G_\gamma \in S$ ($\gamma \geq 1$). Since in this case \widetilde{G}_γ is positive definite on \mathbb{R}^2 we have also

$$(9) \quad G_\gamma \in S(C) \quad (\gamma \geq 1).$$

Moreover, G_γ have a representation

$$(10) \quad G_\gamma = \sum_{n=0}^{\infty} \frac{2}{(\gamma+1)} \left(\frac{\gamma-1}{\gamma+1}\right)^n \Pi_n \quad (\gamma \geq 1)$$

where Π_n are commuting one-dimensional projectors ([6], Chapter 5). Since for every $t \in \mathbb{R}^2$ the function

$$\sum_{n=0}^{\infty} \frac{2}{(\gamma+1)} \left(\frac{\gamma-1}{\gamma+1}\right)^n \pi_n(t)$$

is analytic on the half-plane $\operatorname{Re} \gamma > 0$ and coincides, by (10), with $\tilde{G}_\gamma(t)$ on the half-line $\gamma \geq 1$, we infer that it coincides with $e^{-\gamma/4|t|^2}$ on the whole half-plane $\operatorname{Re} \gamma > 0$. In other words we have the equation (10) for all γ with $\operatorname{Re} \gamma > 0$. Put

$$U_\gamma = \frac{4}{(1+\gamma)^2} \sum_{n=0}^{\infty} \left(\frac{\gamma-1}{\gamma+1}\right)^{2n} \pi_{2n} \quad (\gamma > 0).$$

Of course, $U_\gamma \in S$ ($\gamma > 0$) and

$$(11) \quad U_\gamma = \frac{\gamma}{1+\gamma} G_\gamma + \frac{1}{1+\gamma} G_{\gamma-1} \quad (\gamma > 0),$$

which shows that \tilde{U}_γ is positive definite. Thus

$$(12) \quad U_\gamma \in S(C) \quad (\gamma > 0).$$

Let $0 < \gamma < 1$. Then by (9)

$$(13) \quad G_{\gamma-1} \in S(C),$$

which, by (11) and (12), yields $G_\gamma \in T_1$. Since \tilde{G}_γ is positive definite on \mathbb{R}^2 , $\tilde{G}_\gamma(0) = 1$, we infer, by virtue of Lemma 4, that

$$(14) \quad G_\gamma * T \in S \quad (0 < \gamma < 1, T \in S).$$

Further, by Lemma 5 and formulas (12) and (13), we conclude that for every $T \in S$ and $0 < \gamma < 1$ both operators $U_\gamma * T$ and $G_{\gamma-1} * T$ belong to $S(C)$. Consequently, by (11)

$$(15) \quad G_\gamma * T \in [S(C)] \quad (0 < \gamma < 1, T \in S).$$

It is clear that the functions $\widetilde{G_\gamma * T} = \widetilde{G_\gamma} \widetilde{T}$ tend uniformly on every compact subset of \mathbb{R}^2 to \widetilde{T} when $\gamma \rightarrow 0$. Since, by (14), $G_\gamma * T$, $T \in S$, this convergence coincides with the convergence

in \mathcal{T}_1 -topology ([11], Chapter 1). Thus, by (15), $T \in [S(C)]$. In other words we have the inclusion $S \subset [S(C)]$ which yields the assertion of the lemma.

We have $S(C) \neq S$ because the canonical observables do not commute with one another. Moreover, it was proved by Fischer [3] that all projectors belonging to $S(C)$ are Gaussian probability operators. On the other hand, by Lemma 6, $S \cap [S(C)] = S$. Thus as a consequence of Lemma 3 we get the following theorem.

Theorem 2. The pair P, Q of canonical observables does not fulfil the probabilistic commutation condition.

REFERENCES

- [1] C.D. C u s h e n , R.L. H u d s o n : A quantum mechanical central limit theorem, *J. Appl. Probability* 8 (1971) 454-469.
- [2] I. D i x m i e r : Sur la relation $i(PQ - QP) = I$, *Compositio Math.* 13 (1958) 263-269.
- [3] D.R. F i s c h e r : Functions positive definite on \mathbb{R}^3 and the Heisenberg group, *J. Functional Analysis*, 42 (1981) 338-346.
- [4] A.M. G l e a s o n : Measures on the closed subspaces of a Hilbert space, *J. Math. Mech.* 6 (1957) 885-894.
- [5] S.P. G u d d e r : Stochastic methods in quantum mechanics, New York, 1979.
- [6] A.S. H o l e v o : Probabilistic and statistical aspects of the quantum theory, Moscow, 1980 (in Russian).
- [7] E. N e l s o n : Dynamical theories of Brownian motion. Princeton, 1967.
- [8] J. v o n N e u m a n n : Die Eindeutigkeit der Schrödinger'schen Operatoren, *Math. Ann.* 104 (1931) 570-578.
- [9] F.H. R u y m g a a r t : A note on the concept of joint distributions of pairs of observables, Report 8110, *Math. Inst. Katholieke Univ. Nijmegen*, 1981.

- [10] K. Urbaniak : Joint probability distributions of observables in quantum mechanics, *Studia Math.* 21 (1961) 117-133.
- [11] K. Urbaniak : Non-commutative probability limit theorems, *Studia Math.* 78 (1983) 59-75.
- [12] V.S. Varadarajan : Geometry of quantum theory, Vol.I, Princeton, New Jersey, 1968.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF WROCŁAW,
50-384 WROCŁAW, POLAND

Received March 8, 1984.