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In the quantum probability theory the 6-field of random 
events is replaoed by the lattice of orthogonal projectors 
in a separable infinite dimensional Hilbert space H. A countably 
additive function from this lattices to the unit interval con-
stitutes a state, the non-commutative analogue of a probabili-
ty measure. The Theorem of Gleason [4] asserts that every sta-
te is of the form n—— tr jtT, where j t runs over a l l projec-
tors and T is a probability operator on H, i .e . a positive 
linear operator of unit trace. Conversely, every probability 
operator determines a state by the Gleason formula. From now 
onwards let S stand for the set of al l states, i .e . a l l pro-
bability operators on H. We shall dienote by the space of-? 
e l l nuclear linear operators acting in H with the norm 
jjïj|.j = tr{TT*)1^2. Of coarse S is e closed and convex sub-
set Of T y 

In quantum theory to every physical quantity or observable 
th^re corresponds e s s l f »ad jo int not necessarily bounded l i -
near operator on Hs By 0 ws shall denote the set of a l l ob-
t ;ry£bles- Given he- 0 f tac pi'cb^ivility distribution of A at 
the etato T is defined for ail Eoi'oi subsets E of the real 
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l i n e R by the formula P£(B) • t r j t a(E)T, where JT^ i s the 
p r o j e c t o r - v a l u e d s p e c t r a l measure a s soc i a t ed wi th A, i . e . 

A * J* AJTk( d?i). The c h a r a c t e r i s t i c f u n c t i o n of P j , i . e . i t s 
R 

Al 
F o u r i e r t r an s fo rm i s t hen given by the formula 

P*{r) = t r elTkT ( r e R ) . 

A system A ^ , A 2 , . . . , A k ( k > 2 ) of observab les i s sa id t o be 
r e g u l a r i f t he re e x i s t s a dense l i n e a r manifold D i n H such 
t h a t f o r a r b i t r a r y r e a l numbers a 1 f o < 2 , . . . t h e o p e r a t o r 

YL oc.Aj i s we l l de f ined on D and i s e s s e n t i a l l y s e l f - a d j o i n t . 
3-1 3 3 * 
so t h a t the p r o b a b i l i t y d i s t r i b u t i o n of > . °< a t every 

s t a t e T i e we l l d e f i n e d . Of cou r se , a l l systems of bounded 
observab les ere r e g u l a r . The s e t of a l l r e g u l a r systems 
A = ( A i , A 2 t . . . , A k ) of observables w i l l be denoted by O k . 
F u r t h e r , we s h a l l use the fo l lowing n o t a t i o n . For a ^ b e R ^ 

1 
k 2 ( a , b ) w i l l denote the i n n e r produot i n R , | a | = ( a , a ) and 

k X a e R and AeO^ (a,A) » cx^Aj i f a «= » « g , . . . »a^) and 

A = (A1 , A 2 , . . . ,A k ) . Of cou r se , ( a , A ) e O . In [10] I in t roduced 
the concept of the j o i n t p r o b a b i l i t y d i s t r i b u t i o n f o r A e o k . 

Namely, a Bore 1 p r o b a b i l i t y measure PT on the k-dimensional 
Eucl idean space Rk i s sa id t o be the j o i n t p r o b a b i l i t y d i -
s t r i b u t i o n of the system A of observables a t the s t a t e T i f 
f o r every a e R K the p r o j e c t i o n of p£ onto the r e a l l i n e de-
f i n e d by x — (a ,x ) ( x e R k ) co inc ides wi th I t i s c l e a r 
t h a t the j o i n t p r o b a b i l i t y d i s t r i b u t i o n i s uniquely determined 
provided i t e x i s t s , moreover, the c h a r a c t e r i s t i c f u n c t i o n of » 
P£ i s g iven by the formula 

(1) p£ ( t ) = t r e i ( t ' A , T ( t e R k ) . 
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Given AeO k , by S(A) we s h a l l denote the set of a l l s t a t e s T 

f o r which P j e x i s t s . I t i s evident tha t TeS(A) i f and only 
i f the func t ion t — t r e 1 ^ ' ^ ! ( t e R * ) i s continuous and 
pos i t ive d e f i n i t e on R^. Henoe i t fol lows that always S(A) 
i s a convex and closed in the topology of T̂  subset of S . 
I t may happen that s(A) i s empty. 

A r e l a t i o n between the exis tence of j o i n t probabi l i ty d i -
s t r i b u t i o n at every s t a t e and the commutability of observables 
íb given by the following s ta tement . 

Let AeO k . ThenS(A) =S i f and only i f A cons i s t s of 
commuting observables, i . e . observables with commuting spec-
t r a l measures. 

For observables with purely point spectrum t h i s statement 
was proved in [10]. Recently, an elementary proof was given 
by Ruymgaart [9]. Without any r e s t r i c t i o n on the spectrum a 
proof can be found in [5] and [7 ] . In the more general frame-
work of quantum log ics the theorem was proved by Varadarajan 
[12], 

Let I be the unit operator on H. Given a , b e R k and AcO^ 
we s h a l l use the no ta t ion 

aA + b • (°<iAi +/011» a 2 A 2 + ' * ,0<kAk + > Q k 1 ' 

where a = {«-j,0^»»»*»0^)» b • (y31 , / 3 2 , . . . and 
A « ( A 1 , A 2 , . . . , A k ) . I t i s c l e a r tha t aA+beO^. Moreover, 

(2) t r e i (* ,aA+b)T = e i ( t , b ) t r e i ( a t , A ) T 

where a , b , t e R , T e S , t = ( r 1 , r 2 , . . . and at = 
= (°<1

r
1,0f2r2»***»0(krk^* f ° r m u l a (1) we have the following 

l«mma. 
L e m m a 1. I f a = («^ ,cx2»*« • »«i^ 6 s » 01 j ^ 0 

( j = 1 , 2 , . . . ,k) and b e R ^ , then AeO^ i f and only i f aA+beO^ 
and S(A) = S(aA+b). 
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Let A eOjj. We say that A f u l f i l s the probabi l i s t ic commu-
tat ion condition i f there e x i s t s a system Be 0., consisting 

A B 
of commuting observables such that PT = P̂ , for a l l T e S ( A ) . 

By Lemaa 1 and formulas (1) and (2) we have the following 
simple lemma. 

L e m m a 2. I f a = (o^ f « 2 , . . . , a k ) e R , a . ¡í ü 
( j = 1 , 2 , . . . , k ) , b e R k and A € 0 k , then A and aA+b f u l f i l or do 
not f u l f i l the probabi l is t ic commutation condition simulta-
neously. 

Using the method introduced by Ruymgaart in [9] we shal l 
prove the following theorem. 

T h e o r e m 1. Let AeOk and A consists of one-sided 
bounded observables with purely point spectrum. Then A f u l f i l s 
the probabi l is t ic commutation condition. 

P r o o f . I f S(k) i s empty, then our assert ion i s ob-
vious. Consequently, we assume that S(A) i s non empty. More-
over, by Lemma 2, we may assume without loss of generality 
that A = (A1 , A 2 , . . . ,Ak) where a l l observables Aj ( j = 1 , 2 , . . . ,11} 
are non-negative. Let E.j be the spectrum of Á^, which under 
our assumptions coincides with the set of a l l eigen values of 
A.,. Consequently E., i s at most denumerable and for any T e S 

3 0 Ai 
the probability measure P ĵ i s concentrated on E^. Thus for 

i» 
any TeS(A) the jo in t probability dis tr ibut ion P£ i s concen-
trated on at most denumerable set £ 3 B^* Eg* . . . x E^. Hence 
we get the formula 

(3) P£(t) « e i ( t ' 6 , * $ W e } ) ( t € R k ) . 
eeB 

le (o i ) 
Further, for any a e R the probability measure P j * ' i s con-
centrated on the set (a ,B) = j ( a , e ) : e e fi| and, by (1) and 
(3) 

(4) P < a ' A , ( r ) = P£(ra) = £ e i r < a > P ^ ( { e } ) . 
eeB 
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v 
Let P be the subset of R consisting of all elements 
a = (a^ ,o<2,... ,0^) with linearly independent coordinates 

jOtg,... over the denumerable field generated by the 
k k set U B-. It is clear that F is dense in R . Moreover for 

j=1 J 

ae P the mapping e —— (a,e) from E onto (a,E) is one-to-one. 
Consequently, for ae F we have the formula 

P<a'A,(r) = eir(a'e)4a»A)({(a,9)}). 
eeE 

Taking into account (4) we infer that 

(5) p|a*A,({(.ate)} ) = P|({e}) (T e S (A), e e is, Ae?]. 
Ir 

Since F is dense in R we can find an element be F with po-
sitive coordinates. Let ir be the spectral measure associated 
with (b,A), i.e. (b,A) = / ajr( d^). Then for the domain 

(b,S) 
of (b,A) we have the inclusion 

B((b,A))cD = I x: ^ (b,e)2 |[jr({(b,e)},)x||2<°o 
' eeE J 

which shows that the set D is dense in H. Using the notation 
e = (&^,¿2*•••»ffc) w e Put 

dj = e^^TTi{(b,6)}) (j = i,2,...,k). 
eeE 

2 2 2 

Since i p (b,e)c (j=1,2,...,k) where p>0 and all coordi-
nates of b are greater than/3, we infer that 
Ij=1,2,...,n) which shows that 3 = (i^ , ¿ 2 , . . . , B k ) ¿ h e observables B.̂  ,B£,... »B^ commute with one another and 
(a,B) = H (a,e) it ({(b,e)}) for every aeK k, Consequently, 

eeE 
by (5) 
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P Í a » B , ( r , » £ e * r ^ a , e ^ t r j r ( { ( b , e ) } ) T = 
1 eeE 

. £ e i r ( a , e )pA^ | e j j ( T e S ( A ) ) f 

at E 

and , by ( 4 ) , P ^ a , B ) - p | a ' A ) f o r every T e S ( A ) and a e R k . 

T h i s y i e l d s t he e q u a t i o n P^j = p£ f o r a l l Te S(A) which com-
p l e t e s t h e p r o o f . 

Our next aim i s t o show t h a t t h i s r e s u l t oannot be e x -
tended t o a l l sys tems A f rom Namely, we s h a l l prove t h a t 
t he p a i r of c a n o n i c a l o b s e r v a b l e s does not f u l f i l t h e c o n d i -
t i o n i n q u e s t i o n * 

Given a s u b s e t X of by [x] we s h a l l deno te t h e 
l i n e a r subspace of T̂  spanned b y X . 

F i r s t we s h a l l prove the f o l l o w i n g s imple lemma. 
L e m m a 3. I f AeOj,. and A f u l f i l s t he p r o b a b i l i s t i c 

commutat ion c o n d i t i o n , t h e n 

S(A) = s n [ s ( A ) ] . 

P r o o f . Let A,Be O k , B c o n s i s t s of commuting ob-
s e r v a b l e s and P j = P^ f o r a l l Te S ( A ) . Let SQ be t he s e t of 
a l l o p e r a t o r s T f rom f o r whioh t h e e q u a t i o n 

(6) t r e i ( t » A , T = t r e
i ( t » B , T 

if 
h o l d s f o r a l l t e R . I t i s c l e a r t h a t SQ i s a l i n e a r subspace 
of 7\, and , by ( 1 ) , S ( A ) C S . C o n s e q u e n t l y , [ s ( A ) ] c : s o . S ince 
f o r every TeS' the r i g h t - h a n d s i d e of (6) i s c o n t i n u o u s and 
p o s i t i v e d e f i n i t e on R k , we i n f e r t h a t f o r every TeS D [s(A)] 
t he l e f t - h a n d s i d e of (6) i s a l s o c o n t i n u o u s and p o s i t i v e 
d e f i n i t e on R k . I n other, words we have the i n c l u s i o n s ( A ) 3 
d s ii [ s (A )J . The converse i n c l u s i o n i s obvious which comple-
t e s t he p r o o f . 
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Prom Theorem 1 and Lemma 3 we get the following corollary. 
C o r o l l a r y . Let A eOk and A consists of one-sid-

ed bounded observables vith purely point spectrum. I f [ s (A ) ] » 
= 7\,, then A consists of commuting observables. 

By a pair of canonical observables we mean a pair C = (P,Q) 
for which there exists a dense linear manifold D in H contain-
ed in the domains of P, Q and invariant under P, Q. When re -
stricted to D, the observables F, Q satisfy the Heisenberg 

* 2 2 commutation relation FQ - QF « i l and the operator P + Q 
is essentially se l f -adjo int . From von Neumann [8] and Dixmier 
[2] results i f follows that Ce 0 2 and the function 
t ~ tr e 1 ^ ' 0 * ! ( t&R 2 ) i s continuous for a l l Te ^ ( [ 1 ] , Pro-
position 3) . Put T ( t ) = tr e i ( t ' C , T ( t « R 2 , Te 7".,). Then, by 
(1) P j « T and, consequently, TeS(C) i f and only i f T i s po-
s i t ive def inite on R2. Let 7g be the apaoe of a l l Hilbert-

-Schmidt operators on H with the norm ||T||2 = ( t r TT*)2 . Ob-
viously, ^ e T2 and ||t||2̂  ||T[ĵ  for Te 11. I t is well-known 
( [ 6 ] , Chapter 5) that the map T —— T (T g ^ ) extends uniquely 
to a linear isometric transformation from 7« onto the space 
o P ¿ 

of a l l complex-valued square integrable with respect 
o 

to the Lebesgue measure funotions on R with the norm 

¡|f|L = ((2n)~1 / | f ( t )| 2dt ) 2 . Moreover 
? R 

(7) T* ( t ) = í ( - t ) ( t e R2, Te r 2 ) . 

Let A be the subset of 7"2 consisting of al l operators T with 
continuous T vanishing at . The Bet A with the norm 

i|T|| - ||T||2 + Bax{|T(t)| j t e R 2 } 

becomes a Banach space. Moreover, we have the inclusion 
T^ízAC: T2, 

Further, A is a Banach algebra under the convolution *• 
defined by setting 
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(8) • T *- U - TU (T,U&A) 

(see [11]) . Given, a , b e R 2 , a = ( « ^ a g ) , b = ( j3j t£g) w e P u t 

A(a,b) = " 0 (2^1* A c o m P l e * " v a l u e d funotion f on R2 i s 
sa id to be A - p o s i t i v e d e f i n i t e i f f o r a rb i t r a ry vectors 

I i / 2 A ( t i f t k ) 
t ^ . . . , t n £ R the nxn matrix f ( t j - t k ) e J i s 
pos i t ive d e f i n i t e . An analogue of Bochner's Theorem a s s e r t s 
that f = T f o r a c e r t a i n l e S i f and only i f f i s A-pos i t ive 
d e f i n i t e , continuous at the or ig in and f(O) = 1 ( [ 6 ] , p .243) . 
I t i s c l e a r that f g i s A - p o s i t i v e d e f i n i t e whenever f i s 
p o s i t i v e - d e f i n i t e and g A - p o s i t i v e d e f i n i t e . Hence and from 
(8) W6 get the fol lowing lemma. 

L e m m a 4. I f T e S , Ue U(0) = 1 and U i s pos i -
t ive d e f i n i t e , then T * U e S . 

Further , using ( 7 ) , we i n f e r that f o r every pair T,UeS 
the product TU i s pos i t ive d e f i n i t e . Consequently, by Lemma 4 
and formula (8) we get the next lemma. 

L e m m a 5. I f 'DeS(C) and Ue S , then T * U€ S ( C ) . 
We are now in a pos i t ion to prove the fol lowing lemma. 
L e m m a 6. [ s (C)] = 7".,. 
P r o o f . For every complex number 3* with Re j *> 0 

we def ine the operators G^ from 7"2 s e t t i n g Gy(t) = 
( t e R 2 ) . I t i s known { [ 6 ] , Chapter 5) that f o r r e a l 
Gj- are Gaussian probabi l i ty operators and, consequently, 
G ^ e s (<T> 1)» Since in th i s oase Gy i s pos i t ive d e f i n i t e on 
R we have a l so 

(9) G y e S ( C ) 

Moreover, Gj have a representa t ion 

= £ T^TT 
n=0 

where T1 are commuting one-dimensional pro jec tor s ,( [6] , Chap-
o 

te r 5 ) . Since for every t e R the function 

- 38 -



Jo int d i s t r i b u t i o n s and commutability 9 

n=0 

i s analytio on the half-plane Re j > 0 and coincides , by (10) , 
with Gy(t) on the h a l f - l i n e we in fer that i t coincides 

2 
with on the whole hal f-plane tie ; r > 0 . In other words 
we have the equation (10) f o r a l l J with Re ^ > 0 . Put 

"r - T ^ i * i ; ( i a f " a , 

Of course, U^e S ( r > 0) and 

which shows that U^ i s pos i t ive d e f i n i t e . Thus 

(12) UyeSiC) (ar>0) . 

Let 0 < ? < 1. Then by (9) 

(13) G 1 e S ( C ) , 1 

which, by (11) and (12) , y i e l d s G r e T^. Since Gy i s pos i t ive 
P »S/ 

d e f i n i t e on R , G^fO) = 1, we i n f e r , by virtue of Lemma A, 
that 

(14) G ^ * T e S ( 0 < 7 < 1 , T e S ) . 

Further, by Lemma 5 and formulas (12) and (13) , we conclude 
that for every TeS and 0 < 3- < 1 both operators U^ * T and 
G .. * T belong t o S ( C ) . Consequently, by (11) 
cf 

(15) G r * T e [ S ( C ) ] ( 0 < 3 " < 1 , T e S ) . 

I t i s c lear that the functions G^Vt = G T̂ tend uniformly on 
every compact subset of R^ to T when 3* — 0. Since, by (14) , 

T e S , th i s convergence coincides with the convergence 
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in T̂  -topology ( [11] , Chapter 1) . Thus, by (15) , T e [ s ( C ) ] . 
In other words we have the inc lus ion S c [S (C)] which yields, 
the a s s e r t i o n of the lemma. 

We have S(C) ¿ S because the canonical observables do not 
commute with one another . Moreover, i t was proved by Fisaher 
[3] t h a t a l l p ro jec to r s belonging to S(C) are Gaussian proba-
b i l i t y opera tors . On the other hand, by Lemma 6 , S f l [_S(C)J = S . 
Thus as a consequence of Lemma 3 we get the fol lowing theorem. 

T h e o r e m 2. The pai r P,Q of canonioal observables 
does not f u l f i l the p r o b a b i l i s t i c commutation condition* 
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