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JOINT DISTRIBUTIONS AND COMMUTABILITY OF OBSERVABLES

Dedicated to the memory
of Professor Roman Sikorsk:

In the guantum probability theory the 6-field of random
oevents is replaced by tae lattice of orthogonal projectors
in a separable infinite dimensional Hilbert space H, A countably
additive function from this lattices to the unit interval con-
stitutes a state, the non-commutative analognue of a probabili-
ty measure. The Theorem of Gleason [4] asserts that every sts-
te is of the form nm —tr 7T, where s runs over all projeo-
tors and T is a probebility operator on H, i.e., a positive
lineer operator of unit trace, Conversely, every probability
operator determines a stete by the Gleason formula. From now
onwards let S stand for the set of all states, i.,e. all pro-
bability operators on H, We shall denote by T4 the space of-
&ll nuclear linear operators acting in H with the norm
Ty = £2(17%)1/2, 0f course S is & closed and convex sub-
set of T1‘

In quasntum theory 15 every physical quantity or observable
there corresponds & gaif-adjoint rot necessarily bounded 1i-
tear operater o H. Iy O w2 eball dencte the set of all obe-
Liiity distribution of 4 at
eulests E of the resal

gxpvetles, Given Le O,

tha giate T i defined fox
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line R by the formula Pj(B) = tr m,(E)T, where v, is the
projector=-valued spectral measure asaoolated with A, i.e.

A= {'AJTA(dM. The characteristic function of P,_%, i.e. its

Fourier transform f’% is then given by the formunla

PA(r) = tr el (reR).

A system A yhy,eee0hy (k>2) of observables is said to be
regular if there exists a dense linear manifold D in H such
that for arbitrary resl numbers X 49%peee s, the operator

Z: “3 j is well defined on D and is esseﬁt ‘ally self-adjoint,
so that the probability distribution of JAJ at every

state T ies well defined. Of course, all systems of bounded
observables are regular, The set of all regular systems
A= (A1,A2,...,Ak) of obgservables will be denoted by Ok‘
Further, we shall use the following notation., For a,b e1R

(a,b) will denote the inn;r product in Rk, jal = (a,a)2 and
acRY and a0y (a,4) = jgl o gAy 1f a8 = (X4s%pye00,0) and

A= (Aysh55000,h )0 OF course, (a,A)c0. In [10] I introduced
the conpept of the joint probabllity distribution for A€ 0.

Namely, =2 Borel probability measure P‘% on the k-dimensional
Buclidean space Rk is said to be the Joint probability di-

gtribution of the system A of observables at the state T if
for every aeR the projection of PT onto the real line de-

fined by x — (a,x) (xeR ) coinaides with P(a’“. It is clear
that the joint probability distribution is uniq usly determined
provided it exists. Moreover, the characteristic function of
P% is given by the formula

(1) f’%(t) = tp ei(t'“T (teRk).
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Joint distributions and commutability 3

Given Ac Oy, by S(A) we shall denots the set of all states T

for which P$_exista. It is evident that Te S(A) if and only

if the function t — tr ei(t’A)T (te Rk) is continuous and
positive definite on RX, Hence it follows that always S(4)
is a convex and closed in the topology of T1 subset of S ,
It may happen that S (4) 1s empty.

A relation between the existence of joint probability di-
stribution at every state and the commutability of observables
is given by the following statement,

Let AcOy. Then S(A) =S if and only if A consists of
commuting observables, i,e, observables with commuting spec-
tral measures,

For observables with purely point spectrum this statement
was proved in [30]. Recently, an elementary proof was given
by Ruymgaart [9]. Without any restriction on the spectrum a
proof can be found in [5] and [7]. In the mors gensral frame=-
work of gquantum logics the theorem was proved by Varadarajan
[12].

Let I be the unit operatoxr on H. Given a,be Rk and AeOy
we shall use the notation

aA + b = ((X1A1 +/B1I' G2A2 +/521,o-0’0(kAk +BKI)

where a = (q1,q2'ouo,ak). b= (/31,B2,ooo’ﬁk) and
A = (A1.A2'ooo'ﬁk)o It is olear that aA+be Ok. Moreover,

(2) tr oiltraasdly _ i(t,b) . ji(at,d)q

where a,b,te Rk, TeS, ¥ = (11,r2,...,rk) and at =
s (474,057 5000,9, 7y )e By formula (1) we have the following
lemma,

Lemma T1e Iﬁ a = (d1,a2,...,ak)e Rk, Qj #0
(3=1,2,440,k) and beR", then Ac 0, if and only if aA+be Oy
and S{A) = S(aA+b).
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Let AcOye Ve say that 4 fulfils the probabilistic commu-
tation condition if there exists a system Be Ok consisting
of commuting cbservables sucn that PT = PT for all TeS(4).
By Lemma 1 and formulas (1) and (2) we nave the following

simple lemma.

Lemma 2. If a = (q1,a2....,ak)e-Rk, g £0
(3=1,2,04+,k), be RE and Ac0,, then A and aA+d fulfil or do
not fulfil the probabilistic commutation condition simulta=-
neously.

Using the method introduced by Ruymgaart in [9] we shall
prove the following theorasm,

Theoremn 1. Let Ae(?k and A consists of one-sided
bounded observables with purely point spectrum, Then A fulfils
the probabilistio commutation condition.

Proof, IfS({A) is empty, then our assertion is ob=-
vious. Consequently, we assume that S(A) is non empty. More=-
over, by Lemma 2, we may assume without loss of generality
that 4 = (A1,A2,...,Ak) where all observables AJ (3=152y000eyu)
are non-negative., Let E; be the spectrum of Aj, which under
our assumptions coincides with the set of all eigen values of
Aj. Consequently Ej is atAmost denumerable and for any TeS

the probability measure PT:j is concentrated on Ej. Thus for

any TeS(A) the joint probability distribution ﬁ% is concen~-
trated on at most denumerable get B = E1x E2x eee x Ey o Hence
we get the formula

(3) BAce) « > o*Tredph(ie})  (teR¥).
eek

Further, for any ae'Rk the probability measure Péa'A) is con-
centrated on the set (a,E} = {(a,e) 1 8¢ E} and, by (1) and

(3)

(4) Blerdl(c) = Bhra) = 3 otT(or0 Rl ({a}))

€ch
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Joint distributions and commutability 5

Let F be the subset of Rk congisting of all elements
a= (01,&2,...,uk) with linearly indspendent coordinates
a1,u3,...,uk over the denumerable field generated by the

set (J Ej' It is clear that F is dense in Rk. Moreover for
i=1
ac P the mapping e — (a,e) from E onto {a,E) is one-to-one,

Consequently, for ae F we have the formula

Péa'A)(f) = ZE; eir(a,e)Péa,A)({(a,e” .

8¢k

Taking into account {4) we infer that

(5)  B{®8)({(a,0)}) = PA({e}) (TeS(a), oci, heF).
Since F is dense in Rk we can find an elesment be ¥ with po=-
sitive coordinates. Let 7 be the spectral measurs associated
with (b,4), i.e. (b,a) = ( J, Ar{dd)e. Then for the domain

b,E
of (b,A) we have the inclusion

D((b,a))cD = x:Z:(meﬁHﬂ{wﬁﬁjﬂ2<m

eek

which shows that the set D is dense in H. Using the notaivion
e = (51,&2,...,Ek) we put

35 = Z:: e;m({(6,8)})  (3=1,2,...,k).

eep

since £282<(b,0)% (3=1,2,.4.,k) where f>0 and all coordi-
nates of b are greater than g, we infer that LD{(B5,)DD
(j=1’2.ooa’n) WhiCh ShOWS that .j = (D‘,’JZ’...’BR)GLOI'. A'}he

observables B1,B2,...,Bk comnute with one snother and

{a,B) = 2:, {a,e) H({(b,e)}} for every ac ﬂk. Consequently,
ec B

by (5)
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ﬁéa.B)(r, =) eltlase) n({(b,0)})T =
ecE

- ¥ ettlaelpdifa]) (res(a),

8ch

and, by (4), §éa,B) » ﬁéa’A) for every Te S(4) and ae;Rk.

This yields the equation Pg = P% for all Te S(A) which com-
pletes the proof,

Our next aim is to show that this result ocannot be ex-
tended to all systems A from Ok‘ Namely, we shall prove that
the pair of canonical obasrvables does not fulfil the condi-
tion in question.

Given a subset X of T7,, by [x] we shall denote the
lipnear subspace of T4 spanned by X,

First we shall prove the following simple lemma.

Lemma 3. If Ae()k and A fulfils the probablilistic
commutation condition, then

s(a) =sn[s{a)].

Proof. Let A,Be Os B consists of commuting ob~
servebles and P% = Pg for all Te S(4)., Let S, be the set of
all operators T from T1 for which the equation

(6) tr ei(t’A)T = tr ei(t’B)T

holds for all te Rk. It is clear that S° is a linear subspace

of 7, and, by (1), s(A)c:So. Consequently, [S(A)]CISO. Since
for every TeS the right-hsnd side of (6) is continuous and
positive definite on R¥, we infer that for every TeS N [S(al]
the left~hand side of (6) is also continuous and positive
definite on R¥. In other words we have the inclusion S(A)D
55N [s{4)]. The converse inclusion is obvious which comple-
tes the proof.
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Joint distributions and commutability 7

From Theorem 1 and Lemma 3 we get the following corollary.

Corol l.a ry. Let Ac¢O) and A consigts of one-sid~
ed bounded observables with purely point spectrum. If [S(A)] =
= Tq» then A consista of commuting observables,

By a peir of canonical observables we mean a pair C= (P,Q)
for which there exists a dense linear manifold D in H contain=-
ed in the domains of P, Q and invariant under P, Q. When re-
stricted to D, the observables P, ¢ satisfy the Heisenberg:
commutation relation PQ - QP = 1I and the operator P2 + 02
is essentially self-adjoint. From von Neumann [8] and Dixmier
[2] results if follows that Ce 0o and the function
t—tr ei(t!C)T (te R®) is continuous for all Te Ty ([1], Pro-
position 3). Put T(t) = tr ei(t'C)T (te R2, Te T1). Then, by
(1) f’g = T and, conseguently, Te S(C) if and only if T is po-
gitive definite on Rz. Let 72 be the apace of all Hil}‘)ert-

-Schmidt operstors on H with the norm [T, = (tr 77%)%, ob-
viously, T4c T, and ||T||2~< ||'.|E||,l for Te . It is well-known
([6], Chapter 5) that the map T —T (T ¢ 7,) extends uniquely
to a linear isometric transformation from 72 onto the space
L2(R2) of all complex~valued square imtegrable with respect
to the Lebesgue measure funo11;ions on R2 with the norm

£, = ((2m=? fz If(t)lzdt)g. Moreover
R

(7) (t) = F(=t) (teR?, TeT,

Let A be the subset of 72 consisting of all operators T with
continuous T vanishing at e~ . The Bet A4 with the norm

I2f| = 2l, + max{IF(6) : teR?)

becomes a Banach space. Moreover, we have the inclusion
T4CAc Ty

Further, A 1is a Banach algebra under the convolution x
defined by setting
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(8) - TXU =T (T,UcA)

(see [11]). Given, a, beRa, a= (0(1,0(2), b = (B1~,/52) we put
NMa,b) = 0(1,62 - o<231. A complex~valued funotion f on R2 is

said to be A -positive definite if for arbitr vectors
1/ggtj,tk)

LPPE PYPPRIS - R the nxn matrix £t —tk)e is
positive definite. An analogue of Bochner ‘s Theorem asserts
that £ = T for a certain TeS if and only if £ is A-positive
definite, continuous at the origin and £(0) = 1 ([6], p.243).
It is clear that fg 1s A-positive definite whenever f 1is
positive-definite and g A -positive definite. Hence and froam
{(8) we get the following lemma.

Lemma 4., If TeS, Ue 71,13'(0) = 1 and U is posi~-
tive definite, then TxUeS.

Further, using (7), we infer that for every pair T,UeS
the product TU is positive definite. Consequently, by Lemma 4
and formuls (8) we get the next lemma,

Lemma 5. If 2e¢S(C) and UeS, then TxUe S(C).

We are now in a position to prove the following lemma.

Lemma 6, [S(C)] =T,

Proof. For every complex number gz with Re >0

g -7/41%12
we define the operators G, from 7, by setting Gylt)=e
(te R%). It is known ([6], Chapter 5) that for real 71
Gy are Gaussian probability operators and, consequent'ly,
Gges (r=1). Since in this case G, is positive definite on

R we have also

(9) GypeS(C)  (7=1).

loreover, G, have & representation

- 2 [z-1\"
(10) GZP_ZW T+1> TTn (2"21)
n=0

where ﬂn are commuting one-dimensional projectors ,( [6], Chap=
ter 5). Since for every te R? the function
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Joint distributions and commutability 9

}: W(xh) (%)

is snalytioc on the half-plane He y>0 and coincides, by (10),
with (N}?(t) on the half-line y>1, we infer that it coincides

-7/4141 2 |
with e on the whole half-plane Re >0, In other words
we have the egqustion {10} for all 3 with Re > 0. Put

N (‘l+3‘)2 Z <T+1> on (2>0).

Of course, UyeS (7> 0) and

(11) Uy i"’x*%}%q (r>0),

which shows that fjr is positive definite. Thus

(12) UyesS{C) (7>0).
Let 0 <y< 1. Then by (9)

(13) ¢ __qes(c),

‘ T

which, by (11) and (12), yields Gye 7,. Since G, is positive
definite on Rz, 53.(0) = 1, we infer, by virtue of Lemma 4,
that '

(14) GpxTeS (0<y <1, TeS).

Further, by Lemma 5 and foraulas (12) and (13}, we conclude
that for every TeS and O<y <1 both operators Uy* T and
Ga.-‘l*T belong to S{C). Consequently, by (11)

(15) GyxTe [S(C)] (0<z<1, TeS).

—~— ~ o~
It is clear that the functions Gp*T = G,T tend uniformly on
every compact subset of 8% to T when 7 —=0U. Since, by (14),
Ga.x-T, TeS, this convergence coincides with the convergence
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10 K. Urbanik

in 7,-topology { [11], Chapter 1). Thus, by (15), Te [S(C)].
In other words we have the inclusion Sc [S(C)]| which yields
the assertion of the lemma,

We have S(C) #S because the canonical observables do not
commute with one another. Moreover, 1t was proved by Fischer
[3] that all projectors belonging to S(C) are Gaussian proba-
bility operators. On the other hand, by Lemma 6,S N [S(C)]=S.
Thus as a consequence of Lemma 3 we get the following theorem.

Theorem 2. The pair P,Q of canonical observables
does not fulfil the probabilistic commutation condition.
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