

Ram U. Verma

THE ESSENTIAL SPECTRA OF D-COMMUTING SYSTEMS

*Dedicated to the memory
of Professor Roman Sikorski*

1. Introduction

Let X and Y be two complex Hilbert spaces. Let $L(X, Y)$ denote the set of all closed linear operators on linear submanifolds of X , with values in Y . For $L(X, X)$, we shall simply write $L(X)$. For any operator $A \in L(X, Y)$, $D(A)$, $N(A)$ and $R(A)$ denote respectively, the domain, the null space and the range of A . Let $\gamma(A)$, the reduced minimum modulus of A , be defined by the formula

$$(1.1) \quad \gamma(A) = \sup \left\{ \gamma \geq 0 : \|Ax\| \geq \gamma \|(I - P_{N(A)})x\|, \quad x \in D(A) \right\},$$

where $P_{N(A)}$ denotes the orthogonal projection of X onto $N(A)$, provided that $A \neq 0$.

Let $\{X^p\}_{p \in \mathbb{Z}}$ (where \mathbb{Z} is the ring of integers) be a family of Hilbert spaces, and let $S^p \in L(X^p, X^{p+1})$ be a family of operators such that $R(S^p) \subset N(S^{p+1})$, for all $p \in \mathbb{Z}$. Let the following sequence represent the complex of Hilbert spaces

$$(1.2) \quad \dots \xrightarrow{S^{p-1}} X^p \xrightarrow{S^p} X^{p+1} \xrightarrow{S^{p+1}} \dots$$

Presented at the American Mathematical Society Meeting
803-47-13. AMS(MOS) Subject classification (1980): Primary 47.

Let $\{H^p(X, S)\}_{p \in \mathbb{Z}}$ denote the cohomology of the complex $(X, S) = (X^p, S^p)_{p \in \mathbb{Z}}$, that is, $H^p(X, S) = N(S^p)/R(S^{p-1})$, $p \in \mathbb{Z}$. Let the $\dim(H^p(X, S))$ denote the algebraic dimension of the linear space $H^p(X, S)$.

We recall that a complex $(X, S) = (X^p, S^p)_{p \in \mathbb{Z}}$ is said to be Fredholm if $\inf \{\gamma(S^p)\} > 0$, $\dim(H^p(X, S)) < \infty$ for each $p \in \mathbb{Z}$, and $H^p(X, S) \neq 0$ only for a finite number of indices.

Next, we recall some definitions [5] related to the commuting systems of linear operators.

Let $s = (s_1, \dots, s_n)$ be a system of n indeterminates, and let $\Lambda[s]$ be the exterior algebra over the complex field \mathbb{C} , generated by s_1, \dots, s_n . Then, for any integer p , $0 < p < n$,

$\Lambda^p[s]$ is the space of all exterior forms of degree p in s_1, \dots, s_n . For any Hilbert space X , $\Lambda[s, X]$ (resp. $\Lambda^p[s, X]$) will denote the tensor product $X \otimes \Lambda[s]$ (resp. $X \otimes \Lambda^p[s]$). In the case of two Hilbert spaces X and Y , there is a natural identification of the space $\Lambda[s, X] \otimes \Lambda[t, Y]$ with the space $\Lambda[(s, t), X \otimes Y]$, where $t = (t_1, \dots, t_n)$ is another system of indeterminates. Let the operator $H_j : \Lambda[s] \rightarrow \Lambda[s]$, $H_j \xi = s_j \wedge \xi$, $\xi \in \Lambda[s]$, satisfy the relation

$$H_j H_k + H_k H_j = 0, \quad j, k = 1, \dots, n.$$

Definition 1.1. An n -tuple $S = (S_1, \dots, S_n) \subset L(X)$ is said to be a D -commuting system if there exists a dense subspace D of X in $\bigcap_{j=1}^n D(S_j)$ with the following properties:

- (i) the restriction $\hat{\delta}_S = (S_1 \otimes H_1 + \dots + S_n \otimes H_n)|_{\Lambda[s, D]}$ is closable,
- (ii) if δ_S is the canonical closure of $\hat{\delta}_S$, then $R(\delta_S) \subset N(\delta_S)$.

Definition 1.2. A D -commuting system $S = (S_1, \dots, S_n) \subset L(X)$ is said to be singular (resp. non-singular) if $R(\delta_S) \neq N(\delta_S)$ (resp. $R(\delta_S) = N(\delta_S)$).

Definition 1.3. Let $S = (S_1, \dots, S_n)$ be a D -commuting system associated to a complex of Hilbert spaces $(\bigwedge^p [S, X], \delta_S^p)_{p=0}^n$, where $\delta_S^p = \delta_S \mid \bigwedge^p [S, X] \cap D(\delta_S)$. Then the operator S is said to be Fredholm if the corresponding complex is Fredholm.

Definition 1.4. The joint spectrum of a D -commuting system $S = (S_1, \dots, S_n) \subset L(X)$ is the set of those points $\lambda \in \mathbb{C}^n$ such that $S - \lambda I$ is singular, denoted by $\sigma_D(S, X)$.

Definition 1.5. The joint essential spectrum of a D -commuting system $S = (S_1, \dots, S_n) \subset L(X)$ is the set of those points $\lambda \in \mathbb{C}^n$ such that $S - \lambda I$ is not Fredholm, denoted by $\sigma_{e_D}(S, X)$.

The main aim of this note is to establish an inclusion relation for the joint essential spectrum of a D -commuting system $\tilde{S} = (\tilde{S}_1, \dots, \tilde{S}_n)$ by applying the spectral results of C. Grosu and F. Vasilescu [5] for the tensor product of two D -commuting systems, where $\tilde{S}_j \in L(\tilde{X})$, for $\tilde{X} = X_1 \bar{\otimes} \dots \bar{\otimes} X_n$ and X_1, \dots, X_n are Hilbert spaces. The obtained spectral inclusion includes some interesting results as special cases.

2. Some supporting lemmas

Lemma 2.1. (Grosu and Vasilescu [5]). Let (X, S) and (Y, T) be two Fredholm complexes of Hilbert spaces. Then their tensor product $(X \bar{\otimes} Y, S \bar{\otimes} T)$ is Fredholm.

Lemma 2.2. (Grosu and Vasilescu [5]). Let (X, S) and (Y, T) be two complexes of Hilbert spaces. Then their tensor product $(X \bar{\otimes} Y, S \bar{\otimes} T)$ is Fredholm and exact iff either (X, S) or (Y, T) is Fredholm and exact.

Lemma 2.3. (Grosu and Vasilescu [5]). Let $S = (S_1, \dots, S_n) \subset L(X)$ be a D_S -commuting system and let $T = (T_1, \dots, T_n) \subset L(Y)$ be a D_T -commuting system. Then

$$S \bar{\otimes} T = (S_1 \bar{\otimes} I_Y, \dots, S_n \bar{\otimes} I_Y, I_X \bar{\otimes} T_1, \dots, I_X \bar{\otimes} T_n) \subset L(X \bar{\otimes} Y)$$

is a $D_S \otimes D_T$ -commuting system.

Lemma 2.4. Let $S = (S_1, \dots, S_n) \subset L(X)$ be a D_S -commuting system, and let $T = (T_1, \dots, T_n) \subset L(Y)$ be D_T -commuting system. Then

$$\sigma_{e_{D_S \otimes D_T}}(S \bar{\otimes} T, X \bar{\otimes} Y) \subset \sigma_{e_{D_S}}(S, X) \times \sigma_{D_T}(T, Y) \cup \sigma_{D_S}(S, X) \times \sigma_{e_{D_T}}(T, Y).$$

Proof. The proof follows from a combination of Lemma 2.1 and Lemma 2.2.

Remark 2.5. Under the conditions as in Lemma 2.4, we conjecture the following inclusion relation

$$\sigma_{e_{D_S}}(S, X) \times \sigma_{D_T}(T, Y) \cup \sigma_{D_S}(S, X) \times \sigma_{e_{D_T}}(T, Y) \subset \sigma_{e_{D_S \otimes D_T}}(S \bar{\otimes} T, X \bar{\otimes} Y).$$

Lemma 2. (Grosu and Vasilescu [5]). Let $S = (S_1, \dots, S_n) \subset L(X)$ be a D_S -commuting system, and let $T = (T_1, \dots, T_n) \subset L(Y)$ be a D_T -commuting system. Then

$$\sigma_{D_S \otimes D_T}(S \bar{\otimes} T, X \bar{\otimes} Y) = \sigma_{D_S}(S, X) \times \sigma_{D_T}(T, Y),$$

and if S and T are Fredholm, then $S \bar{\otimes} T$ is Fredholm.

3. The essential spectrum $\sigma_D(\tilde{S}, \tilde{X})$

Let X_1, \dots, X_n be Hilbert spaces and let $S_j \in L(X_j)$, for $j = 1, \dots, n$, be densely-defined operators. Let $\tilde{X} = X_1 \bar{\otimes} \dots \bar{\otimes} X_n$ be the completion of the algebraic tensor product $X_1 \otimes \dots \otimes X_n$ with respect to the canonical Hilbert norm, and let $\tilde{S}_j \in L(\tilde{X})$ be the canonical closure of the operator

$$I_1 \otimes I_2 \otimes \dots \otimes I_{j-1} \otimes S_j \otimes I_{j+1} \otimes \dots \otimes I_n.$$

Then $\tilde{S} = (\tilde{S}_1, \dots, \tilde{S}_n)$ is a D -commuting system, for $D = D(S_1) \otimes \dots \otimes D(S_n)$.

Theorem 3.1.

$$\begin{aligned} {}^{\sigma}_{\mathbf{e}_D}(\tilde{S}, \tilde{X}) \subset & \left({}^{\sigma}_{\mathbf{e}_D(S_1)}(S_1, X_1) \times {}^{\sigma}_{\mathbf{D}(S_2)}(S_2, X_2) \times \dots \times {}^{\sigma}_{\mathbf{D}(S_n)}(S_n, X_n) \right) \cup \\ & \cup \left({}^{\sigma}_{\mathbf{D}(S_1)}(S_1, X_1) \times {}^{\sigma}_{\mathbf{e}_D(S_2)}(S_2, X_2) \times {}^{\sigma}_{\mathbf{D}(S_3)}(S_3, X_3) \times \dots \right. \\ & \dots \times {}^{\sigma}_{\mathbf{D}(S_n)}(S_n, X_n) \cup \dots \cup \left({}^{\sigma}_{\mathbf{D}(S_1)}(S_1, X_1) \times \dots \right. \\ & \dots \times {}^{\sigma}_{\mathbf{D}(S_{n-1})}(S_{n-1}, X_{n-1}) \times {}^{\sigma}_{\mathbf{e}_D(S_n)}(S_n, X_n) \left. \right). \end{aligned}$$

Corollary 3.2. For $n = 2$, Theorem 3.1 reduces to a special case of Lemma 2.4, that is,

$$\begin{aligned} {}^{\sigma}_{\mathbf{e}_{D(S_1) \otimes D(S_2)}}((S_1 \bar{\otimes} I_2, I_1 \bar{\otimes} S_2), X_1 \bar{\otimes} X_2) \subset \\ \subset \left({}^{\sigma}_{\mathbf{e}_{D(S_1)}}(S_1, X_1) \times {}^{\sigma}_{\mathbf{D}(S_2)}(S_2, X_2) \cup {}^{\sigma}_{\mathbf{D}(S_1)}(S_1, X_1) \times {}^{\sigma}_{\mathbf{e}_{D(S_2)}}(S_2, X_2) \right). \end{aligned}$$

Proof of Theorem 3.1. The proof follows from an inductive argument. For $n = 2$, the theorem reduces to a special case of Lemma 2.4.

Let us assume that the theorem holds for any $n-1$ operators, for $n \geq 3$. Then, if B_j denotes the canonical closure of the operator

$$I_1 \otimes \dots \otimes S_j \otimes \dots \otimes I_{n-1}, \quad (j=1, \dots, n-1),$$

we obtain

$$\tilde{S} = (B_1 \bar{\otimes} I_n, \dots, B_{n-1} \bar{\otimes} I_n, I_1 \bar{\otimes} \dots \bar{\otimes} I_{n-1} \bar{\otimes} S_n).$$

If $B = (B_1, \dots, B_{n-1})$, $D(B) = D(S_1) \otimes \dots \otimes D(S_{n-1})$ and $\tilde{X}_{n-1} = X_1 \bar{\otimes} \dots \bar{\otimes} X_{n-1}$, then Lemma 2.4, Lemma 2.7 and the induction hypothesis imply that

$$\begin{aligned}
& {}^{\sigma_{e_{D(B) \otimes D(S_n)}}} (B \bar{\otimes} S_n, \tilde{X}) \subset \left({}^{\sigma_{e_{D(B)}}} (B, \tilde{X}_{n-1}) \times \right. \\
& \left. \times {}^{\sigma_{D(S_n)}} (S_n, X_n) \cup \left({}^{\sigma_{D(B)}} (B, \tilde{X}_{n-1}) \times {}^{\sigma_{e_{D(S_n)}}} (S_n, X_n) \right) \subset \right. \\
& \subset \left[\left({}^{\sigma_{e_{D(S_1)}}} (S_1, X_1) \times {}^{\sigma_{D(S_2)}} (S_2, X_2) \times \dots \times {}^{\sigma_{D(S_{n-1})}} (S_{n-1}, X_{n-1}) \right) \cup \right. \\
& \cup \left({}^{\sigma_{D(S_1)}} (S_1, X_1) \times {}^{\sigma_{e_{D(S_2)}}} (S_2, X_2) \times {}^{\sigma_{D(S_3)}} (S_3, X_3) \times \dots \right. \\
& \dots \times {}^{\sigma_{D(S_{n-1})}} (S_{n-1}, X_{n-1}) \left. \right) \cup \dots \cup \left({}^{\sigma_{D(S_1)}} (S_1, X_1) \times \dots \right. \\
& \dots \times {}^{\sigma_{D(S_{n-2})}} (S_{n-2}, X_{n-2}) \times {}^{\sigma_{e_{D(S_{n-1})}}} (S_{n-1}, X_{n-1}) \left. \right] \times {}^{\sigma_{D(S_n)}} (S_n, X_n) \cup \\
& \cup \left({}^{\sigma_{D(S_1)}} (S_1, X_1) \times \dots \times {}^{\sigma_{D(S_{n-1})}} (S_{n-1}, X_{n-1}) \right) \times {}^{\sigma_{e_{D(S_n)}}} (S_n, X_n).
\end{aligned}$$

This completes the proof.

Conjecture 3.3. Under the conditions as in Theorem 3.1, we conjecture the following inclusion relation which seems to be true

$$\begin{aligned}
& \left({}^{\sigma_{e_{D(S_1)}}} (S_1, X_1) \times {}^{\sigma_{D(S_2)}} (S_2, X_2) \times \dots \times {}^{\sigma_{D(S_n)}} (S_n, X_n) \right) \cup \dots \\
& \dots \cup \left({}^{\sigma_{D(S_1)}} (S_1, X_1) \times \dots \right. \\
& \dots \times {}^{\sigma_{D(S_{n-1})}} (S_{n-1}, X_{n-1}) \times {}^{\sigma_{e_{D(S_n)}}} (S_n, X_n) \left. \right) \subset {}^{\sigma_{e_D}} (\tilde{S}, \tilde{X}).
\end{aligned}$$

Remark 3.4. I believe strongly that Conjecture 3.3 must be true, and I guess that it may follow from some combination of Taylor's technique [7] and Fialkow's approach [4].

Acknowledgements: The author would like to thank R. Curto, L. Fialkow and F. Vasilescu for valuable correspondence related to the contents of this paper.

REFERENCES

- [1] Z. Ceausescu, F.-H. Vasilescu : Tensor products and the joint spectrum in Hilbert spaces, Proc. Amer. Math. Soc. 72 (1978) 505-508.
- [2] R.E. Curto : Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981) 129-159.
- [3] L.A. Fialkow : Essential spectra of elementary operators, Trans. Amer. Math. Soc. 267 (1981) 157-174.
- [4] L.A. Fialkow : Elements of spectral theory for generalized derivations II: The semi-Fredholm domain, Canad. J. Math. 33 (1981) 1205-1231.
- [5] C. Grosu, F.-H. Vasilescu : The Künneth formula for Hilbert complexes, Integral Equations and Operator Theory 5 (1982) 1-17.
- [6] S. Mac Lane : Homology. New York, 1970.
- [7] J.L. Taylor : A joint spectrum of several commuting operators, J. Functional Analysis 6 (1970) 172-191.
- [8] J.L. Taylor : The analytic functional calculus for several commuting operators, Acta Math. 125 (1970) 1-38.
- [9] F.-H. Vasilescu : Stability of index of a complex of Banach spaces, J. Operator Theory, 2 (1979) 247-275.
- [10] F.-H. Vasilescu : The stability of the Euler characteristic for Hilbert complexes, Math. Ann. 248 (1980) 109-116.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PUERTO RICO,
RIO PIEDRAS, PUERTO RICO 00931, U.S.A.

Received February 1st, 1984.

