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1. Let {xv} 3=1 be a system of n nodal points (n=1,2,3,e..),

and let }n and {B
%5“ yel
bers. Balézs and P, Turén, Surédnyi and P, Turén in their pa~

pers [1], [2], [3], dealt extensively on the problems connsot-
ed with their so-called (0,2) interpolation, Prasad [4] in
1976 established an interpolation polynomial of degrée £ 2n-1
which under suitable conditions oconverges uniformly to a fun-
ction belonging to the Zygmund class,

In this paper we are interested in the weighted (0,2) in-
terpolation polynomials, namely those polynomials Qm(x) con-
structed such that

]n be arbitrarily chosen real num-
vanjy_q

(101) Qm(xv) =°('v’ V=0.1,2,...,n+1,

n'
[1]
=ﬁv’n, V=1,2,...,n,

(1.2) {Q(X) Qm(X)}

X=X,

where ?he weight function ¢(x) is particularly egqual to

4
(1-x%) " .This is alsoin conformity with the weight function
chosen by Prasad, namely
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?(x) = (1-12):\! 0424% ’ A# %‘o

In addition we have added to requirements (1.1) and (1.2) the
following

‘1-3) Qm(-1) ’ao and Qm(1) = °‘-n+1t

It is needless at this point to emphasize the importance
of this type of interpolation polynomial in approximative so-
lution of the boundary value problems of the second order li=-
near differential equations of the type

¥'(x) + A(x)¥(x) = O,

Y(=1) = o 3 X(+1) = o g0

It will be observed that we have introduced in (1.3) the
extremal nodal points and their corresponding presoribed ar-
bitrary chosen values. Also we succeeded in estahlishing that
the polynomial satisfying the conditions (1.1), (1.2) and (1.3)
really exists and it is unigue. The question of convergence
will be dealt with in our nex? peper.

2. Let us choose as our x, . the roots of Tchebysheff
¥
polynomials

X cos(2v=1)7
== 2n

v, n v=1,2,.o..n’ 5'1'2’000

(241)
Xo,n = =10 Fp4q,n = 1o

The Tochebysheff Polynomial

(2.2) T,(x) = cos(n arc cosx)

satisfies the following differential equstion

(2.3) (1-x°) T;(x} - X T;(x} + nzmn(x) =0 (’='€“)
and -1 and +1 are not roots of Tn[z}.
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Our task is to contruct a polynomial Qm(xl of least pos=-
sible degree satisfying conditions (1.1), (1.2) and (1.3)
using the nodes (2.1).

Obviously the degree of our polynomial m< 2n+1 and it is
of the form

(2.4) Qy(x) = o Uqy () +<xn+1Un+1(x} +

* Z %y,n Uy(x) + Zﬁv n V(%)

y=1 y=1

where the polynomials U,(x) and V,(x), where j=0,...,n+1,
Y=1,000,h 8re a8 usual fundamental polynomials of the first
and second kind of the weighted (0,2) interpolation belonging
to our nodesl paints (2.1) with the degree < 2n+1 and having
the following interpolation properties:

0,) ¢ k
(205‘) Uj{:k) = G‘Jk = l 3 (j.k-0,1,2.-.¢,n+1]
9 =
(206) {?(x}uj(lelﬂx'xk = 0; (j.kﬂ().“,z,coolll"“l; Ikﬂxk'n}
(2.7) Vy(x) = 0, (3=112,000 405 k=0, ,000,n41)
(2.8) {?cx)uJ(xJ]Mk = 6y (3,k51,2,000 0,

3. We shall prove the following theorems

Theorem 1. If n 1is odd, then there in general
exists no polynomial Q,(x) belonging to (2.1) and satisfying
the oonditions (2.5), (2.6), (2.7) and (2.8).

Theorem 2, If n is even then the polynomial
C:,m(x] satisfying the conditions of Theorem 1 exists and 1is
unique.

I% is plausible at this juncture to consider an important
lommz which will be used in proofs of our theorers,.
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Lemma 1. If ¢o(x) = (1 - x2>%, then

"

o) fot By w0 (2%, = 0, vu1,2,000 00,
X=X,

Prooft.

"

{otmizytm} "
-3 )

1
- {9”(x)Tn(x) +2 [- 3 x(1-x%) o1, (x)] + (1-x°) T,';(x)} =
X=Xy

s

-3 3
2 4 2 4 Y ' 2. m"
= (1-x7) (1=x5)  ¢(x,)T (xy) = x,Tp(x )+ (1=x5)T (x )|,

Prom the differential equation (2.3) and the fact that
Tn(xv) = 0 we easily see that

"
{Q(X)Tn(x)} = O, V=1,2,.--,n.
Xax,
and the lemma is proved.
Proof of Theorem 1. Let us oconsider a special
case of our theorem, hnamely:

Let
(3.2) A = Xy = eee =Xy =y 0 =0
and
(3.3) ﬁj = 1, By= 03 V=1,2,000,J=1, J+1,000,00
If R (x) is an interpolation polynomial of degree £ 2n+1

2n+1
satisfying conditions (1.1) and (1.2) with prescribed values

{3.2) and (3.3) at the nodes (2.1), then our polynomial must
be of the form
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(3.4) Rpp,q(x) = (1=x2)T (x)g,_,(x)

where gn_1(x) is a polynom’al of degree < n-1, That is

" 2 "
{P(X)R2n+1(x)}x=xv = {Q(x)(1-x )sn_1(x)}xaxv =
2 ] "
= [(1-x )gn_ﬂx)J x=xv[9(x)'1‘n(x):l rox, +
t 2 1
' Z[Q(X)TH(X)] X=X, [(1-:: )gn_1(x)J X=Xy '
[ 2 }” 1, v = j'
+ 9o (x)T (x) | (1-x%)g, _4(x) rex, “To, v ¢ 3" (1<sy<n).
That is
1, v=3
(QQ(XV)TA(xv))[(1-x§)sh_1(xv) - 2xvgn_1(xvi]= {o, N
and
) O, v# J
(1-x5)g,_q(x,i - 2x,g,_,(x,) = y V= Je
20(xy )T, (xy)

For x, = x we have the equation of the form

(3.5)  (1-x2)g,_q(x) - 2xa,_4(x) B rateeny)]
o -x°)g x} - 2xg xX)=s ——Y———— [1+a{x-x,
n=1 n~1 29(xj)Tn(xj) J
where as usual
T (x)
lj(x) = 7 n z
Tn(zj)(x-xj)
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is the fundamental polynomial of Lagrange interpolation and &
is a constant,
Integrating bhoth sides we have

2 x ]
[“'t )gnﬂ(xﬂ o B el
X X
L[ 1{t)at + a :./; (t-xj)lj(t)dt} ¢ (1-x%)g,_4(x)=
1 7 %
EW f‘lj(t)dt + a l; (t"xj)lj(t)dt .

1

For x = 1, we have

1 1
(3.6) ()4t = - —2 T (t)dt,
L-/1; 3TN Tplx; !-/1) g
and for odd n
1
(3.7) f T (t)dt = 0.

2
1

The relations (3.6}, (3.7) imply that f 1,(t)dt = 0, which
4

is not true and hence Theorem 1 is proved.

4, 48 & consequence of Theorem 1, we oan restrict oursslves
to the case of even n. The following lemmas are very useful,

Lemma 2, If n 1is even and 1<v < n, the fundamen~
tal polynomial of the first kind U,(x) can explicitly be re-
presented by
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{4¢1) Uy(x) = (xz) +
1"‘3‘9
X 15(t) - 2p(t)1,(%)
+Tn(x){Av j‘; (1-1;2)[ — _”xv . Jdt *

X X
+8, f 1,(tia8 + ¢, f m(t)as

where
(4.2) by = = —
v -XQ)T (X\;)

[ 3x8 p'ixyix, S)ng)))} 1

(403) B, ={— - ;
7 {‘éw:x% (1-22)2 ?(xo)“-x%) 29(x,) Tplxy)
, [ 1300602, 0x,02,0t) b
{4484} C, = 1 i o w, dt + By j 1,{t)aty *
w'} -

-1

1
{j Tn(t)dt} ,
%

1
where J_" Tn(t)dt £ O

Proof. It is trivially true that

(coady
d‘)('{.‘) = 6)2 :"ﬂ' 5 i3=£ga,o-o,n§ V’n=2,4,.oo)
3oy
gna
9,i=1) = U,{1) = 0.
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Next

"

1 2 2
[} U = - 1 ]
(4.5) {Q(x) v(X)}x-xJ 2 {Q(X)( x“)1,(x%) xex, +

% 1,(8)-1,(x,)1,00) |
+{9(x)Tn(x) S mt?) o ? dt} R
"1 X=Xy

"

X
+ BV{Q(x)Tn(x) J lv(t)dt] .
-1

x=xj

X "
. Cv{q(x)Tn(x) f Tn(t)dt} -
21

X=IJ

- 12{9(1)(1-12)1v(32)} + &, 20(x)T (x3)(1-%3)
1=x, x=x3

1, (x)=1"(x,)2,{xy)
D Bt A Eind Al Aint At )
{ % - % + BvQ(xj)Tn(xJ)lv(xj).
Two cases are to be considered, namely:
Case (i). v # J. In this case we have from (4.5) using
Lemma 1

{Q(X)Uv(x)yl = ——gg {Q(xj)(1-xj)fv(x§) +

X=Xy 1=x'
, llv(xj)
+ 2AV9(xj)Tn(xj)(1-xd) %% =
T'n(x3 )1'9(xj)
xj - Xy ’

1 ty 2
= 27\(13) '1—-;5- lv(xj) + A)’

where

2
)(xa) = ?(xj)(1‘xj)e
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1
(1-x2)7(x,)

Since T;l(xj) = l'v(xj)(xj-xv)'rl'l(x,) and Ay = =
then{p(x)Uv(x)} = 0.
=x
Case (ii)e j =v. From (4.3), (4.5) and Lemma 1 we have
by applying the 1 Hospital rule

”

" v , 2x
(4.6) {Q(x)Uy(x)} = of{x,) + 2 ¢(xv){219(xv) - ~——;—}+

X=X, 1=x,
" ’ 2 8x9 ' 2
+ o(xy)y21,{xy) + 21,(x5) = 5 1y(xy) = == 1+
1-x) 1=xy

+ ZQ(I)’)Tn(xlg){Ay':l/;(Xv) - llv(xV)zJ (1-x3) + BV}'

Clearly
, T, (%)
lv(xj) = y nx-]
Tn(x,,)(xj-xv)
and
, T (x,) X
(4.7) 1(x,) =22 . 7

Tnl(x,)  2(1-x3)
Using (4.2) and (4.6) we have
{()U()}" ") z('){ x"]
X = + -
QLx)Uy xex, Pixy Plxy a@;*

( ). o
+ X - -
AR (1-x2)2

2 l
1_}{3 } + 2Byo(x,)T (x,).

Applying condition (4.3), the lemma is completely proved.
Lemmnma 3. If n is even and 1<v< n, then the fun-

damental polynomial of the second kind Vv(x) can be expli-
citly expressed as
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X X
(4.8) vy(x)= T (x) L e/alv(t)dt+av T,(t)at
3 -1 -1
2(1=x3) T} (x,)
where
1 1 -1
(4.9) a,=4{- } efl,,(t)dt Uf T (t)dt, .
ry -1 -1

2(1-x3) 1, (x,)

Proof, Obviously V,(=1) = V,{(1) = 0. Also V;(xd) =0,
J = 1,2400.40n, Using Lemma 1 we have

"

{Q(x)vv(x)} =

xaxj

o

- T;(XJ)Q(xJ) . [}v(xj) + aTn(xJ)] =

E-3

2(1-x2) T,(x;)

1, v=]
= 693 = 0, v# 3’ V3=1925000,0,

thus satisfying condition (2.7) and (2.8) so that the lemma
is proved.

4t this juncture, our next task is to determine the two
extremal fundamental polynomials U (x) and Un+1(x) such that

(4.10) U (1) = U, 4(=1) =0,

(4011) UO(:H‘!) = Un+1(1§ = 1B

and

(491‘2) {‘Q(X}L’,"(X}I( = C” (J;L\c:ﬂ"f"]; 9219290009:\)@
) K=Z,
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This is easlly settled by the following

Lemnma 4, If n 1is even, then the extremal funda-
mental interpolation polynomials Uo(x) and Un+1(x) that sa-
tiefy the conditions (4.10), (4.11) and (4.12) ocan explicitly
be written as

(4.13) U (x) = IZ 2 (22 -———{f (1=4)T (t)at + 4 j T (t)dt]

where

1 1 -1
%{J; (1-t)a:;(t)dt] [ an(t)dt} .
- -1 ,

and
(4014) Un+1(1) =
= 1—*2’—"-Tn(x2) - t ( {f (1+t)T (t)dt + Ban(t)dt}
' -1
where

1 1 -1
B = %{ f (1+t)m;(t)dtH‘/Tn(t)dt}’ .
-1 -1

P r 00 f . Clearly U°(1) = Uo(xv) = 0’ V= 1.2,..0,‘1
and U (-1) = 1, However using Lemma 1 we have

{q(x)'l'n(x)}l -

IBXV

lotxiu, =) " {15, 12,0

X=X,

- {Q(X)Tn(x)}lxsxv {(1-xy)T;l(xv)}= 0

Similarly {9(x)Un+1(x)} = 0 and the lemma is proved,
X=X,
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Proof of Theorem 2. Using Theorem 1, Lemmas 2, 3
and 4, the existence of this interpolation polynomial is
established.

In dealing with the uniqueness, let Q;(x) be another po=-
lynomial satisfying conditions (1.1) and (1.2). Then there
exists a polynomial W(x) = Qu(x) = Q,(x). Surely W(x) sati-
sfies conditions (1.1) and (1.2} with degree < 2n+1 and ocan
be reprssented as

(4415) W(x) = (1-x°)7 (x)g,_q(x),

where gn_1(x) is a polynomial of degree < n-i. Then

{Q(x)W(xq” {Q(x)T (x)} +

=X, X=X,

+ 29(x9)T£(xv) {(1-x )gn 1(x)}x—x = O,
v

That is {(1-x2)gn_1(x)} = C Tn(x) where C is a constant,
Therefore

x
(1-12)gn_1(x) = C Jf T,(t)at.
-1

—

For x = 1 we have 0 = C T (t)dt. Since n is even

1 21

cf Tn(t)dt # Os That is‘C = 0 and hence (1-x )gn 1(x) = 0,
-1

Hence from {4.15) it follows W(x) = O, That is Qm(x)=
= Qg (x) and Theorem 2 is completely proved.

If however f(x)e C° [-1,1], then an interpolation polyno-
migl Qm(f;x) of degree < 2n+1 can be formed such that

Qm(f;xk) = f(xk)
and

fotrigleiml = £70x).
X= xk
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The interpolation polynomial for the above function using
our nodes (2.1) can be sxplicitly expressed as

Qu(f5xy) = £(=1U (x) + £(1)U, 4(x) +

n n
+ ; £(x,)U, (x) + ; 2 (x,)V, (x).
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