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A COMPOUND RIEMANN-HILBERT PROBLEM FOR HOLOMORPHIC
FUNCTIONS WITH NONLINEAR BOUNDARY CONDITION

1. Introduction

Linear compound Riemann-Hilbert problems for holomorphie
functibns, i.,e. problems with a Riemann~-Hilbert condition
on the boundary of the considered region and a conjugaocy
condition (Riemann or Hilbert condition) on an inner contour
in the region, have besn investigated in several papers, so
by I.S.Rogozhina [6] and Lu Chien Ke [2]. The case of a non-
linear conjugaocy condition for generalized analytic functions
in the sense of I.N.Vekna was considered by J.Wolska=-Boche-
nek [ 9], whereas in the papers of 4.Mamourian [ 3], [4], linear
compound problems sre treated for general elliptic complex
equations of first order. In the recent paper of Fang Alnong
[1] problems with linear conjugacy and Riemann~Hilbert condi-
tion for a class of strongly nonlinear elliptic complex egqua-
tions of first order are dealt with., A forthcoming paper of
Wen Guo-chan [ 7] treats a compound problem with a shift for
nonlinear elliptic complex equations of first order.

In the present paper a speclal class of compound problems
for holomorphic functions in the unit disk with a nonlinear
Riemann~Hilbert condition is considered. Reducing the problems
in a known way to the corresponding nonlinear Riemann-Hilbert
problems and utilising the results of [8] for the Rismann-Hil-
bert problems, we obtain existence theorems for the compound
problems,
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2. Statement of problems

Let D: z|<.1 be the unit disk in the complex 2z plane
with the boundery S: |t| =1, t = e'® (-m¢s <), Let L be
a simple closed smooth contour lying in D with variable
point T, We denote by D~ the inner region bounded by L, and
by D' the doubly-connscted region situated inside S and out-
side L. As positive direction on L we take the clockwise di=
rection, and as positive direction on S the counter-clockwise
one such that the domain D' 1ies on the left of S and L.

Problem E

It is required to determine a sectionally holomorphic
function &(z) = ¢(z) + 1 Y(z) in D with continuous limiting
values $7(x), ~(v) on L and continuous boundary values
d(t) = e(t) + 1 p(t) on S satisfying the conjugacy condition

(1) ¥ (x) = 6 d~(x) + glx) on I,
the nonlinear boundary oondition

(2) w(t) + P(s,p(t)) = £(s8) on S,
and the additional condition

(3) ®(1) =k ‘in ¢t = 1,

In Problem E, and E, the additional condition is

(3a) w(0) =¢ in 2 =0
and ’
(3v) | @(0) =d in z =0,

respectively, where it is supposed that the origin z = 0 lies
in D™,

We make the following basic assumptions on the data:

(1) 6 = G; + 1 G, is, in general, a complex constant dif-
ferent from zero; gl{t)e H“(L), 0< u<1, is a given Lilder con-
tinuous function on L,
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(11) P(s,9) is a real-valued continuous function on
[-n;m] R which is 2w-periodic in s and possesses a conti-
nuous partial derivative F, and a partial derivative Fg sa~
tisfying the Caratheodory oonditiona and an estimation of the
form

IF (8,9)| < E(s)eL (s), e>1,

for values ¢ from bounded intervals of R.
(1i1i) f(s) is 8 real-valued abasolutely continuous 2y-perio-
dic function on [-m,7]| possessing a derivative f£’(s)e Lq(s),

Q >1e
(iv) k, ¢, 4 are given real constants,

3. Reduction to a nonlinear Riemann-Hilbert problem
We represent the unknown funotion $(z) in the form

(4) ¢(z) = x(z) [w(z) + w (2],
where
% in D™
(5) X(z) =
, in Dt
and
(6) (Z) = u (z) + iv (Z) = 2"\1']) 't) dv,

Then the new unknown function w{(z) = u(z} + 1v(z) is holo-
morphic in D, continuous in D and satisfies the boundary con-
dition

(7) v(t) + P(s,u(t) + u (t)) = £(8) = v (t) on S
and one of the additional conditions

(8) u(1) = k - uo(1) =k in t = 1
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and

(9a) G, v(0) -G, u(0) = el6|? - G, vo(O)-+02 u,(0) in z=0,
(9%) ¢, u(0)+a, v(0) = a/6|? - @, u (0) -6, v (0) in 3 =0,

in problems E and E1, E2, respeotively, The continuity of w(z)
across the inner contour L easily follows from the well-known
Plemslj formulas (of. [5]) applied to the Cauchy integral

in (6). Problems E; and B, reduce to Riemann-Hilbert problems
of similar type, where the case of a real {imaginary) con-
stant G in Problem E1 corresponds to the case of an imaginary
(real) constant G in Problem Bye In the sequel we restrict
ourselves to Problems E and E1.

4, Problem E

The Riemann-Hilbert problem (7), (8) has the form of
Problem P, of [8]. Theorem 2 of [8] implies the following
one.,

Theorem 1 If for some p with 1< p<g there

|
exists R;alkd] + (2m)9 Cgs 4 Dbeing the exponent conjugate
to p and

2

2 _2
(100 cp = (2" [ + 5] {1 + 28;(con Kpp) "K},
= 2P
where K = e-p °*

(o A

I '”e denoting the norm in L(S),

du
(12) rp = ?QT%EJﬂ IlFs(s,u+u°(t))+ Rp(s,u+u°(t)) 3321|Q
ujs
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and
(13) 2% = M m )] - Min m(s,u)
R 8€;§ﬂﬂ [(s,u] sepwnﬂ[ ’ J
lul<R | IR
with
(14) m{s,u) = arctan Fb(a,u+uo(t)),

then Problem E possesses a solution §(z)¢ CA(B;)r\Cp(B:),

A = min (;}— , P,) , with boundary values ¢'(t)e L (S). If addi-
tionally the derivative F¢(5’¢) satisfies a Holder condition,
the function $(2z) is the only Holder continuous sectionally
holomorphic solution of Problem E, Here A, denotes the norm
of the Hilbert transformation

g
(15) (Hu)(s) =?’5 fn(eig) cot 55—Q a6
-1

in L (S), T = 2pe 4,0,

tan (—fi) if 1<rg2

(16) A, =

cot (L) ir 2gr<ce,

Corollary. Inparticular, there exists a solu-
tion #(z) € C,(D*)~C (D7), A = % , to Problem E if g = const,

1 2y = - inf . x ,
(17) ' eeﬂ[l_lg’ﬂ [m,(8,)] se[fr’ﬂ [m,(8,0)] < £
PeER peR

where mo(a,¢) = arctan Fw(s,q), and

< oo
(18) se?ggﬂﬂ]llFs(s’w)”e .
¢eR
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In case of Q= oo one has K = 2p and (17) ie fulfilled for p
sufficiently near to 1 if the oscillation 2y of the funotlion

erctan [F,(s,¢]] ie smaller than _::2_r ; of, [8] for further

examples of Theorem 1, especlally with 27y~ arctan [z B%],
0<a<1 a8 R—»co,

5. Problem E.‘

We distinguish three cases: G is real, G is purely imagi-
nary, and G is complex,

In the first case the additional condition (9a) reads

(19) v(0) =¢ G =v (0) 1n z =0

and the problem (7), (19) has the form of Problem Q, of [8].
We pose the followlng Assumption B, on the function Ps
(1) There hold the estimations

du '
(20) Po(8:90) + B, lo00) gg2| <Egla) e T (M), g>1,
for almost all s ¢ [-mw] and all @R, and

(21)  2g= 2 [moleve)] = | daf [35(s0)]< 5 25T
peER . PER :
where as above mo(a,cp) = arctan[F(P(e,cp)] .
(ii) P(s,¢) 1is strictly monotons in ¢ for almost all
8 € [-m7] and possesses the (finite or identically infinite)
limit functions Fi(s) = 1im F(s,9) uniformly in s e [-m,7].

P>too
From Theorem 4 of [ 8] then follows
Theorem 2e Under Assumption Bo the Problem E1

with real constant G has a unique solution §(z) € CA(-’F)('\CH(-D—-.),

A = min (1 - %,,.1), with @'(t)eLp(S) for some 1<p<g, if
the constant
T

o
C= J{f(s}d - -‘[r v (t)ds = 2n [G = v (0]
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lies between the limits
/
g - g(s,dso
=T
In the seocond case G = 162 we have the additional condition

(22) u(0) = =[0G, + u (0]

and the Problem (7), (22) has the form of Problem Q, of [8].
From Theorem 5 of [8] one obtains

Theorem 3, If for some p with 1<p<e there
exists

1
R >|eG, + u (0)] +2 (2m9 cp,

where ¢ is the conjugate exponent to p and (:R is given by
(10) with (11) - (14), then Problem E, with purely imaginary

oonstant G = 162 has a unique solution §(3) e CA(F)nCF(F),
A= min (%'P)' with $'(¢) eLp(S).

Corollary. In partiocular, there exists a unique
solution § (z) e C,(D¥)~C, (D), A -% » to Problem E, with

purely imaginary constant G = 1G,,if g = oonst and the assump~
tions (17), (18) are fulfilled.

6. Problem B, (ocontinuation)

In the ocase of a complex constant G = 01 + :I.G2 Problem 81
leads to a Riemann-Hilbert problem with boundary condition
of the form

(23) v(t) +¥Y(s,u(t)) = h(s) on 8
and additional condition
(24) A u(0) +Bv(0) =1 in 3z = 0,

where A, B, 1 are non-vanishing real oconstants,
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Problems of this type have not been considered explicitely
in (8] but can Dbe dealt with in analogous wey as Problems Q,,
Q, there. So the problem (23), (24) is equivalent to the prob=
lem with the boundary condition

(25) 3: +w (syu) 75—2-+w3(s,u) « h'(s) on 8

and the additional condition

T nr w
(26) & fu(t)as - B jwa,u(maa = 21l - B jh(a)ds

for the harmonic function u. The problem (25), (26) in its
turn is equivalent to the fixed point equation

0
(27) u() = k + f L(6,u)d6,
0

where the real parameter k = kfu] 1s a solution of the equa=-
tion

il 8
(28) k-3 [ ¥ <s,k +fL(6,u)d6>ds -
- 0
T ns
-1-3% [ntees - f{L(s',u)dG ds,
=T L

The kernel L(s,u) is given by the same expression as for
Problems Q,, Q, in [8].
We now assume that there hold the inequalities

(29) | Wis,u)|<¥,,

(30) 2V, (8,u) <1

for almost all se[-mm] and all ucR. Then the equation
(28) has a uniqus solution k = k[u] which depends continuously
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upon' u in the maximum norm topology for any Holder conti-
nuous function u. If |u|<R, the solution k satisfies
the estimation

1
(31) [k|< R, + (279 o,
where
T
(32) K, = Ta7 |1 -2 fh(s)dsl |2y
-JT
and Cp is given by (10) with
(33) M=ltllgs p = sup  [¥fs,ule
la|<R
and
(34) m{s,u) = arctan [:".’n(s,u):] .

Therefore, Schauder ‘s fixed point theorem yields the existence
of a solution w(z) to problem (23), (24),if for some p with
1

1< p<g there exists R)Ko + 2(2m)? CR. Moreover, the solution
is unique because the difference w(z) = w1(z) - w2(z) = ulz) +
+ iv(z) of two solutions w.l(z), w2(z) satisfies the boundary
condition

(35) v(t) +x(s)u(t) =0 on 8

with the continuous function
L

(36) X (s) =flpu(s,u1(t) +'r[u2(t) - u1(t)])d'r
(o}

and the condition

(37) ' A u(0) + B v(0) =0
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in z = 0. The Riemann-Hilbert problem (35) has one linearly
independent solution (over the field of real numbers)

(38) w(z) = e'”(“. t{(z) = S[arctan x(s)];

where S means the Schwarz operatoi'. But the condition (37)
for W(z) leads to the relation

r
(39) % tan [211? farotan x(s)ds] =1

-

which is impossible because of the assumption (30). Applying
these results to the Riemann-Hilbert problem (7) with (9a),
we obtain the following theorem.

Theorem 3. Let the functlion F fulfil the esti-
mations

(40) | P(s,0)| < By,
G1 dno
(41) 1 +—f2 [FB(B.<P) + F‘p(s.({’) ﬁ{l)O

for almost all s€ [-7,7] and all ¢ €R.
If for some p with 1<p<g there exists

1 2
R)]——q |G| = Gyv (0) + Gyu, (0) -
¥ 1
G G 1
-ot [ 2te) - v (t]]as] + u% F, + 2 (2m9 o,

-7
where Cp is given by (h0) with (11) - (14), then the Problem
E1_ with oginplex, ogetant G = G, + 1G, has a unique solution
8(2) € ¢,(0*) ~C (D7), A= min (%,p) with &(t)e1(5),

Corollary. In partiounlar, there sxists a unique
solution d(z) e CA(F")n(H(B:), A= % » %o Problem E, with com-
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plex constant G = G1 + 1G2,if g = oonst and the assumptions
(17). (40) and

G
(42) 1 +—G;—Fs(s,¢_)>0

"are fulfilled.
Remark, The Corollary also holds,if the boundedness

condition (40) is replaced by

(40") | P(8,9)] < P, + F1|cp|‘5, 0 6<1.
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