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NONLINEAR VOLTERRA INTEGRAL EQUATIONS IN ORLICZ SPACES

Let X be a separable Banaoh space., In this paper we in-
vestigate the integral equation

t
(1) x(t) = pl(t) +f £(t,8,x(8))ds,

where a solution x 1is a function from a compact interval
J = [0,a] into X, We give suffioient conditions for the
existence of solutions of (1) belonging to the generalized
Orlicz space Ly(J,X). Moreover, we prove that the set S of
all solutions x € Ly(J,X) of (1) is a compact Rs, 1.,6. S 1is
homeomorphic to the intersection of a decresasing sequence of
compaot absolute retracts., Throughout ‘this paper we assume
that D = [0,d], R, = [0,0°) and p is the Lebesgue measure

in R; the symbol f denotes the Boohner integral.

1. Orlicz spaces

A function ¢:R xD —R, 18 called a (generalized) N-func=-
tion if

(1) ¢(0,t) = O for almost all t € D;
(11) for almost every t € D the function u —¢(u,t) is ocon~-
vex and nondecoreasing on R ")

(141) for any ueR, _ the function t —¢(u,t) is L-measurable
on Dg
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{(iv} for almost every teD

11m t) | o ang 14m A8t) o,
u*0 u U +co u

For any N=-function ¢ we may define an N~function cp*by
¢*(u,t) = sup (uv = ¢(v,t)) (u>0, teD);
v20

it is called the complementary function to .

For a given subinterval J of D we denote by Ly(J,R) the
set of all L~measurable functions x:J — R for which the num-
ber

x|, = 1t {=>0s Jotix()] /2,818t < 1}
Jd
is finite. LLP(J,R) is called the (generalized) Orlicz space.
It is well known (e¢f, [3], [5]) that <L(P(J,R),Il°llcp> is
a Banach space, and the convergence in L¢(J,R) implies the
convergence in measure. Moreover, for any functions uec _L‘P(J,R)
and ve L(P*(J,R), the function uv 1s integrable. and

[ 1at61vt)] at <2fju] vl « (HS1dex*s insquality).

Assume now that ¢ satisfies Condition A:

fcp(u,t)dt<°° for all u>0.

Denote by E,(J,R) the closure in L (J,R) of the set of all
simple functions, Obviously, E (J R) is a Banach subspace
of L(p(J R).

Lemma 1. The following statements are equivalent:
(a) xeE,(J,R);
(b) xel (J,R) and x has absolutely continuous norm, i.e,
for any s>0 there existe 0 >0 such that lex,r” <g¢ for every
measurable subset T of J with u(T) <4§;
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Volterra integral equations 3

f(p(zlx(t)l yt)dt<oo for a11 2> 0.

Proof, We prove only (b) = (o), because (a) <=>(c)
and (a) = (b) have been shown by A. Kozek (cf. [5], Prop.3.3
and Prop.3.4). Let x be a function from Lq,(J,R) with abso~
lutely continuous norm, For a given A >0 we choose 8> 0 suoch
that | Axxqpllo<t for every measurable subset T of J with

p(T) <6, Since J = U Ty, where (Tyly 4 .15 & family
of disjoint subintervala of J such that p('.ri) <§, we have

j<p(a|xm|.t)at .S [ etalxtn)] trat < 2 [EEPNPRL
i=1 Ti i=1

Lemma 2, If a sequencs (xn)CE(p(J,R) has equi-ab-
solutely continuous norms and converges in measure, then (xn)
oonverges in ELP(J,R).

Proof, We repeat the proof of Lemma 11.2 from [ 6],
For a given £>0 put G, {teJ | x,(t)-x, (t)] >17} where
7 = €/3||%3]os Choose 6>0 in such a way that | Xpxp llo <€/3 for
n=1,2,.s¢ and any measurable subset T of J such that p(T) <6,
Since the sequence (xn) converges in measure, there existse

a positive integer n, such that p(Gm)<6 for m,n>n . Hence

” Xn = Xy "(?<"(1n = xn)xcmn"(P + " (xn = xm)xJ\Gmn ”(PS

< ”xnxcmn o + | xmxcmn'”qo tllxgllese

for m,n>n , so that (xn) satigfies the Cauchy condition for
the convergence 1n E(p(J,R). As the space Eq,(J,R) is complete,
this implies the convergence of (xn) in Eq,(J,R).

2. Measures of noncompactness
Por any bounded subset A of X the ball measure of noncom=
pactness of 4, denoted P(A), is defined to be the infimum of
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positive numbers ¢ such that A can be covered by a finite
number of balls of radius smaller than ¢, Thse fundamental
properties of P are given in [7] and [4]. Purther, for e
given subinterval J of D, denote by L1(J,X) the Lebesgue spa-
ce of all (Bochmer) integrable functioms x:J — X, provided
with the norm [ x[j; = f"x(t)lldt. We chall always assume that

all functions from L1(J X) are extended to R by putting x(t)=0
outside Jo Lot f, be the ball measure of noncompactness in
L1(J,X). Por any set V of fanctions belonging to L'(J,X) de-
note by v the funotion defined by v(t) = p(V(t)) for teJ
(under the convention that (A) =co if A4 is unbounded), where
v(t) ={x(t): er}.

Lemma 3. (of. [10], The1)e Lot V be a countable
subset of L1(J,X) such that there exists WGL1(J,R) such that
|x(t)]l<w(t) for all xeV and t € J. Then the function v 1is
integrable on J and for any measurable subset T of J

(2) ﬁ({{x(t)dt: xe V})s{v(t)dt.

Moreover, 1if

11 t+h) - x(t)||dt = O
h‘g:g!”x(+) x(t) ’

then

(3) XUPYRTES T
’ J

3+ An existence theorem

In this seoction we assume that

1° M,N : R xD—=R_ are complementary N-funotions and M
satisfies Condition A;

2P ¢: R xD ——R_is an N-function satisfying Condition A
and such that

(4) ng<Ae(u,t) + h(t) for sll u>0 and a.a. t€D,

where A 1s a positive number and heL1(D,R).
- 518 =



Volterra integral equations 5

3° (t,s8,x) — £(t,8,x) 18 a function from D°<X into X
which is continuous in x for a.,e., t,s€¢ D, and strongly
measurable in (t,s) for every x € X,

4° || £(t,s »X)|| <K(t,s)gls,lx]]) for t,seD and x ¢ X, where

(1) (s,u) — g(s,u) is 8 function from D«R, into R,
measurable in s and ocontinuous in u, and there oxist
ayy >0 and be L1(D,R), b>0, such that N(og(s,u),s) <ye(u,s)+
+ b{s8) for all u>0 and a.a. s€D,

(11) (t,s) — K(t,8) is a function from D° into R, such
that K(t,* )€ B (D R) for a.e., t€ D and the function
t — HK(1:,o)l|M belongs to E,(D,R).

For any subinterval J of D denote by L,(J,X) the set of
ell strongly measuresble functions x:J — X such that
| x|le L,(J,R)s Analogously we define E,(J,X). Then Ly(J,X) is
a Banach space with the norm [ x|, = Illlxll]] Owing to (4) it
1s olear that L,(J,X)cLl(3,x).

We introduoe an operator F defined by

P(x)(t) =ff(t,s,x(s))ds (te D, xe E(p(D,X)).

Prom 4° 1t follows that for any xe EtP(D’x) and teD

el ixiy [0, 4 ||N e Ljjag(e,uxiy [0, 4]l 5 S

% t t
<1 <1+f Flag(s,|x(s) ).8)68>$&<1 +f b(s)d8+b‘fwill!(s)”vs’ds)
0 ) 0

and, by the Holder inequality,
t

!IF(x)(t)ll<f K(t.e)g(s.”x(s)ll)dssk(t)llg(°.nxn)x[o,tJHN.
0

where k(t) = 2”K(t")%[0,t]nm' Hence
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] t
(5) IIP(x)(t)Hs% k(t)(l + f b(s)ds + wa(”x(s)|].e)ds>
0 (o}

and
, @ d
(6) ]IF(x)xTH,ng- ”%M’*‘f b(s)ds + chp(”x(@)“,s)ds)
4] (4]

for te€D, xecE (D X) and any measurable subset T of D, Let
us remark that in view of 4°(1i) and (4), ke B (D R) and
keI.1(D R). Similarly it can be shown that for am] t € D such
that K(t,+)e By(D,R)

(7) Jlete,8,xte))] a8 <
P

t t
<2 KOty dypli (1 + f b(s)ds + quo(”x(a)”,a)da)
0 0

for any measurable subset P of [0,t] and x € By(D,X).
By lLemma 1 from (6) we conclude that F maps B,(D,X) into
itself, We shall show that F is continucus. Let x , x €& (D, X)

nd 1lim - = 0, S ose that || F(x )~F(x does not
and lim [lx;-x, ||, upp I B(x,)=F(x)l| ¢, 0

converge to O as n —~ o=, Thus there are £>0 and a subsequen=
ce (xn } such that
J

(8) ”F(xn:j) - F(xo)”’p > & for j=1,2,oo.

and 1lim x, (t) = x, (t) for a.e. t €D,

j—-oo

From Lemma 1 and from the inequality
f(p(”x (s)]]+8)ds %f(p(Z”x (s)-x (8)]|,8)ds +

d
+%f(p(2”x (8] ,8)ds
0
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d
it follows the boundedness of the sequence <‘g<p(”xn(s)”,s)ds>.

Consequently, by (7), for a.e. teD the sequence (]|£(t,s,x (s))[)
is equi-integrable on [0,t]. As for a.e, t €D

lim f(t,s,xnj(s)) = £(t,s,x (8)) for a.e. 8 €[0,t],

J=oo

the Vitali oconvergence theorem proves that
1lim F(xn )(t) = F(xo)(t) for Iﬂoe- teD,
00 j

Moreover, in view of (6), the sequence (13'(::n )} has equi-abso-

lutely continuouns norms in L(P(D,x). Hence, by lLemma 2,
lim [|F(x, ) - F(x )|l,=0
jeoo ny o'l

which contradicts (8).

Now we are going to establish our existence theorem
for (1). Let (t,s,u) — h(t,s,u} be a nonnegative function
defined for 0¢s8s ¢t ¢d, ux0, satisfying the following con-
ditions:

(:L) for any nonnegative u€E (D R) there exists the inte~

gral f h(t,s,u(s))ds for almost every t ¢ D;

(ii) for any a, 0<agd, u= 0 a.,e, is the only non-
negative function on [0,a] which belongs to Eq,(fo,a],R) and
satisfies

u(t)sf h(t,s,u(s))ds almost everywhere on [0,z2],

Morao{rer, let Br denote the closed ball in E (D X) with center
0 and radius x,
Theorem 1, Suppose that

(9) Iim sup !IlF(x)(t«m‘) - F(x)(t)]|]dt = 0 for any r»>0
7+~ 0 xeBT
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8 R. PYucisnnik, S, Szufla

and
(10) p(f(t,8,2)) < h(t,s,p(2))

for almost every t,s €D and for each bounded subset Z of X.

Then for any peE(P(D,X) there exist an interval J = [0,a]
and a function x¢€ L(p(J,X) which satisfies (1) almost every-
where on J.

Proof. Fix a function peE, (DyX). We choose & po=
sitive number a<m1n(d,w ), where [O,w ) is the maximal inter=-
val of existence of the maximal continuous solution 2z of the
integral equation

. |
(1) a(t) = [ ol2fole)] +2 k(s) (1 + [[b]]; +32(8)),8)d8.
0

Let J [o a]. Por simplicity we put L' = 11(3,X), L, = L,(3,X)
and E, = E, (J4X)e .
For any positive integer n we define a function

un:J —= X by

¢

p(t) for Ogtgan

u,(t) =
t=2a
n
p{t) + f f(t,s,u,(s))ds for a,<tga,

where a, = a/n, By repeating the argument from the proof of
(5), it can be shown that

lu (8)ll < || p(t)] for Ogtgay,

and

g0 < [Ipte)] + E1 K6 o, 5ua 1, =

t-8 t-a,
x (1 + jn bis)da + 7 f ellluytsl]f,8) ds>
0 0

for a_ <t <ae.
n - 522 -
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As 2”K(t’°)%[0,t-a ]Ilmgk(t) for a,<t<a, from this we
n

deduce that u.ne E¢ and

t
(12) flu (t)] <]lo(t)] + & k(t)<1 +] o], + wf(p(llunta)”,s)ds>
0 .

Consequently

PUlag(t)],t)< Z ol2]p(t)] +

t
+ § k(%) (1 +|| b[]1 + 7 fcp(” u, (s} ,s)ds),t).
0
As kGE(P(D,R) and pEE(P(D,X), putting
t
2,(t) = [ @([uy(e)],0)de
0
and integrating the last inequality between O and t, we get
t
zn(t)é%jq:(zi]p(s)ll +§— k(s)(1+]b]ly +y2,(8)),8)ds for teJ.
0

Applying now Th, 2 of [1], we infer that z,(t) < 2(t) for teyg,
where 2z 1s the maximal continuous solution of (11). Hence

a
(13) [etlugtalj,olascr  for n = 1,2,...,
0

where r = mex z(t), so that
ted

(14) lupllesr+t  for n =1,2,... .
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From (13), (5) and (7) it follows that
lu,(t) = p(t) = Plu)(8)]| = |[Flu)(t)] <1 k(¢1(1+]|b], +77)
for te[0,a,], and

t
gt = pte) = Bughe)l = || [ 20t,8,u508)108][<

t-an

LN LRy LRSS I W
so that
||un(t)-p(t)-F(un)(t)llsi—kn(t)(1+||b||1+'a‘r) for telJ,

where

k(t) if O0<t<a,

k(t) = ,
2”“”"”‘[*-8,,-*:]“;; 1f a,<t<a.

By 4° (i1) we have 1im k (%) = 0 and k (t) <k(t) for a.e.
n-+oco
t€J. As ke By(D,R) and ke L1(D,R), this implies that

(15)  1im (u (t) - p(t) - Flu )(t)) = O for a.e. t€J,
n-»oo

(16) ;EEZQ “un -p - F(un)"1 =0

and

(1n nl_:l;moo o, = p = Fluglf, = 0.

Let V ={u;: n= 1,2,...} and W = P(V)}, In view of (16)
and (15) we have
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(18) {31(V) = [31(W) and [S(V(t)) = ﬁ(W(t)) for a.e. t€ J,
Moreover, by (5) and (13),

(19) IP(u,)(t)]] SAk(t) for te€J and n = 1,2,...,

where A = 1 (1 +[Ivfly +31)0
On the other hand from (9) and (14) it follows that

a
11 F t+7) - Plu ) (t)|ldt = 0.
sy Jime e - st

As keL1(D,R), by Lemma 3 from this we deduce that the function
t —=v(t) = p(W(t)) is integrable on J,

a
(20) [51(w)<fv(t)dt
0
and
(21) v(t) <A k(t) for a.e. ted,

Fix t€J for which (10) holds and K(t,)e By(D,R). Then, by
{(7) and (13), we have

N

(22) j”f(t,e,nn(s))llds gza”x(t.")xpllm
P

for any measurable subset P of [0,t] and n = 1,2,..s &
Purthermore, by the Egoroff theorem and (15), for any £>0
there exists a closed subset J. of J such that p(J\Jc) <€ and

lim (u,(8) - p(s) = F(uy)(s)) = O uniformly on J,.

n-»oo

Hence, in virtue of the Luzin theorem, from (19) and (22) ws
infer that for a given & >0 there exist a closed subset T of
[0,t] and a positive number ¢ such that
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(23) lup(8lfj<g for e€® and n = 1,2,...

and

(24) f”f(t.s,un(g))”de-ge £Or L = 1,2,000,
P

where P = [0,t]\T. Since

I £(t,8,u,(8))] <K(t,s)a(s,|| un(s)ll )y

from (23) it follows that

||f(t.8.ﬂn(ﬂ))”$1v(5) for s€T and n = 1,2,400,

where Y(s) = K(t,s)g(s,q). As K(t,-)GEM(D,R) and g{e,0)€
¢ Ly(D,R), the Holder inequality proves that we L1(T,R).
Put

2 ={flt,o,u,(+)) + n = 1,2,00.}

and

fz(s)ds ={ff(t,s,un(s))ds st n = 1,2,...}.
T T

Then, by (2), we have

ﬁ<f2(s)ds)s frame))as.
T T

Moreover, (24) implies that
ﬁ(fZ(s)ds>$8.
P
Since F(V)Cf Z(a)ds + fZ(s)ds, we obtain
T P

ﬁ(F(V)(t))sf/s(z(s))ds +E.
T
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Volterra integral equations , 13

On the other hand, from (10} it follows that

p(Z(s))< h(t,s,p(V(s))) for a.e. se[0,t],

Thus, by (18),

t
v(t)gf h(t,s,v(8))ds + egf h(t,s,v(s))ds + €.
T 0
As ¢ is arbitrary, this proves that
| t
v(t) s! h(t,s,v(s))ds.
o .

Since this inequality holds for a.e. t€ J and, by (21),

ve E,p(J_,R), we deduce that v(t) = 0 for a.e. t €J. Consequently,
by (20) and (18), |31(V) = 0, 80 that the set V is relatively
compact in L'. Thus we can find a subsequence (un ) of (un)

which is convergent in 11, on the other hand, from (12) and
{(13) 1t follows that the sequence (un) has equi-absolutely

continuous norms in L‘P' Hence the sequence (l.tn ) converges

in B, to a function u. By (17) and the continuity of F, this
implies that [|u - p = P(u)||, = O, s0 that

t
u(t) = p(t) +ff(t,e,u(a))ds' for a.e. te€d,
]

4. Solution funnels

Theorem 2., Under the assumptions of Theorem 1,
for any p €B,(D,X) there exists an interval J = [0,a] such
that the set S of all solutions of (1) belonging to E,(J,X)
is a compaot Rg. '

Prooft, Fix peE(p(D,x) and choose numbers & and r
in the same way as in the proof of Th, 1., Let
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Y
U s{xexq, T f«p(”x(s)" y8)dBET + 1},
0

Obviously, UcBL*2,
For any positive integer n and x € B, put

.
0 if O0<tga,

Fo(x)(t) =2

t-an

f(t,s,x(8))ds 1f a_ < t <an,
L e n

where a = a/n. Similarly as for F in the proof of Th. 1, it
can be shown that Fn is a continuous mapping of E¢ into it~
self, and

t
(25)  [[ry(x) ()< % k(t) (1 + o)l + 3 I o] x(8)] ,s)ds>
0

for x eB, and t € J, Moreover, arguing similarly g8 in the
proof of (17), we obtain

lim ||P(x) - F (x)||, = 0 uniformly in xeU.
n-+o<

Put G(x) = p + F(x) and Gn(x) =p + Fn(x) (xcU), Then G and
Gn are continuous mappings of U into EqD and

(26) lin ||G(x) - Gn(x)H(P = 0 uniformly in xeU.

n-—»oo

Fix n. It can be easily verified that for any x,yeU

(27) X = Gn(x) =y = Gn(y) = x =Y.
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Volterra integral equations 15

Suppose that xJ, X € U and
(28) jlim ”x:l - Gn(xj) -x, + Gn(xo)”q) = O,

Since Gn(xj)(t) = Gn(xo)(t) = p(t) for Og t<ay, {28) implies
that jl_:i;l:o]l(xj - xo’%[o.an]||<p= 0. Further,

xy(t) = x (8] = (xy4(%) = Gp(xy)(8) - x (t) + G (x )(t)) +

+ (Fn(xjx[b’an])(t) - Fn(xox[p'an])(t))

for a,<t<2a, and J = 1,2,sss + By (28) and the continuity
of F, this proves that ;EﬂL”(x -X )X[an.2an]“¢‘ 0. By repeat-

ing this argument we get
i g = %00, 10,7116 ©

for 1 = 1,2,.00,n, 80 that 1im ”x:j - x,|l¢= 0. From this and
~=00

(27) it follows that the mapping I - Gp: U—=E, 18 a homeo-
morphism into (I - the identity mapping).
We choose a number gq, 0<q <1/2, such that the maximal

continuous solution zq of the integral equstion

t
z(t) = q + 4 J‘w(QHP(S)” +— k(s)(1 + | b]ly + 72(8)),8)ds
0

is defined on J and zg (t) <1 + z(t) for teJ, where 2z is the
maximal solution of (11). Let Bq {er x| gq} For a

given n and y eB?P we define a sequenoe of functions Xy
i=1,2,0e04n, by
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16 R. P*uciennik, S, Szufla

x,(t) = 3(t) + p(t) for 0K t<a

n
i for ia,< t <o
xiﬂ(t) = xi(t) for OStSian

X3 4q{t) = 3(t) + plt) + P (X)) (¢) for ey

st<(i+1)a,,

Then x, € E, and xn(t)‘= y(t) + p(t) + Fn(xn)(t) for t€J, and

consequently, by (25),
t

lxpledl < o] +lote)] + % k(ﬂ<1 + vy + 3 £¢fllxn(9)ll.8)d

Henoce

ol xa ()], 8)< T (278l ,8) + L el2]p(t)] +

t
+2utor (1euly o o f ollzy (o] o1ae )
0

)

1
for te J. Putting w (t) = ,(j)'cp(]] x,(8)],8)ds and integrating the

above inequelity between 0 and t, we get

t
wt)<q +%—fcp(2”p(s)|| +§- k(8)(1+[v]l, +3wy(s)),s)ds

(4] :

for teJ. By The 2 of [1] thie implies that w,(t)< 2, (%) < o1

for t €J, and hence x € U, This proves that

(29) Bgc(x - ¢ )(U) for all n,

Now we shall show that

(30) (I - G)'1(Y) is compact for any compact subset Y of Eg,.
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Volterra integral equstions 17

Let Y be a given compact aubset of B, and let (u ) be an in=-
finite sequence in (I - G)~ (Y). Since u, - p - F(u )e Y for
n=1,2,0eey Wwe can find a subsequenoce (un ) of (u ) and yeY
such that

o flu, =-p=PFu, ) -3[,=0
Jooo' By 2y v
As, by (4), the convergence in L, implies the convergence in
L1, we have lim || w, = p = F(un ) - 3|, = 0. By passing to

8 subsequence 1f necessary, we may assume that

lim (und(t) - p{t) = F(unJ)(t)) = y(t) for a.e. teJ,

j-oe

Putting V ={u, : § = 1,2,...} and repeating the argument from
the proof of Th. 1, we conclude that the set V is relatively
compaoct in Etp‘ 4s U is s complete metric subspace of Eq,, this
proves (30). From (26), (29) and {(30) 4t follows that the
mapping G : U —= B, satisfies all assumptions of Th. 7 of [2],
and therefore the set (I - G)~1(0) is a compact Rg. On the
other hand, if xe€ S, then analogously as for u, in the proof

of (13), it can be shown that th(”x(a)",e)dsgr, i.e. x€U,
Thus S = (I - G)~1(0), which ends the proof of Th, 2.
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