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NONLINEAR VOLTERRA INTEGRAL EQUATIONS IN ORLICZ SPACES 

Let X be a separable Banaoh spaoe. In t h i s paper ve in» 
ves t iga te the i n t e g r a l equation 

t 

where a solut ion x i s a funct ion from a compaot i n t e r v a l 
J « [0 , a ] in to X. We give s u f f i c i e n t conditions f o r the 
existence of solut ions of (1) belonging to the general ised 
Orlioz spaoe L^iJ,X). Moreover, we prove that the se t S of 
a l l so lut ions x e L ^ f J , ! ) of (1) i s a conpaot R^, i . e . S i s 
homeomorphic to the in t e r sec t ion of a decreasing sequenoe of 
conpaot absolute r e t r a c t s . Throughout t h i s paper we assume 
tha t D » [0 ,d ] , R+ • [0 , ° ° ) and fx i s the Lebesgae measure 

i n R; the symbol / denotes the Bochner i n t e g r a l . 

1. Orlioz spaoes 
A funct ion <p:R+*D ~ i s cal led a (generalised) N-funo-

t ion i f 
( i ) <p(0,t) - 0 f o r almost a l l t € D; 
( i i ) f o r almost every t e D the funct ion u—*-cp(u,t) i s oon-

vex and nondeoreasing on R+ ; 
( i i i ) f o r any ueR the funct ion t —^cp(u,t) i s Immeasurable 

(1) 
0 

on D| 
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2 R. P í u c i e n n i k , S . S z o f l a 

( i v ) f o r almost every t e D 

l i m f i u g t l „ 0 a f l d l i M (PÍu^i l = o o # 

U*0 U 

For any N- funot ion cp we may d e f i n e an N- fano t ion cp* by 

u , t J = s ap (uv - < p ( v , t ) ) ( u > 0 , t e D ) ; 
v * 0 

i t i s c a l l e d the complementary f u n c t i o n t o cp. 
Por a g iven s u b i n t e r v a l J of D we denote by L V ( J , R ) the 

s e t of a l l L-measurable f u n c t i o n s x : J — » - R f o r which the num-
ber 

II * U = i n f { r > 0 : Jcp( | * ( t j | / r , t ) d t < 1 } 
V J 

i s f i n i t e . L ^ t J t R ) i s c a l l e d the ( g e n e r a l i z e d ) O r l i c z spaoe . 
I t i s we l l known ( o f . [ 31 , [ 5 ] ) t h a t < l c p ( J , R ) ,11 • 11^ i s 
a Banach s p a c e , and the convergenoe in L ^ ( J , R ) i m p l i e s the 
convergence i n measure. Moreover, f o r any f u n c t i o n s ue L ^ ( J , R ) 
and v € l ^ ( J , 8 ) , the f u n c t i o n uv i s i n t e g r a b l e , and 

| | u ( t ) v ( t ) | dt <2| |u| | ||v|| * ( H o l d e r ' s i n e q u a l i t y ) . 
J 

Assume now tha t <p s a t i s f i e s Condit ion A: 

J (p(u , t )dt « » f o r a l l u > 0 . 
D 

Denote by E V ( J , R ) the c l o s u r e i n L ^ f ^ R ) of the s e t of a l l 
s imple f u n c t i o n s . Obviously , E^,(J,R) i s a Banach subspace 
of L ^ J . R ) . 

L e m m a 1* The f o l l o w i n g s ta tements are e q u i v a l e n t : 
( a ) x e B ^ J . R ) » 
(b) x e L ^ ( J , R ) and x ha s a b s o l u t e l y continuous norm, i . e . 
f o r any £ > 0 there e x i s t e 6 > 0 such that | | x% T | | ^<£ f o r every 
measurable subse t T of J with fi(T) < 5 ; 
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Volterra Integral equations 3 

(o) /<f>(A|x(t)| ,t)dt<oo for all A > 0. 
J 

P r o o f * We prove only (b) (o), because (a) <=} (o) 
and (a) =>(b) have been shown by A. Kozek (cf. C53 » Prop.3.3 
and Frop.3.4). Let x be a function from L^J.R) vlth abso-
lutely continuous norm. For a given A>0 we choose ¿ > 0 suoh 
that H^x^ipll^^l for every measurable subset T of J with 
fi(T)<6. Since J = Q where (Ti)^ n i s a 'a03-1? 

i»1 * ® 
of disjoint 8ubintervals of J such that jjÎT̂ ) < Ô, we have 

n n 
/<p(A |x(t)|,t)dt- 2 / <PlA|*tt)| ,t|dt < 2 ||v<n. 
J i»1 T± i=1 1 

L e m m a 2. If a sequence (xQ) c Ê f J,R) has equi-ab-
solutely continuous norms and converges in measure, then (xn) 
converges in E^iJjR). 

P r o o f . We repeat the proof of Lemma 11.2 from [6]. 
Por a given £>0 put G ^ ={teJ: | xfl(t)-xm(t)| >7}, where 
7 = e/3||Xj||v. Choose Ô > 0 in such a way that ||xn<xT ]|<p <e/3 for 
n = 1,2,... and ary measurable subset T of J such that fx(T) <i. 
Sinoe the sequence (xn) converges in measure, there exists 
a positive integer nQ such that f»(Gnn)<6 fpr m,n>n0. Henoe 

II xn " x J W U x n " xmha II«P + II <xn " V X J N G Hep ̂  mn mn 

4 II y + II xm%G J 9
 + 1?IIXj||«> e mn mn 

for m,n>n0, so that (xQ) satisfies the Cauchy condition for 
the convergence in E^fJ.R). As the spaae E^(J,R) is complete, 
this implies the convergence of (xQ) in E<p(J,R). 

2. Measures of noncompactnesB 
Por any bounded subset A of X the ball measure of noncom-

pactness of A, denoted |J(A), is defined to be the infimum of 
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4 H. Píüolenpik» S» Saufla 

positive numbers t suoh that A oan be covered by a finita 
number of balls of radius smaller than e. The fundamental 
properties of [J are given in [7 ] and [4 ] * Further, for a 
given subinterval J of D, denote by L1(J,X) the Lebesgue spa-
oe of a l l (Bochner) integrable functions ziJ —• X, provided 
with the norm ||x||., * /||x(t)||dt. Te shall always assume that 

a l l funotions from L 1 (J , I ) are extended to R by putting x(t)BO 
outside J. Let ^ be the ball measure of noneompaotness in 
L1 (J,X). For any set V of funotions belonging to L1(J,X) de-
note by • the funotion defined by v(t ) « ( i (V(t) ) for te J 
(under the convention that [3(A) = oo i f A is unbounded), where 
Y(t) « { x ( t ) t x e v } . 

L e m m a 3. (of . £10], Th.1). Let V be a oountable 
subset of L1(J,X) such that there exists tyeL1(J,R) suoh that 
||x(t)||<$y(t) for a l l x e V and t e J. Then the funotion v is 
integrable on J and for any measurable subset T of J 

(2) p ( { / x ( t ) d t : xe v } ) / v(t )dt. 
T ' T 

Moreover, i f 

lim sup / ||x(t+h) - x(t)||dt > o, 
h-*0 x€V I 

then 

(3) fyivu/vttjdt. 

3« An existenoe theorem 
In this seotion we assume that 
1° M,N : R+xD—*-R+ are complementary H-funotions and H 

satisfies Condition A; 
2* (f: R+*D —**R+ is an ïï-function satisfying Condition A 

and suoh that 

(4) a«acf (u,t) + h(t) for a l l u>0 and a.a* t e d, 

where is a positive number and heL1 (D,R)« 
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Volterra Integral equations 5 

3° ( t , s , x ) — f ( t , s , x ) Is a function from D2xX into X 
which is continuous in x for a.e. t , s eD , and strongly 
measurable in ( t , e ) for every x e z , 

4° ||f(t,s,x)|| < K(t,s)g(s,||x||) for t . seDand x e X, where 
( i ) (e,u) —<- g(s tu) is a function from D*R+ into R+, 

measurable in 8 and continuous in u, and there exist 
«.»•J-> 0 and beL1 (D ,R) , b^O, such that H(ag(s tu) t s ) ^ ̂ cpf u,s) + 
+ b(s) for a l l u^O and a.a. s e D. A 

( i i ) ( t , s ) —* K( t ,e ) is a function from D into R+ such 
that K ( t t * )6 B J J ( D , R ) for a.e. T E D and THE function 
t — ||K(t,.)||M belongs to B^fD,R). 

For any subinterval J of D denote by L,p(J,X) the set of 
a l l strongly measurable functions x : J—»X such that 
|| *||e L^fJjR). Analogously we define E^iJ.X). Then L^JfX) is 
a Banach space with, the norm | j x = IIII * II ll̂ * Owing to (4) i t 
i s clear that L^tJ.X) CL1 (J,X ). 

We introduce an operator F defined by 

t 
Pfx) ( t ) - J f ( t , s , x { s ) ) ds ( t e D, xeE^D.X ) ) . 

0 

Prom 4° i t follows that for any xe E^iD.X) and t 6 D 

s(-.ll*ll>%[ò,t]llN - 5"ll°<6('»ll*ll)%[o,t H 

« i f l + / N(«g(s,||x(s)|| ) t 8 ) d S ^ l f l +/ b(8)dS+? J <p(||x(B)||,8)d8* 
\ 0 / ^ 0 0 ^ 

and, by the Holder inequality, 

t 
!|P(* ) ( t )|U| K(t,8)g(8,||x(s)|| )ds < k(t)||g{* , 

0 ' W 

where k ( t ) = 2||K(tt* )%[b,t]lM* H e n c e 
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6 R. Piuoiennik, S. Sznfla 

/ t t 
(5) ||F(x)(t)||< J- k ( t ) [ t + J b(s)ds + tf/cp(||x(s)||,8)d8 

0 0 
and 

/ d d 
(6) I ' ^ M 1 * / b(8>d0 + V / *P"tII*(v»)j| ,s)ds 

for t e D, i e B^fD, ! ) and any measurable subset T of D. Let 
us remark that, in view of 4 ° ( i i ) and (4)» k€ E^(DtB) and 
ke l 1 (D,R) , Similarly i t oan be shown that for any t e D such 
that K(t,«)e Bm(D,R) 

(7) j* || f ( t ,B ,x (e ) )||ds « 
P 

t \ t 
| | K ( t f . ) x p | | B 1 + / b(s)ds + r / < p ( | | x ( s ) | | , a ) d e 

^ 0 0 

for an; measurable subset P of [0 , t ] and xeE^(D,Z). 
By Lemma 1 from (6) we conclude that F maps B ,̂(DtX) into 

i t s e l f . We shal l show that F i s continuous. Let xQt xQe B^(DtX) 
and lim ll*n-x0||(p" Suppose that || F(xn)-F(x0)|| ^ does not 

n 
converge to 0 as n — T h u s there are e>0 and a subsequen-
ce (xQ ) such that 

(8) ||F(xn ) - F(x0)||v > £ for j=1 ,2 f . . . 
J 

and lim x_ ( t ) = x r t(t) for a . e . t eD . 
ni 0 

From Lemma 1 and from the inequality 

d d 
J V ( | | x n ( s ) | | , s } d s < i / V ( 2 | ] x n ( s ) - x 0 ( s ) | | , s ) d s + 
0 d 0 

+ i / ( f ( 2 | | x 0 ( s ) | | , s ) d s 
0 
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Vol t e r r a i n t e g r a l eq r a t i ons 7 

i t fo l lows the boandedness of the sequence <p(||xn(s)|| , s ) d s j . 

Consequently, by ( 7 ) , f o r a . e . t e D the sequenoe ( | | f { t , s , x n ( s ) ) | | ) 
i e e q u i - i n t e g r a b l e on [ 0 , t ] . As f o r a . e . t e D 

l im f ( t , s , r ( s j ) = f ( t , s , x i s ) ) f o r a . e . s e [ 0 , t ] , 

the V i t a l i convergenoe theorem proves t h a t 

l im F(x„ ) ( t ) = F ( x J ( t ) f o r a . e . t e D . 
1 ni ° 

Moreover, i n view of ( 6 ) , the sequenoe (F(x n )) has equ i -abso-

l u t e l y continuous norms i n L^(D fX). Hence, by Lemma 2, 

lim ||F(x ) - P ( x 0 ) | | v - 0 
j—00 J 

which c o n t r a d i o t s (J3). 
Now we are going to e s t a b l i s h our ex is tence theorem 

f o r ( 1 ) . Let ( t , s , u ) — * - h ( t , s , u ) be a nonnegative f u n c t i o n 
def ined f o r O ^ s ^ t ^ d , u ^ O , s a t i s f y i n g the fo l lowing con-
d i t i o n s : 

( i ) f o r any nonnegative u € E j D , E ) there e x i s t s the i n t e -
t y 

g r a l / h ( t , s , u ( s ) )ds f o r almost every t e D ; 
0 

( i i ) f o r any a , 0 < a ^ d , u • 0 a . e . i s the only non-
negat ive f u n c t i o n on [0 , a ] which belongs to E^dTO.a],!*) and 
s a t i s f i e s 

t 
u{t) is J h ( t , s , u ( s ) )ds almost everywhere on [ 0 , a ] . 

0 
Moreover, l e t B^ denote the closed b a l l i n B^jDjX) with cen te r 
0 and radius r . 

T h e o r e m 1. Suppose t h a t 
d 

(9) l im sup f ||F(x)(t+<tf) - F ( x ) ( t ) | | d t = 0 f o r any r > 0 m sup I [|F(: 
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8 R. Piuciennik, S. Szafla 

and 

(10) f3 ( f ( t , s ,Z )Kh( t , s ,|J (Z ) ) 

for almost every t , s e D and for each bounded subset Z of X. 
Then for any peE^iDjX) there exist an interval J = [0,a] 

and a function xeL,p(J,X) which sat is f ies (1) almost every-
where on J. 

P r o o f . Fix a function peE^iDjX). We choose a po-
s i t ive number a < min(d ,co+), where [ o ,w+ ) i s the maximal inter-
val of existence of the maximal continuous solution z of the 
integral equation 

t 
(11) z ( t ) = 1 J cp(2||p(s)|| k ( s ) ( l + || b]^ +?z (B ) ) ,a )dB. 

0 

Let J = [0,a] .For simplicity we put L1 = L1 (J,X), L^ = L^fJ.X) 
and E^ = E^J.X) . 

For any positive integer n we define a function 
un:J — X by 

p(t ) for 0 < t ^ a n 

u n ( t ) = < 

p(t ) + J f ( t , s ,u n ( s ) ) ds for a n ^ t ^ a , 
0 

where aQ = a/n. By repeating the argument from the proof of 
{5 ) , I t can be shown that 

¡ ] >in(*)[| < 11 PC* )li for 0 4 t ^ a n 

and 



Volterra integral equations 

Ab 2!|K(t,.)X[0ft_aQ-,||M«k(t) for an for a < t <a, from this we 

deduce that uQ£ Ê  and 

(12) ||un{t)||̂ ||p(t)|| +^k(t)( l TLLBLL, + T J<p(||V8>II»B) 
t 

II , d s 

ò 
for t e J. 

Consequently 

<p<HV t , l l ' t )* 2 <p(2||p(t)|| + 

+ | k ( t ) (l tllbll, /(p(||un(s)||,s)ds),tY 
^ 0 ' 

As k e y D . R ) and peE^fD.X), putting 

t 
- /v{||Bn(«)||,a)dB 

0 

and integrating the last inequality between 0 and t, we get 

t 
z n ( t K 2 /v(2||p(fl)|l + J k i s i d + HbH, + * zn(8) },s)dB for t e J. 

0 

Applying now Th. 2 of [1], we infer that z Q ( t K z ( t ) for t e j , 
where z is the maximal continuous solution of (11). Hence 

a 
(13) J<p(||un(s)|| ,s)ds< r for n = 1 , 2 , . . . , 

0 

where r = max z(t), so that 
teJ 

114) || un||cp4r+1 for n= 1,2,. . . . 
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10 R. P l u c i e n n l k , S. S z u f l a 

From ( 1 3 ) , ( 5 ) and ( 7 ) i t f o l l o w s that 

| | u n ( t ) - p ( t ) - P ( u n ) ( t ) | | - | | P ( t t n ) ( t ) | K j k ( t ) l 1 + | | b | | 1 + ? r ) 

f o r t e [ 0 , a n ] , and 

t 
| | u n ( t j - p ( t ) - P ( u n J ( t ) | | = | | | f ( t , s , u n ( 8 ) ] d s | | < 

^ | H K t t » * ^ [ t - a n , t ] l l M
 ( 1 + H b l l l f o r * e [ a n , a ] ' 

so that 

| | t t n ( t ) - p ( t ) - F ( a n ) ( t ) | U l k n ( t ) ( i + Hbll, + i r ) f o r t e J , 

where 

k n ( t ) H 

k ( t J i f 0 < t < a r 

/ » « « • • ' X ^ . q l l , , i f a n 5 j t < i a . 

By 4° ( i i ) we have l i m k f l ( t ) = 0 and k n ( t ) 4 k ( t ) f o r a . e . 

t e J . As k e B j D . R ) and k e L ' ( D , R ) t t h i s i m p l i e s that 

(15J l i m ( u f t ) - p ( t ) - P ( u ) ( t ) ) = 0 f o r a . e . t e J , a -»oo 

( 1 6 ) 

and 

( 1 7 ) 

l i m | |u n - p - P ( u n ) | | 1 = 0 

l i m !|un - p - P(un)||<p = 0 . 

Let V = { u Q : n = 1 , 2 , . . . } and W = F ( V ) . I n view of (16) 
and ( 1 5 ) we have 
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Volterra Integral equations 11 

(18) ^(V) = /51 (W) and p(V(t)) = /i(W(t)) for a.e. t e J. 

Moreover, by (5) and (13)» 

(19) llPii^Mt)!! < Ak(t) for t e j and n-1,2,..., 

where A = ̂  (1 + H b ^ + -ffr). 
On the other hand, from (9) and (14) it follows that 

lim sup f ||P(a_)(t+t) - P(u )(t)||dt = 0. 
f-0 n o 

As keL*(D,R), by Lemma 3 from this we dedaoe that the function 
t — v(t) = |5(W(t)) is integrable on J, 

a 
(20) v(t)dt 

0 
and 

(21) v(t)<A k(t) for a.e. t e J. 

Fix t e j for which (10) holds and K(t,*)e EM(D,R). Then, by 
(7) and (13), we have 
\ 

(22) / ||f(t,B,un(s))||d8 $2A||K(t,' )%p|| 
P M 

for any measurable subset P of [0,t] and n = 1,2,... . 
Furthermore, by the Egoroff theorem and (15), for any £>0 
there exists a closed subset J£ of J such that p(J\Je)<£ and 

lim (u (s) - p(s) - F(u )(s)) = 0 uniformly on J£. n -»1» 

Hence, in virtue of the Luzin theorem, from (19) and (22) we 
infer that for a given £ > 0 there exist a closed subset T of 
[0,t] and a positive number ^ such that 

- 525 -



12 B. Piuciennik, S. Szufla 

(23) ||un(8)|| < q for s€ T and n = 1,2,... 

and 

(24) /||f(t ,s,un(s) )||d8 < £ for n = 1,2,..., 
P 

where P = [0,t]\T. Since 

||f(t,8,un(8))||^K(t,6)g(8,||un(B)|| ), 

from (23) it follows that 

||f(t,8,un(s))||<i|>(s) for s € T and n = 1,2,..., 

where ty(s) = K(t,s)g(S,^). As K(t,»)€ EM(D,R) and 
e LJJ( D,R), the Holder inequality proves that veL1(T,E). 

Put 

Z = {f(t,.,un(«)) : n = 1,2,...} 

and 
J Z(s)ds =| /f{t,8,un(8))ds : n = 1,2,...}. 
T T 

Then, by (2), we have 

¡¡(J Z(s)dsU J (3 (Z ( B )) ds. 
\ t T 

Moreover, (24) implies that 

¡i( J Z(s)ds] ̂  £. 
^ P 

Since F(V)c/ Z(s)ds + / Z(s)ds, we obtain 
T P 

/3(F(V)(t)U/ /3(Z(b) )ds + £ . 
T 
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Volterra integral equations 13 

On the other hand» from (10) i t follows that 

|3(Z(s)K h(t ,s ,£(V(s))) for a .e . s e [0 , t ] . 

Thus, by (18), 

t 
v ( t ) 4 J h(t ,B,v(s))ds + e < J h( t , s ,v (s ) )ds + e. 

T 0 
Aa e i s arbitrary, this proves that 

t 
v ( t ) < J h( t ,8 ,v(s ) )ds . 

0 

Since this inequality holds for a .e . t e J and, by (21), 
t e B ^ J . R ) , we deduoe that v( t ) « 0 for a .e . t e J , Consequently, 
by (20) and (18), ^(V) = 0, so that the set V i s re lat ive ly 
compact in L*. Thus we can find a subsequence (u_ ) of (u„) 

Hi A 
1 V 

which i s convergent in L . On the other hand, from (12) and 
(13) i t follows that the sequenoe (af l) has equi-absolutely 
continuous norms in L^. Hence the sequence (uQ ) converges 
in E,̂  to a function u. By (17) and the continuity of F, this 
implies that || u - p - F(u)||(p = 0, so that 

t 
u(t) • p(t) + J f ( t , s ,u (s ) )d8 for a .e . t € J . 

0 

4* Solution funnels 
T h e o r e m 2. Under the assumptions of Theorem 1, 

for any piB^fD,!) there exists an interval J « [0 ,a ] suoh 
that the set S of a l l solutions of (1) belonging to B,p(J,X) 
i s a compaot R^. 

P r o o f . Fix peB(p(D,X) and chooBe numbers a and r 
in the same way as in the proof of Th. 1. Let 
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a 

U - ' { * € * „ » J <p(|| *(B)|| , s ) d a « r + 1 } . 

Obviously, U C B J + 2 . 
For any positive integer n and x e B ^ pat 

P n ( x ) ( t ) 

0 i f 0 « t < a. 

t - a . 
J f ( t , s , x ( s ) ) d s i f a n 4 t < a , 

v 0 

vhere aQ = a/n. Similarly as for F in the proof of Th. 1, i t 
can be shown that Fn i s a continuous mapping of E<p into i t -
s e l f , and 

(25) | | * n U ) ( t ) | | < l k ( t ) ( l +11*11, + T/<p(||z(8)||tB)dB 
^ 0 

for x e E<p and t e J . Moreover, arguing similarly as in the 
proof of (17) , we obtain 

lim || F(x) - F (x)|L = 0 uniformly in x t U. 
n-̂ oo 

Put G{x) = p + F(x) and Gn(x) * p + FQ(x) ( x c U ) . Then a and 
Gq are continuous mappings of U into G^ and 

(26) lim ||Q(x) - G (x)|| = 0 uniformly in x e U . 
n-»oc ^ 

Fix n. I t can be easily verified that for any x ,yeU 

(27) x - Gn(x) = y - Gn(y) = > x = y. 
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Volterra Integral equations 15 

Suppose that x^, * 0 e U and 

(28) lim || X j - C n (x J - x0 + Gn(xQ) ||cp - 0. 
J -"oo 

Since Gn(Xj)(t) = Gn(x0J(t) = p(t) for 0 < t < a n , (28) implies 

that _limj|(x.j - *0)%[0,an]H<f>= P u r t h e r » 

* j ( t ) - x 0 ( t ) . ( x ^ t ) - Gn(x.j)(t) - x 0 ( t ) + Gn(x 0)(t)) + 

for a n < t ^ 2 a n and j = 1 , 2 , . . . . By (28) and the continuity 
of F t h i s proves that l im ||(x,-x )%, 9 ,|| - 0 . By r epea t -

n j—oo J 0 L n' nj ^ 
ing this argument we get 

for i = 1 , 2 , . . . , n , bo that lim ||x̂  - x0||cp«= 0. Prom this and 

(27) i t fol lows that the mapping. I - Gn: U — E^ i s a homeo-
morphism into (I - the i den t i t y mapping). 

We choose a number q, 0<q <1/2, such that the maximal 
continuous solution ẑ  of the integral equation 

t 
z(t) = q + \ J cp(2||p(s)|| + | k(s)(l + HbU, + tfz(s)),8)ds 

0 

ds defined on J and z ( t ) < l + z(t) for t e j , where z i s the 
maximal solution of (11) . Let B^ =-[xeB((>! UxU^qj . For a 
given n and y e B^ we define a sequ&noe of functions x i f 

i = 1 , 2 , . . . , n , by 
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x. ,(t) - y ( t ) + p(t) for 0< t 4 an 

J x ± ( t ) f o r O < t ^ i a n 

* i ( t ) " j o for i a n < t < a 

x i + 1 ( t ) = x i ( t ) for 0 < t 4 i a n 

* i + 1 ( t ) - y ( t ) + p(t) + F ^ H t ) for ( i + D a n . 

Then xQ € and x f l ( t ) = y ( t ) + p(t) + F n ( x n ) ( t ) for t € J , and 
consequently, by (25)» 

l i ^ ^ N l l y i ^ l l H l p i ^ i l + j M t j f i • i i + 7 / < p ( i i z B ( » n , . ) d S \ 
X 0 ' 

Henoe 

cp(||xn(t)||ft)<l(p(2||y(t)||,t) +l(p(2||p(t)|| + 

+ | k ( t ) ( l + lib II, + T/cp(||xn(8)||fs)ds),t 
\ 0 

t 
for t e j . Putting w ( t ) - / <p(|| x (s)|| ,s)ds and integrating the 

n 0 
above inequality between 0 and t , we get 

t 
w n ( t )<q +-j/<p(2||p(e)|| + | k ( s ) d +1|bl̂  +Trwn{s)),8)d8 

for t e J . By Th. 2 of [ l ] thie implies that w n ( t U z q ( t ) $ r + 1 
for t « J , and henoe x n e U. This proves that 

(29) B ^ t 1 - Gq)(U) for a l l n. 

Now we shall show that 

(30) ( I - G)~1(Y) i s compact for any compact subset Y of E^, 

- 530 



Volterra In tegra l equations 17 

Let Y be a given compact subset of E , and l e t (uQ) be an i n -
f i n i t e sequenoe in ( I - G)~1(Y). Since ufl - p - F(u n )e y fo r 
n • 1 , 2 , . . . , we can f ind a subsequence (u^ ) of (uQ) and y e Y 
suoh that ^ 

lim || u - p - F ( u ) - y 0. 
3-°° i i 

As, by (4) , the convergence in L^ implies the convergence in 
L1 , we have lia ' || u„ - p - F(u_ ) - y|| » 0, By passing to 

J - » D i "1 
a subsequence i f neoessary, we may assume that 

lim (u„ ( t ) - p(t) - P(un ) ( t j ) = y ( t ) fo r a . e . 11 J . 
J — ni nJ 

Putting V = {uQ : j = 1 , 2 , . . . } and repeating the argument from 

the proof of Th. 1, we conclude that the set V i s r e l a t ive ly 
compact in E^. As U i s a complete metric subspace of E^, t h i s 
proves (30). Prom (26), (29) and (30) i t follows that the 
mapping G : U — E ^ s a t i s f i e s a l l assumptions of Th. 7 of [ 2 ] , 
and therefore the set (I - G)~1(0) i s a compact R^. On the 
other hand, i f i e S , then analogously as fo r uQ in the proof 

of (13) • i t can be shown that ^ <p(|| x(s)|| ,s)dB ^ r , i . e . x e U . 

Thus S • ( I - G)~1(0), whioh ends the proof of Th. 2. 
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