

Ryszard Piuciennik, Stanisław Szufla

NONLINEAR VOLTERRA INTEGRAL EQUATIONS IN ORLICZ SPACES

Let X be a separable Banach space. In this paper we investigate the integral equation

$$(1) \quad x(t) = p(t) + \int_0^t f(t,s,x(s))ds,$$

where a solution x is a function from a compact interval $J = [0,a]$ into X . We give sufficient conditions for the existence of solutions of (1) belonging to the generalized Orlicz space $L_\varphi(J,X)$. Moreover, we prove that the set S of all solutions $x \in L_\varphi(J,X)$ of (1) is a compact R_δ , i.e. S is homeomorphic to the intersection of a decreasing sequence of compact absolute retracts. Throughout this paper we assume that $D = [0,d]$, $R_+ = [0, \infty)$ and μ is the Lebesgue measure in R ; the symbol \int denotes the Bochner integral.

1. Orlicz spaces

A function $\varphi: R_+ \times D \rightarrow R_+$ is called a (generalized) N-function if

- (i) $\varphi(0,t) = 0$ for almost all $t \in D$;
- (ii) for almost every $t \in D$ the function $u \rightarrow \varphi(u,t)$ is convex and nondecreasing on R_+ ;
- (iii) for any $u \in R_+$ the function $t \rightarrow \varphi(u,t)$ is L -measurable on D ;

(iv) for almost every $t \in D$

$$\lim_{u \rightarrow 0} \frac{\varphi(u, t)}{u} = 0 \text{ and } \lim_{u \rightarrow \infty} \frac{\varphi(u, t)}{u} = \infty.$$

For any N-function φ we may define an N-function φ^* by

$$\varphi^*(u, t) = \sup_{v \geq 0} (uv - \varphi(v, t)) \quad (u \geq 0, t \in D);$$

it is called the complementary function to φ .

For a given subinterval J of D we denote by $L_\varphi(J, R)$ the set of all L -measurable functions $x: J \rightarrow R$ for which the number

$$\|x\|_\varphi = \inf \left\{ r > 0 : \int_J \varphi(|x(t)|/r, t) dt \leq 1 \right\}$$

is finite. $L_\varphi(J, R)$ is called the (generalized) Orlicz space. It is well known (cf. [3], [5]) that $\langle L_\varphi(J, R), \|\cdot\|_\varphi \rangle$ is a Banach space, and the convergence in $L_\varphi(J, R)$ implies the convergence in measure. Moreover, for any functions $u \in L_\varphi(J, R)$ and $v \in L_{\varphi^*}(J, R)$, the function uv is integrable and

$$\int_J |u(t)v(t)| dt \leq 2\|u\|_\varphi\|v\|_{\varphi^*} \quad (\text{Hölder's inequality}).$$

Assume now that φ satisfies Condition A:

$$\int_D \varphi(u, t) dt < \infty \quad \text{for all } u > 0.$$

Denote by $E_\varphi(J, R)$ the closure in $L_\varphi(J, R)$ of the set of all simple functions. Obviously, $E_\varphi(J, R)$ is a Banach subspace of $L_\varphi(J, R)$.

Lemma 1. The following statements are equivalent:

- $x \in E_\varphi(J, R)$;
- $x \in L_\varphi(J, R)$ and x has absolutely continuous norm, i.e. for any $\varepsilon > 0$ there exists $\delta > 0$ such that $\|x \chi_T\|_\varphi < \varepsilon$ for every measurable subset T of J with $\mu(T) < \delta$;

$$(c) \int_J \varphi(\lambda|x(t)|, t) dt < \infty \text{ for all } \lambda > 0.$$

P r o o f. We prove only (b) \Rightarrow (c), because (a) \Leftrightarrow (c) and (a) \Rightarrow (b) have been shown by A. Kozek (cf. [5], Prop. 3.3 and Prop. 3.4). Let x be a function from $L_\varphi(J, R)$ with absolutely continuous norm. For a given $\lambda > 0$ we choose $\delta > 0$ such that $\|\lambda x \chi_T\|_\varphi \leq 1$ for every measurable subset T of J with $\mu(T) < \delta$. Since $J = \bigcup_{i=1}^n T_i$, where $(T_i)_{i=1, \dots, n}$ is a family of disjoint subintervals of J such that $\mu(T_i) < \delta$, we have

$$\int_J \varphi(\lambda|x(t)|, t) dt = \sum_{i=1}^n \int_{T_i} \varphi(\lambda|x(t)|, t) dt \leq \sum_{i=1}^n \|\lambda x \chi_{T_i}\|_\varphi \leq n.$$

L e m m a 2. If a sequence $(x_n) \subset E_\varphi(J, R)$ has equi-absolutely continuous norms and converges in measure, then (x_n) converges in $E_\varphi(J, R)$.

P r o o f. We repeat the proof of Lemma 11.2 from [6]. For a given $\varepsilon > 0$ put $G_{mn} = \{t \in J : |x_n(t) - x_m(t)| > \eta\}$, where $\eta = \varepsilon/3\|x_J\|_\varphi$. Choose $\delta > 0$ in such a way that $\|x_n \chi_T\|_\varphi < \varepsilon/3$ for $n = 1, 2, \dots$ and any measurable subset T of J such that $\mu(T) < \delta$. Since the sequence (x_n) converges in measure, there exists a positive integer n_0 such that $\mu(G_{mn}) < \delta$ for $m, n > n_0$. Hence

$$\begin{aligned} \|x_n - x_m\|_\varphi &\leq \|(x_n - x_m)\chi_{G_{mn}}\|_\varphi + \|(x_n - x_m)\chi_{J \setminus G_{mn}}\|_\varphi \leq \\ &\leq \|x_n \chi_{G_{mn}}\|_\varphi + \|x_m \chi_{G_{mn}}\|_\varphi + \eta \|x_J\|_\varphi \leq \varepsilon \end{aligned}$$

for $m, n > n_0$, so that (x_n) satisfies the Cauchy condition for the convergence in $E_\varphi(J, R)$. As the space $E_\varphi(J, R)$ is complete, this implies the convergence of (x_n) in $E_\varphi(J, R)$.

2. Measures of noncompactness

For any bounded subset A of X the ball measure of noncompactness of A , denoted $\beta(A)$, is defined to be the infimum of

positive numbers ε such that A can be covered by a finite number of balls of radius smaller than ε . The fundamental properties of β are given in [7] and [4]. Further, for a given subinterval J of D , denote by $L^1(J, X)$ the Lebesgue space of all (Bochner) integrable functions $x: J \rightarrow X$, provided with the norm $\|x\|_1 = \int_J \|x(t)\| dt$. We shall always assume that all functions from $L^1(J, X)$ are extended to R by putting $x(t) = 0$ outside J . Let β_1 be the ball measure of noncompactness in $L^1(J, X)$. For any set V of functions belonging to $L^1(J, X)$ denote by v the function defined by $v(t) = \beta(V(t))$ for $t \in J$ (under the convention that $\beta(A) = \infty$ if A is unbounded), where $V(t) = \{x(t) : x \in V\}$.

Lemma 3. (cf. [10], Th.1). Let V be a countable subset of $L^1(J, X)$ such that there exists $\psi \in L^1(J, R)$ such that $\|x(t)\| \leq \psi(t)$ for all $x \in V$ and $t \in J$. Then the function v is integrable on J and for any measurable subset T of J

$$(2) \quad \beta_1 \left(\left\{ \int_T x(t) dt : x \in V \right\} \right) \leq \int_T v(t) dt.$$

Moreover, if

$$\limsup_{h \rightarrow 0} \int_J \|x(t+h) - x(t)\| dt = 0,$$

then

$$(3) \quad \beta_1(V) \leq \int_J v(t) dt.$$

3. An existence theorem

In this section we assume that

1° $M, N : R_+ \times D \rightarrow R_+$ are complementary N -functions and M satisfies Condition A;

2° $\varphi : R_+ \times D \rightarrow R_+$ is an N -function satisfying Condition A and such that

$$(4) \quad u \leq \lambda \varphi(u, t) + h(t) \quad \text{for all } u \geq 0 \text{ and a.s. } t \in D,$$

where λ is a positive number and $h \in L^1(D, R)$.

3° $(t, s, x) \rightarrow f(t, s, x)$ is a function from $D^2 \times X$ into X which is continuous in x for a.e. $t, s \in D$, and strongly measurable in (t, s) for every $x \in X$.

4° $\|f(t, s, x)\| \leq K(t, s)g(s, \|x\|)$ for $t, s \in D$ and $x \in X$, where

(i) $(s, u) \rightarrow g(s, u)$ is a function from $D \times R_+$ into R_+ , measurable in s and continuous in u , and there exist $\alpha, \gamma > 0$ and $b \in L^1(D, R)$, $b \geq 0$, such that $N(\alpha g(s, u), s) \leq \gamma \varphi(u, s) + b(s)$ for all $u \geq 0$ and a.a. $s \in D$.

(ii) $(t, s) \rightarrow K(t, s)$ is a function from D^2 into R_+ such that $K(t, \cdot) \in E_M(D, R)$ for a.e. $t \in D$ and the function $t \rightarrow \|K(t, \cdot)\|_M$ belongs to $E_\varphi(D, R)$.

For any subinterval J of D denote by $L_\varphi(J, X)$ the set of all strongly measurable functions $x: J \rightarrow X$ such that $\|x\| \in L_\varphi(J, R)$. Analogously we define $E_\varphi(J, X)$. Then $L_\varphi(J, X)$ is a Banach space with the norm $\|x\|_\varphi = \|\|x\|\|_\varphi$. Owing to (4) it is clear that $L_\varphi(J, X) \subset L^1(J, X)$.

We introduce an operator F defined by

$$F(x)(t) = \int_0^t f(t, s, x(s)) ds \quad (t \in D, x \in E_\varphi(D, X)).$$

From 4° it follows that for any $x \in E_\varphi(D, X)$ and $t \in D$

$$\begin{aligned} \|g(\cdot, \|x\|)\chi_{[0, t]}\|_N &= \frac{1}{\alpha} \|\alpha g(\cdot, \|x\|)\chi_{[0, t]}\|_N \leq \\ &\leq \frac{1}{\alpha} \left(1 + \int_0^t N(\alpha g(s, \|x(s)\|), s) ds \right) \leq \frac{1}{\alpha} \left(1 + \int_0^t b(s) ds + \gamma \int_0^t \varphi(\|x(s)\|, s) ds \right) \end{aligned}$$

and, by the Hölder inequality,

$$\|F(x)(t)\| \leq \int_0^t K(t, s)g(s, \|x(s)\|) ds \leq k(t)\|g(\cdot, \|x\|)\chi_{[0, t]}\|_N,$$

where $k(t) = 2\|K(t, \cdot)\chi_{[0, t]}\|_M$. Hence

$$(5) \|F(x)(t)\| \leq \frac{1}{\alpha} k(t) \left(1 + \int_0^t b(s) ds + \gamma \int_0^t \varphi(\|x(s)\|, s) ds \right)$$

and

$$(6) \|F(x)\chi_T\|_\varphi \leq \frac{1}{\alpha} \|k\chi_T\|_\varphi \left(1 + \int_0^d b(s) ds + \gamma \int_0^d \varphi(\|x(s)\|, s) ds \right)$$

for $t \in D$, $x \in E_\varphi(D, X)$ and any measurable subset T of D . Let us remark that, in view of 4⁰(ii) and (4), $k \in E_\varphi(D, R)$ and $k \in L^1(D, R)$. Similarly it can be shown that for any $t \in D$ such that $K(t, \cdot) \in E_M(D, R)$

$$(7) \int_P \|f(t, s, x(s))\| ds \leq \frac{2}{\alpha} \|K(t, \cdot)\chi_P\|_M \left(1 + \int_0^t b(s) ds + \gamma \int_0^t \varphi(\|x(s)\|, s) ds \right)$$

for any measurable subset P of $[0, t]$ and $x \in E_\varphi(D, X)$.

By Lemma 1 from (6) we conclude that F maps $E_\varphi(D, X)$ into itself. We shall show that F is continuous. Let $x_n, x_0 \in E_\varphi(D, X)$ and $\lim_{n \rightarrow \infty} \|x_n - x_0\|_\varphi = 0$. Suppose that $\|F(x_n) - F(x_0)\|_\varphi$ does not converge to 0 as $n \rightarrow \infty$. Thus there are $\varepsilon > 0$ and a subsequence (x_{n_j}) such that

$$(8) \|F(x_{n_j}) - F(x_0)\|_\varphi > \varepsilon \text{ for } j=1, 2, \dots$$

and $\lim_{j \rightarrow \infty} x_{n_j}(t) = x_0(t)$ for a.e. $t \in D$.

From Lemma 1 and from the inequality

$$\begin{aligned} \int_0^d \varphi(\|x_n(s)\|, s) ds &\leq \frac{1}{2} \int_0^d \varphi(2\|x_n(s) - x_0(s)\|, s) ds + \\ &+ \frac{1}{2} \int_0^d \varphi(2\|x_0(s)\|, s) ds \end{aligned}$$

it follows the boundedness of the sequence $\left(\int_0^d \varphi(\|x_n(s)\|, s) ds \right)$.

Consequently, by (7), for a.e. $t \in D$ the sequence $(\|f(t, s, x_n(s))\|)$ is equi-integrable on $[0, t]$. As for a.e. $t \in D$

$$\lim_{j \rightarrow \infty} f(t, s, x_{n_j}(s)) = f(t, s, x_0(s)) \text{ for a.e. } s \in [0, t],$$

the Vitali convergence theorem proves that

$$\lim_{j \rightarrow \infty} F(x_{n_j})(t) = F(x_0)(t) \text{ for a.e. } t \in D.$$

Moreover, in view of (6), the sequence $(F(x_{n_j}))$ has equi-absolutely continuous norms in $L_\varphi(D, X)$. Hence, by Lemma 2,

$$\lim_{j \rightarrow \infty} \|F(x_{n_j}) - F(x_0)\|_\varphi = 0$$

which contradicts (8).

Now we are going to establish our existence theorem for (1). Let $(t, s, u) \mapsto h(t, s, u)$ be a nonnegative function defined for $0 \leq s \leq t \leq d$, $u \geq 0$, satisfying the following conditions:

(i) for any nonnegative $u \in E_\varphi(D, R)$ there exists the integral $\int_0^t h(t, s, u(s)) ds$ for almost every $t \in D$;

(ii) for any a , $0 < a \leq d$, $u = 0$ a.e. is the only non-negative function on $[0, a]$ which belongs to $E_\varphi([0, a], R)$ and satisfies

$$u(t) \leq \int_0^t h(t, s, u(s)) ds \text{ almost everywhere on } [0, a].$$

Moreover, let B_φ^r denote the closed ball in $E_\varphi(D, X)$ with center 0 and radius r .

Theorem 1. Suppose that

$$(9) \quad \lim_{\tau \rightarrow 0} \sup_{x \in B_\varphi^r} \int_0^d \|F(x)(t+\tau) - F(x)(t)\| dt = 0 \text{ for any } r > 0$$

and

$$(10) \quad \beta(f(t, s, z)) \leq h(t, s, \beta(z))$$

for almost every $t, s \in D$ and for each bounded subset Z of X .

Then for any $p \in E_\varphi(D, X)$ there exist an interval $J = [0, a]$ and a function $x \in L_\varphi(J, X)$ which satisfies (1) almost everywhere on J .

P r o o f . Fix a function $p \in E_\varphi(D, X)$. We choose a positive number $a < \min(d, \omega_+)$, where $[0, \omega_+]$ is the maximal interval of existence of the maximal continuous solution z of the integral equation

$$(11) \quad z(t) = \frac{1}{2} \int_0^t \varphi(2\|p(s)\| + \frac{2}{\alpha} k(s)(1 + \|b\|_1 + \gamma z(s)), s) ds.$$

Let $J = [0, a]$. For simplicity we put $L^1 = L^1(J, X)$, $L_\varphi = L_\varphi(J, X)$ and $E_\varphi = E_\varphi(J, X)$.

For any positive integer n we define a function $u_n: J \rightarrow X$ by

$$u_n(t) = \begin{cases} p(t) & \text{for } 0 \leq t \leq a_n \\ p(t) + \int_0^{t-a_n} f(t, s, u_n(s)) ds & \text{for } a_n \leq t \leq a, \end{cases}$$

where $a_n = a/n$. By repeating the argument from the proof of (5), it can be shown that

$$\|u_n(t)\| \leq \|p(t)\| \quad \text{for } 0 \leq t \leq a_n$$

and

$$\begin{aligned} \|u_n(t)\| &\leq \|p(t)\| + \frac{2}{\alpha} \|K(t, \cdot) \chi_{[0, t-a_n]}\|_M \times \\ &\times \left(1 + \int_0^{t-a_n} b(s) ds + \gamma \int_0^{t-a_n} \varphi(\|u_n(s)\|, s) ds \right) \end{aligned}$$

for $a_n \leq t \leq a$.

As $2\|K(t, \cdot)\|_{[0, t-a_n]} \leq k(t)$ for $a_n \leq t \leq a$, from this we deduce that $u_n \in E_\varphi$ and

$$(12) \quad \|u_n(t)\| \leq \|p(t)\| + \frac{1}{\alpha} k(t) \left(1 + \|b\|_1 + \gamma \int_0^t \varphi(\|u_n(s)\|, s) ds \right)$$

for $t \in J$.

Consequently

$$\begin{aligned} \varphi(\|u_n(t)\|, t) &\leq \frac{1}{2} \varphi(2\|p(t)\| + \\ &+ \frac{2}{\alpha} k(t) \left(1 + \|b\|_1 + \gamma \int_0^t \varphi(\|u_n(s)\|, s) ds \right), t). \end{aligned}$$

As $k \in E_\varphi(D, R)$ and $p \in E_\varphi(D, X)$, putting

$$z_n(t) = \int_0^t \varphi(\|u_n(s)\|, s) ds$$

and integrating the last inequality between 0 and t , we get

$$z_n(t) \leq \frac{1}{2} \int_0^t \varphi(2\|p(s)\| + \frac{2}{\alpha} k(s)(1 + \|b\|_1 + \gamma z_n(s)), s) ds \text{ for } t \in J.$$

Applying now Th. 2 of [1], we infer that $z_n(t) \leq z(t)$ for $t \in J$, where z is the maximal continuous solution of (11). Hence

$$(13) \quad \int_0^a \varphi(\|u_n(s)\|, s) ds \leq r \quad \text{for } n = 1, 2, \dots,$$

where $r = \max_{t \in J} z(t)$, so that

$$(14) \quad \|u_n\|_\varphi \leq r+1 \quad \text{for } n = 1, 2, \dots.$$

From (13), (5) and (7) it follows that

$$\|u_n(t) - p(t) - F(u_n)(t)\| = \|F(u_n)(t)\| \leq \frac{1}{\alpha} k(t)(1 + \|b\|_1 + \gamma r)$$

for $t \in [0, a_n]$, and

$$\begin{aligned} \|u_n(t) - p(t) - F(u_n)(t)\| &= \left\| \int_{t-a_n}^t f(t, s, u_n(s)) ds \right\| \leq \\ &\leq \frac{2}{\alpha} \|K(t, \cdot) \chi_{[t-a_n, t]}\|_M (1 + \|b\|_1 + \gamma r) \quad \text{for } t \in [a_n, a], \end{aligned}$$

so that

$$\|u_n(t) - p(t) - F(u_n)(t)\| \leq \frac{1}{\alpha} k_n(t)(1 + \|b\|_1 + \gamma r) \quad \text{for } t \in J,$$

where

$$k_n(t) = \begin{cases} k(t) & \text{if } 0 < t \leq a_n \\ 2\|K(t, \cdot) \chi_{[t-a_n, t]}\|_M & \text{if } a_n \leq t \leq a. \end{cases}$$

By 4⁰ (ii) we have $\lim_{n \rightarrow \infty} k_n(t) = 0$ and $k_n(t) \leq k(t)$ for a.e. $t \in J$. As $k \in E_\varphi(D, R)$ and $k \in L^1(D, R)$, this implies that

$$(15) \quad \lim_{n \rightarrow \infty} (u_n(t) - p(t) - F(u_n)(t)) = 0 \quad \text{for a.e. } t \in J,$$

$$(16) \quad \lim_{n \rightarrow \infty} \|u_n - p - F(u_n)\|_1 = 0$$

and

$$(17) \quad \lim_{n \rightarrow \infty} \|u_n - p - F(u_n)\|_\varphi = 0.$$

Let $V = \{u_n : n = 1, 2, \dots\}$ and $W = F(V)$. In view of (16) and (15) we have

$$(18) \quad \beta_1(V) = \beta_1(W) \text{ and } \beta(V(t)) = \beta(W(t)) \text{ for a.e. } t \in J.$$

Moreover, by (5) and (13),

$$(19) \quad \|F(u_n)(t)\| \leq Ak(t) \text{ for } t \in J \text{ and } n = 1, 2, \dots,$$

$$\text{where } A = \frac{1}{\alpha} (1 + \|b\|_1 + \gamma r).$$

On the other hand, from (9) and (14) it follows that

$$\lim_{\tau \rightarrow 0} \sup_n \int_0^a \|F(u_n)(t+\tau) - F(u_n)(t)\| dt = 0.$$

As $k \in L^1(D, R)$, by Lemma 3 from this we deduce that the function $t \rightarrow v(t) = \beta(W(t))$ is integrable on J ,

$$(20) \quad \beta_1(W) \leq \int_0^a v(t) dt$$

and

$$(21) \quad v(t) \leq Ak(t) \text{ for a.e. } t \in J.$$

Fix $t \in J$ for which (10) holds and $K(t, \cdot) \in E_M(D, R)$. Then, by (7) and (13), we have

$$(22) \quad \int_P \|f(t, s, u_n(s))\| ds \leq 2A \|K(t, \cdot) \chi_P\|_M$$

for any measurable subset P of $[0, t]$ and $n = 1, 2, \dots$.

Furthermore, by the Egoroff theorem and (15), for any $\varepsilon > 0$ there exists a closed subset J_ε of J such that $\mu(J \setminus J_\varepsilon) < \varepsilon$ and

$$\lim_{n \rightarrow \infty} (u_n(s) - p(s) - F(u_n)(s)) = 0 \text{ uniformly on } J_\varepsilon.$$

Hence, in virtue of the Luzin theorem, from (19) and (22) we infer that for a given $\varepsilon > 0$ there exist a closed subset T of $[0, t]$ and a positive number ϱ such that

$$(23) \quad \|u_n(s)\| \leq \varrho \quad \text{for } s \in T \text{ and } n = 1, 2, \dots$$

and

$$(24) \quad \int_P \|f(t, s, u_n(s))\| ds \leq \varepsilon \quad \text{for } n = 1, 2, \dots,$$

where $P = [0, t] \setminus T$. Since

$$\|f(t, s, u_n(s))\| \leq K(t, s)g(s, \|u_n(s)\|),$$

from (23) it follows that

$$\|f(t, s, u_n(s))\| \leq \psi(s) \quad \text{for } s \in T \text{ and } n = 1, 2, \dots,$$

where $\psi(s) = K(t, s)g(s, \varrho)$. As $K(t, \cdot) \in E_M(D, R)$ and $g(\cdot, \varrho) \in E_N(D, R)$, the Hölder inequality proves that $\psi \in L^1(T, R)$.

Put

$$Z = \left\{ f(t, \cdot, u_n(\cdot)) : n = 1, 2, \dots \right\}$$

and

$$\int_T Z(s) ds = \left\{ \int_T f(t, s, u_n(s)) ds : n = 1, 2, \dots \right\}.$$

Then, by (2), we have

$$\beta \left(\int_T Z(s) ds \right) \leq \int_T \beta(Z(s)) ds.$$

Moreover, (24) implies that

$$\beta \left(\int_P Z(s) ds \right) \leq \varepsilon.$$

Since $F(V) \subset \int_T Z(s) ds + \int_P Z(s) ds$, we obtain

$$\beta(F(V)(t)) \leq \int_T \beta(Z(s)) ds + \varepsilon.$$

On the other hand, from (10) it follows that

$$\beta(Z(s)) \leq h(t, s, \beta(V(s))) \quad \text{for a.e. } s \in [0, t].$$

Thus, by (18),

$$v(t) \leq \int_T^t h(t, s, v(s)) ds + \varepsilon \leq \int_0^t h(t, s, v(s)) ds + \varepsilon.$$

As ε is arbitrary, this proves that

$$v(t) \leq \int_0^t h(t, s, v(s)) ds.$$

Since this inequality holds for a.e. $t \in J$ and, by (21), $v \in E_\varphi(J, R)$, we deduce that $v(t) = 0$ for a.e. $t \in J$. Consequently, by (20) and (18), $\beta_1(V) = 0$, so that the set V is relatively compact in L^1 . Thus we can find a subsequence (u_{n_j}) of (u_n) which is convergent in L^1 . On the other hand, from (12) and (13) it follows that the sequence (u_n) has equi-absolutely continuous norms in L_φ . Hence the sequence (u_{n_j}) converges in E_φ to a function u . By (17) and the continuity of F , this implies that $\|u - p - F(u)\|_\varphi = 0$, so that

$$u(t) = p(t) + \int_0^t f(t, s, u(s)) ds \quad \text{for a.e. } t \in J.$$

4. Solution funnels

Theorem 2. Under the assumptions of Theorem 1, for any $p \in E_\varphi(D, X)$ there exists an interval $J = [0, a]$ such that the set S of all solutions of (1) belonging to $E_\varphi(J, X)$ is a compact R_f .

Proof. Fix $p \in E_\varphi(D, X)$ and choose numbers a and r in the same way as in the proof of Th. 1. Let

$$U = \left\{ x \in E_\varphi \mid \int_0^a \varphi(\|x(s)\|, s) ds \leq r + 1 \right\}.$$

Obviously, $U \subset B_\varphi^{r+2}$.

For any positive integer n and $x \in E_\varphi$ put

$$F_n(x)(t) = \begin{cases} 0 & \text{if } 0 \leq t \leq a_n \\ \int_0^{t-a_n} f(t, s, x(s)) ds & \text{if } a_n \leq t \leq a, \end{cases}$$

where $a_n = a/n$. Similarly as for F in the proof of Th. 1, it can be shown that F_n is a continuous mapping of E_φ into itself, and

$$(25) \quad \|F_n(x)(t)\| \leq \frac{1}{\alpha} k(t) \left(1 + \|b\|_1 + \gamma \int_0^t \varphi(\|x(s)\|, s) ds \right)$$

for $x \in E_\varphi$ and $t \in J$. Moreover, arguing similarly as in the proof of (17), we obtain

$$\lim_{n \rightarrow \infty} \|F(x) - F_n(x)\|_\varphi = 0 \quad \text{uniformly in } x \in U.$$

Put $G(x) = p + F(x)$ and $G_n(x) = p + F_n(x)$ ($x \in U$). Then G and G_n are continuous mappings of U into E_φ and

$$(26) \quad \lim_{n \rightarrow \infty} \|G(x) - G_n(x)\|_\varphi = 0 \quad \text{uniformly in } x \in U.$$

Fix n . It can be easily verified that for any $x, y \in U$

$$(27) \quad x - G_n(x) = y - G_n(y) \implies x = y.$$

Suppose that $x_j, x_0 \in U$ and

$$(28) \quad \lim_{j \rightarrow \infty} \|x_j - G_n(x_j) - x_0 + G_n(x_0)\|_\varphi = 0.$$

Since $G_n(x_j)(t) = G_n(x_0)(t) = p(t)$ for $0 \leq t \leq a_n$, (28) implies that $\lim_{j \rightarrow \infty} \|(x_j - x_0)\chi_{[0, a_n]}\|_\varphi = 0$. Further,

$$\begin{aligned} x_j(t) - x_0(t) &= (x_j(t) - G_n(x_j)(t)) - (x_0(t) - G_n(x_0)(t)) + \\ &\quad + (F_n(x_j\chi_{[0, a_n]})(t) - F_n(x_0\chi_{[0, a_n]})(t)) \end{aligned}$$

for $a_n \leq t \leq 2a_n$ and $j = 1, 2, \dots$. By (28) and the continuity of F_n this proves that $\lim_{j \rightarrow \infty} \|(x_j - x_0)\chi_{[a_n, 2a_n]}\|_\varphi = 0$. By repeating this argument we get

$$\lim_{j \rightarrow \infty} \|(x_j - x_0)\chi_{[0, ia_n]}\|_\varphi = 0$$

for $i = 1, 2, \dots, n$, so that $\lim_{j \rightarrow \infty} \|x_j - x_0\|_\varphi = 0$. From this and (27) it follows that the mapping $I - G_n: U \rightarrow E_\varphi$ is a homeomorphism into (I - the identity mapping).

We choose a number q , $0 < q \leq 1/2$, such that the maximal continuous solution z_q of the integral equation

$$z(t) = q + \frac{1}{2} \int_0^t \varphi(2\|p(s)\| + \frac{2}{\alpha} k(s)(1 + \|b\|_1 + \gamma z(s)), s) ds$$

is defined on J and $z_q(t) \leq 1 + z(t)$ for $t \in J$, where z is the maximal solution of (11). Let $B_\varphi^q = \{x \in E_\varphi: \|x\|_\varphi \leq q\}$. For a given n and $y \in B_\varphi^q$ we define a sequence of functions x_i , $i = 1, 2, \dots, n$, by

$$x_1(t) = y(t) + p(t)$$

for $0 \leq t \leq a_n$

$$\tilde{x}_1(t) = \begin{cases} x_1(t) \\ 0 \end{cases}$$

for $0 \leq t \leq ia_n$
for $ia_n < t \leq a$

$$x_{i+1}(t) = x_i(t)$$

for $0 \leq t \leq ia_n$

$$x_{i+1}(t) = y(t) + p(t) + F_n(\tilde{x}_1)(t) \text{ for } ia_n \leq t \leq (i+1)a_n.$$

Then $x_n \in E_\varphi$ and $x_n(t) = y(t) + p(t) + F_n(x_n)(t)$ for $t \in J$, and consequently, by (25),

$$\|x_n(t)\| \leq \|y(t)\| + \|p(t)\| + \frac{1}{\alpha} k(t) \left(1 + \|b\|_1 + \gamma \int_0^t \varphi(\|x_n(s)\|, s) ds \right).$$

Hence

$$\varphi(\|x_n(t)\|, t) \leq \frac{1}{2} \varphi(2\|y(t)\|, t) + \frac{1}{2} \varphi(2\|p(t)\| +$$

$$+ \frac{2}{\alpha} k(t) \left(1 + \|b\|_1 + \gamma \int_0^t \varphi(\|x_n(s)\|, s) ds \right), t)$$

for $t \in J$. Putting $w_n(t) = \int_0^t \varphi(\|x_n(s)\|, s) ds$ and integrating the above inequality between 0 and t , we get

$$w_n(t) \leq q + \frac{1}{2} \int_0^t \varphi(2\|p(s)\| + \frac{2}{\alpha} k(s)(1 + \|b\|_1 + \gamma w_n(s)), s) ds$$

for $t \in J$. By Th. 2 of [1] this implies that $w_n(t) \leq z_q(t) \leq r+1$ for $t \in J$, and hence $x_n \in U$. This proves that

$$(29) \quad B_\varphi^q \subset (I - G_n)(U) \text{ for all } n.$$

Now we shall show that

$$(30) \quad (I - G)^{-1}(Y) \text{ is compact for any compact subset } Y \text{ of } E_\varphi.$$

Let Y be a given compact subset of E , and let (u_n) be an infinite sequence in $(I - G)^{-1}(Y)$. Since $u_n - p - F(u_n) \in Y$ for $n = 1, 2, \dots$, we can find a subsequence (u_{n_j}) of (u_n) and $y \in Y$ such that

$$\lim_{j \rightarrow \infty} \|u_{n_j} - p - F(u_{n_j}) - y\|_{\varphi} = 0.$$

As, by (4), the convergence in L_{φ} implies the convergence in L^1 , we have $\lim_{j \rightarrow \infty} \|u_{n_j} - p - F(u_{n_j}) - y\|_1 = 0$. By passing to a subsequence if necessary, we may assume that

$$\lim_{j \rightarrow \infty} (u_{n_j}(t) - p(t) - F(u_{n_j})(t)) = y(t) \text{ for a.e. } t \in J.$$

Putting $V = \{u_{n_j} : j = 1, 2, \dots\}$ and repeating the argument from the proof of Th. 1, we conclude that the set V is relatively compact in E_{φ} . As U is a complete metric subspace of E_{φ} , this proves (30). From (26), (29) and (30) it follows that the mapping $G : U \rightarrow E_{\varphi}$ satisfies all assumptions of Th. 7 of [2], and therefore the set $(I - G)^{-1}(0)$ is a compact R_{δ} . On the other hand, if $x \in S$, then analogously as for u_n in the proof of (13), it can be shown that $\int_0^s \varphi(\|x(s)\|, s) ds \leq r$, i.e. $x \in U$. Thus $S = (I - G)^{-1}(0)$, which ends the proof of Th. 2.

REFERENCES

- [1] N.V. Azbelev, Z.B. Caliuk: Ob integralnych nieravienstvach, Mat. Sb. 56 (1962) 325-342.
- [2] F.E. Browder, C.P. Gupta: Topological degree and nonlinear mappings of analytic type in Banach space, J. Math. Anal. Appl., 26 (1969) 390-402.

- [3] L. Drewnowski, W. Orlicz : A note on modular spaces XI, Bull. Acad. Polon. Sci., Ser. sci. math., astr. phys., 16 (1968) 877-882.
- [4] K. Goebel : Grubość zbiorów w przestrzeniach metrycznych i jej zastosowania w teorii punktów stałych, Thesis, Lublin 1970.
- [5] A. Kozek : Orlicz spaces of functions with values in Banach spaces, Comm. Math., 19 (1977) 259-288.
- [6] M.A. Krasnoselskii, Ja.B. Ruticki : Vypuklyje funkciij i prostranstva Orlicza. Moskwa 1958.
- [7] K. Kuratowski : Topologie. Warszawa 1958.
- [8] J. Musielak, W. Orlicz : On modular spaces, Studia Math. 18 (1959) 49-65.
- [9] W. Orlicz : Über eine gewisse Klasse von Räumen vom Typus B, Bull. Acad. Polon. Sci., Ser. A (1932) 207-220.
- [10] W. Orlicz, S. Szufla : On some classes of nonlinear Volterra integral equations in Banach spaces, Bull. Acad. Polon. Sci., Ser. sci. math. 30 (1982) 239-250.
- [11] B.N. Sadovskii : Predelno kompaktnye i uplotnayushchiye operatory, Uspehi Mat. Nauk, 27 (1972) 81-146.

INSTITUTE OF MATHEMATICS, A.MICKIEWICZ UNIVERSITY,
60-769 POZNAŃ, POLAND

Received January 14, 1983.