

Zygmunt K. Charzyński, Tadeusz Prucnal

ON CERTAIN CHARACTERISTICS OF THE FAMILY
OF PRIME FILTERS OF DISTRIBUTIVE LATTICE

Many papers appeared on the subject of prime filters family in a distributive lattice (see [1], [2], [3], [5]). Among others there are algebraic characteristics given in [3].

In this paper we give a set theoretical characteristics of the family of prime filters of a distributive lattice. For any non-empty set K by $\Phi(K)$ we denote the set of all families $\mathfrak{X} \subseteq 2^K$ such that following conditions are satisfied:

$$(C1) \quad a = b \iff \bigvee_{H \in \mathfrak{X}} (a \in H \iff b \in H),$$

$$(C2) \quad \exists_{c \in K} \bigvee_{H \in \mathfrak{X}} (c \in H \iff a \in H \wedge b \in H),$$

$$(C3) \quad \exists_{c \in K} \bigvee_{H \in \mathfrak{X}} (c \in H \iff a \in H \vee b \in H),$$

$$(C4) \quad \emptyset \notin \mathfrak{X}, \quad K \notin \mathfrak{X}, \quad \text{for every } a, b \in K.$$

In formulas (C1)-(C4) the symbols: \wedge, \vee, \iff stand for conjunction, alternative and equivalence respectively.

Let $\mathfrak{X} \in \Phi(K)$. We define the relation $\leq_{\mathfrak{X}}$ in K as follows

$$a \leq_{\mathfrak{X}} b \iff \bigvee_{H \in \mathfrak{X}} (a \in H \Rightarrow b \in H),$$

for every $a, b \in K$.

It is easy to verify that the relation \leq_x is an order on the set K and $\langle K, \leq_x \rangle$ is a distributive lattice.

Let $\underline{K} = \langle K, \leq \rangle$ be a lattice. Then we denote the family of all prime filters of this lattice by $\mathcal{P}(\underline{K})$.

Theorem 1. If $\underline{K} = \langle K, \leq \rangle$ is a non-trivial distributive lattice, then $\mathcal{P}(\underline{K})$ is a maximal element in the set $\Phi(K)$ ordered by inclusion.

Proof. Let $\underline{K} = \langle K, \leq \rangle$ be a distributive lattice including at least two different elements. Therefore the family $\mathcal{P}(\underline{K})$ satisfies conditions (C1)-(C4). Hence $\mathcal{P}(\underline{K}) \in \Phi(K)$.

Let now $\mathfrak{X} \in \Phi(K)$ and

$$(1) \quad \mathcal{P}(\underline{K}) \subseteq \mathfrak{X}.$$

We will prove that $\mathcal{P}(\underline{K}) = \mathfrak{X}$.

In view of the assumption (1) it is sufficient to prove the equation

$$(E) \quad \leq_x = \leq_{\mathcal{P}(\underline{K})}.$$

The inclusion $\leq_x \subseteq \leq_{\mathcal{P}(\underline{K})}$ is obvious. The inverse inclusion will be proved by contradiction. Let us have for certain $a, b \in K$ the following assumptions:

$$(2) \quad a \leq_{\mathcal{P}(\underline{K})} b,$$

$$(3) \quad a \not\leq_x b.$$

Let $a \cap_x b$ denote the infimum of elements a, b in the lattice $\langle K, \leq_x \rangle$. Then, according to (3) we have: $a \notin \mathcal{P}(\underline{K})$, $a \cap_x b$. Thus for some $H \in \mathcal{P}(\underline{K})$ we infer

$$(4) \quad a \in H,$$

$$(5) \quad a \cap_x b \in H.$$

Hence, in view of (1) we have $b \notin H$. At the same time from (2) and (4) we obtain $b \in H$. We receive the contradiction, which ends the proof of equation (E). Thus Theorem 1 is proved.

Theorem 2. If $K \neq \emptyset$ and \mathfrak{X} is a maximal element of the poset $\langle \Phi(K), \subseteq \rangle$ then \mathfrak{X} is the family of all prime filters of the lattice $\langle K, \leq_x \rangle$.

We omit an easy proof of Theorem 2.

REFERENCES

- [1] M.E. Adams : The poset of prime ideals of a distributive lattice, *Algebra Universalis*, 5 (1975) 141-142.
- [2] R. Balbes : On the partially ordered set of prime ideals of a distributive lattice, *Canadian J. Math.* 23 (1971) 866-874.
- [3] R. Balbes : On the partially ordered set of prime ideals of a distributive lattice II, *Bull. Acad. Polon. Sci.*, 26 (1978) 771-773.
- [4] G. Grätzer : *Lattice theory*. San Francisco, 1971.
- [5] T.D. Speed : On the order of prime ideals, *Algebra Universalis* 2 (1972) 85-87.

INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY, 430-73 KIELCE
Received December 29, 1982.

