

Adam Buraczewski

A GENERALIZATION OF DETERMINANT THEORY
OF FREDHOLM OPERATORS IN BANACH SPACES1. Introduction

It is shown how to obtain effectively analytic formulae for the determinant systems of linear continuous mappings $A = I + T$ in Banach spaces, where T^k is a quasi-nuclear (or nuclear) operator for some natural k . The obtained result is a generalization of the determinant theory of operators of the form $I + T$, T being quasi-nuclear, i.e. when $k = 1$.

R. Sikorski [2] has shown how to construct effectively a determinant system for any linear and continuous Fredholm operator of the form $I + T$ in a Banach space X , where T is a quasi-nuclear operator.

The purpose of this paper is to show how to construct effectively a determinant system for Fredholm operators of the form $I + T$ in X under the assumption that T^k is quasi-nuclear for some positive integer k . Thus the obtained result is a generalization of Sikorski's theory.

2. Preliminaries

In what follows Ξ and X denote two fixed Banach spaces over the same real or complex field \mathcal{F} . The letters ξ, η and x, y (with indices if necessary) always denote elements of Ξ and X , respectively. Every mapping into \mathcal{F} is called a functional. We recall (see [4]) that Ξ and X are conjugate in the sense that there exists a continuous bilinear functional ξx on $\Xi \times X$ such that

(a) $\xi x = 0$ for every $x \in X$ implies $\xi = 0$;

(a') $\xi x = 0$ for every $\xi \in \Xi$ implies $x = 0$.

We assume that the norms in Ξ and X satisfy the conditions

$$\|\xi\| = \sup_{\|x\| \leq 1} |\xi x|, \quad \|x\| = \sup_{\|\xi\| \leq 1} |\xi x|.$$

Let $\text{op}(\Xi, X)$ be the class of all continuous bilinear functionals A defined on $\Xi \times X$, $\xi A x$ being the value of A at (ξ, x) such that each $A \in \text{op}(\Xi, X)$ can simultaneously be interpreted as an endomorphism $\eta = \xi A$ in Ξ and as endomorphism $y = Ax$ in X , defined by the relationship

$$\xi Ax = (\xi A)x = \xi(Ax).$$

Clearly, a bilinear functional $A \in \text{op}(\Xi, X)$ interpreted as the endomorphism $\eta = \xi A$ in Ξ is the adjoint of the endomorphism $y = Ax$ in X , and the elements of $\text{op}(\Xi, X)$ will be called operators. The bilinear functional K defined by the formula

$$\xi Kx = \xi x_0 \cdot \xi_0 x,$$

where ξ_0 and x_0 are fixed non-zero elements, will be called a one-dimensional operator, denoted by $x_0 \cdot \xi_0$.

3. Main theorem

Let $s \geq 1$ be an integer, let

$$(1) \quad \alpha_0 = 1, \quad \alpha_1, \dots, \alpha_{s-1}$$

be all solutions of the equation $\alpha^s = 1$, and let $T \in \text{op}(\Xi, X)$. Then we can factorise the operator $I - T^s$ as follows

$$(2) \quad I - T^s = (I - T)(I - \alpha_1 T) \dots (I - \alpha_{s-1} T).$$

We now prove the following theorem which will be needed for our purpose.

Theorem 1. Let $T \in \text{op}(\Sigma, X)$ be an operator such that T^k is quasi-nuclear for some integer $k \geq 1$. Then for every integer $l \geq k$ there exists an integer $s \geq l$ such that

$$(3) \quad I - T^s = A_0(I - T) = (I - T)A_0,$$

where

$$(4) \quad A_0 = (I - \alpha_1 T) \cdots (I - \alpha_{s-1} T)$$

is invertible and the α_j ($j = 1, \dots, s-1$) are the numbers given in (1).

Proof. Suppose that the contrary holds, i.e. there exists an integer $l \geq k$ such that for all $s \geq l$ the operator A_0 defined by (4) is not invertible. Let us choose an integer $s_1 \geq l$ and let

$$I - T^{s_1} = (I - T)(I - \alpha_{s_1, 1} T) \cdots (I - \alpha_{s_1, s_1-1} T),$$

where $\alpha_{s_1, 1}, \dots, \alpha_{s_1, s_1-1}$ are all roots of the equation $\alpha^{s_1} = 1$ which differ from 1. Then there must exist at least one factor $I - \alpha_{s_1, 1} T$, say, which is not invertible. Consequently there exists a point $x_1 \in X$ such that

$$x_1 = \alpha_{s_1} T x_1 \quad \text{and} \quad \|x_1\| = 1,$$

where we denote $\alpha_{s_1, 1}$ by α_{s_1} for simplicity. Let us now choose an integer $s_2 > s_1$ satisfying the following condition. There exists a root $\alpha_{s_2} \neq 1$ of the equation $\alpha^{s_2} = 1$ such that $\alpha_{s_2} \neq \alpha_{s_1}$ and the operator $I - \alpha_{s_2} T$ is not invertible. Consequently there exists a point $x_2 \in X$ such that

$$x_2 = \alpha_{s_2} T x_2 \quad \text{and} \quad \|x_2\| = 1.$$

Continuing this process we find inductively that there exist sequences

$$x_1 < x_2 < \dots < x_j < \dots$$

$$\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_j}, \dots$$

and

$$x_1, x_2, \dots, x_j, \dots$$

such that

$$(5) \quad \alpha_{s_j}^{s_j} = 1, \quad \alpha_{s_j} \neq 1 \quad (j=1,2,\dots), \quad \alpha_{s_i} \neq \alpha_{s_j} \text{ for } i \neq j,$$

and

$$(6) \quad x_j = \alpha_{s_j} T x_j, \quad \|x_j\| = 1 \text{ for } j = 1,2,\dots.$$

Formula (6) can be re-written in the form

$$(7) \quad \beta_{s_j} x_j = T x_j,$$

$$\text{where } \beta_{s_j} = \frac{1}{\alpha_{s_j}} \text{ for } j = 1,2,\dots.$$

We now show that the set $X_0 = \{x_1, x_2, \dots\}$ is linearly independent. To this end suppose that

$$(8) \quad r_1 x_{j_1} + r_2 x_{j_2} + \dots + r_p x_{j_p} = 0.$$

Applying successively formula (7) to (8) we obtain after i steps ($i = 0, 1, \dots, p-1$) the system of equations

$$r_1 \beta_{s_{j_1}}^1 x_{j_1} + r_2 \beta_{s_{j_2}}^1 x_{j_2} + \dots + r_p \beta_{s_{j_p}}^1 x_{j_p} = 0$$

$$(i = 0, 1, \dots, p-1).$$

Since all $\beta_{s_{j_1}}, \dots, \beta_{s_{j_2}}$ are different, we conclude that

$$\begin{vmatrix} 1 & 1 & \dots & 1 \\ \beta_{s_{j_1}}, \beta_{s_{j_2}}, \dots, \beta_{s_{j_p}} \\ \beta_{s_{j_1}}^2, \beta_{s_{j_2}}^2, \dots, \beta_{s_{j_p}}^2 \\ \dots \\ \beta_{s_{j_1}}^{p-1}, \beta_{s_{j_2}}^{p-1}, \dots, \beta_{s_{j_p}}^{p-1} \end{vmatrix} \neq 0$$

as a Vandermonde determinant. This proves that the vectors x_{j_1}, \dots, x_{j_p} are linearly independent and so the set X_0 is linearly independent. Consequently, the linear set $\text{lin}(X_0)$ spanned by the vectors x_1, x_2, \dots is an infinite dimensional vector subspace of X .

Since the product of two quasi-nuclear operators is nuclear (see [2]) and therefore compact, it follows that T^s is compact for $s > 2k$. Thus we now assume that $s > 2k$, so that T^s is compact.

Now let $U \subset \text{Lin}(X_0)$ be any bounded set, and let

$$y = r_1 x_{j_1} + \dots + r_p x_{j_p} \in U.$$

Then, by virtue of (6), we have

$$(9) \quad r_1 x_{j_1} + \dots + r_p x_{j_p} = T^s \left(r_1 \alpha_{s_{j_1}}^s x_{j_1} + \dots + r_p \alpha_{s_{j_p}}^s x_{j_p} \right).$$

It follows from (6) that

$$\left\| \alpha_{s_{j_i}}^s T_{x_{j_i}}^s \right\| = 1 \quad (i = 1, \dots, p)$$

and, in view of (9), the subset U of $\text{Lin}(X_0)$ is the image of the compact operator T^s . This means that every bounded subset U

of $\text{Lin}(X_0)$ is relatively compact. Consequently $\text{Lin}(X_0)$ must be finite dimensional, which is a contradiction. This completes the proof of Theorem 1.

Applying the same Theorem 1 to the operator $-T$ instead of T , we obtain

$$(10) \quad I + (-1)^{s+1}T^s = A_0(I + T) = (I + T)A_0,$$

where $s \geq 1$, and

$$(11) \quad A_0 = (I + \alpha_1 T) \cdots (I + \alpha_{s-1} T)$$

is invertible.

4. Structure of analytic formulae for the determinant system

Let $T \in \text{op}(\Sigma, X)$ be such that T^k is a quasi-nuclear operator for some positive integer k . It follows from Theorem 1, in view of formula (4), that there exists a positive integer $s \geq k$ such that

$$(12) \quad I + T = A_0^{-1}(I + (-1)^{s+1}T^s) = (I + (-1)^{s+1}T^s)A_0^{-1},$$

where A_0 is given by (11).

Let F be a quasi-nucleus, (see [4]), which determines the quasi-nuclear operator T^k , i.e.

$$(13) \quad \xi T x^k = F(x, \xi),$$

which can also be written in the form

$$(14) \quad \xi T x^k = F_{\eta y}(\eta x + \xi y),$$

η and y being dummy variables. For a fixed operator $C \in \text{op}(\Sigma, X)$ let us define nuclei CF and FC on $\text{op}(\Sigma, X)$ by the formulae

$$(15) \quad (CF)(A) = F(AC), \quad (FC)(A) = F(CA).$$

Then in view of (13) we obtain

$$(16) \quad (CF)(x \cdot \xi) = F(x \cdot \xi C) = \xi CTx,$$

$$(17) \quad (FC)(x \cdot \xi) = F(Cx \cdot \xi) = \xi TCx.$$

It follows from the above formulae that the nuclei

$$(18) \quad ((-1)^{s+1} T^{s-k}) F \text{ and } F((-1)^{s+1} T^{s-k})$$

determine the same quasi-nuclear operator $(-1)^{s+1} T^s$.

We shall use the following properties of determinant systems (see [3]).

If $D_n \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix}$ ($n = 0, 1, 2, \dots$) is a determinant system for $A \in \text{op}(\Sigma, X)$ and $A_0 \in \text{op}(\Sigma, X)$ is invertible, then

$$(19) \quad D_n \begin{pmatrix} \xi_1, \dots, \xi_n \\ A_0^{-1} x_1, \dots, A_0^{-1} x_n \end{pmatrix} \quad (n = 0, 1, 2, \dots),$$

is a determinant system for $A_0 A$, and similarly,

$$(20) \quad D_n \begin{pmatrix} \xi_1 A_0^{-1}, \dots, \xi_n A_0^{-1} \\ x_1, \dots, x_n \end{pmatrix} \quad (n = 0, 1, 2, \dots)$$

is a determinant system for AA_0 .

To prove the structure of the determinant system for $I + T$ and bearing in mind that F is a given quasi-nucleus of the quasi-nuclear operator T^k we first obtain, on the basis of Theorem 7 in [4], the determinant system for $I + T^k$ as follows:

Let F be a quasi-nucleus of T^k , and let (θ_n) be a determinant system for I , i.e.

$$(21) \quad \theta_0 = 1, \quad \theta_n \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} = \begin{vmatrix} \xi_1 x_1 & \dots & \xi_1 x_n \\ \dots & \dots & \dots \\ \xi_n x_1 & \dots & \xi_n x_n \end{vmatrix} \quad \text{for } n=1, 2, \dots,$$

and let, for $m, n = 0, 1, 2, \dots$,

$$(22) \quad D_{n,m}(F) \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} = \frac{1}{m!} F_{\eta_1 y_1 \dots F_{\eta_m y_m} \theta_{n+m}} \begin{pmatrix} \eta_1, \dots, \eta_m, \xi_1, \dots, \xi_n \\ y_1, \dots, y_m, x_1, \dots, x_n \end{pmatrix}.$$

Then $(D_n(F))$, defined by the formula

$$(23) \quad D_n(F) \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} = \sum_{m=0}^{\infty} D_{n,m}(F) \begin{pmatrix} \xi_1, \dots, \xi_n \\ y_1, \dots, y_m \end{pmatrix} \text{ for } n=0, 1, 2, \dots$$

is a determinant system for $I + T^k$.

Suppose now that formulae (22), (23) hold and consider the nuclei in (18), which determine the same quasi-nuclear operator T^s , F being a quasi-nucleus for T^k . In view of (18) and ([1] page 297), we obtain for $m = 0, 1, 2, \dots$

$$(24) \quad \begin{aligned} D_{n,m}((-1)^{s+1} T^{s-k} F) \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} &= \\ &= \frac{(-1)^{m(s+1)}}{m!} (T^{s-k} F)_{\eta_1 y_1 \dots (T^{s-k} F)_{\eta_m y_m} \theta_{n+m}} \begin{pmatrix} \eta_1, \dots, \eta_m, \xi_1, \dots, \xi_n \\ y_1, \dots, y_m, x_1, \dots, x_n \end{pmatrix} = \\ &= \frac{(-1)^{m(s+1)}}{m!} F_{\eta_1 y_1 \dots F_{\eta_m y_m} \theta_{n+m}} \begin{pmatrix} \eta_1, \dots, \eta_m, \xi_1, \dots, \xi_n \\ T_{y_1}^{s-k}, \dots, T_{y_m}^{s-k}, x_1, \dots, x_n \end{pmatrix}, \end{aligned}$$

and similarly

$$(25) \quad \begin{aligned} D_{n,m}(F(-1)^{s+1} T^{s-k}) \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} &= \\ &= \frac{(-1)^{m(s+1)}}{m!} (FT^{s-k})_{\eta_1 y_1 \dots FT^{s-k} \eta_m y_m} \theta_{n+m} \begin{pmatrix} \eta_1, \dots, \eta_m, \xi_1, \dots, \xi_n \\ y_1, \dots, y_m, x_1, \dots, x_n \end{pmatrix} = \\ &= \frac{(-1)^{m(s+1)}}{m!} F_{\eta_1 y_1 \dots F_{\eta_m y_m} \theta_{n+m}} \begin{pmatrix} \eta_1 T^{s-k}, \dots, \eta_m T^{s-k}, \xi_1, \dots, \xi_n \\ y_1, \dots, y_m, x_1, \dots, x_n \end{pmatrix}. \end{aligned}$$

Consequently, bearing in mind formula (12), and in view of (19) and (20), we can obtain four formulae for the determinant system of the operator $I + T$. For example, by virtue of (24) and (19) we obtain a determinant system (D_n) for $I + T$ defined by

$$D_n \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} = \sum_{m=0}^{\infty} D_{n,m} \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix},$$

where

$$\begin{aligned} D_{n,m} \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} &= \\ &= \frac{(-1)^{m(s+1)}}{m!} F_{\eta_1 y_1} \cdots F_{\eta_m y_m} \Theta_{n+m} \begin{pmatrix} \eta_1, \dots, \eta_m, \xi_1, \dots, \xi_n \\ T_{y_1}^{s-k}, \dots, T_{y_m}^{s-k}, A_0 x_1, \dots, A x_n \end{pmatrix}. \\ &\quad (n, m = 0, 1, 2, \dots). \end{aligned}$$

Similarly, by virtue of (24) and (20), we obtain a determinant system (D_n) for $I + T$ defined by

$$D_n \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} = \sum_{m=0}^{\infty} D_{n,m} \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} \quad (n = 0, 1, 2, \dots),$$

where

$$\begin{aligned} D_{n,m} \begin{pmatrix} \xi_1, \dots, \xi_n \\ x_1, \dots, x_n \end{pmatrix} &= \\ &= \frac{(-1)^{m(s+1)}}{m!} F_{\eta_1 y_1} \cdots F_{\eta_m y_m} \Theta_{n+m} \begin{pmatrix} \eta_1 T^{s-k}, \dots, \eta_m T^{s-k}, \xi_1 A_0 \\ y_1, \dots, y_m, x_1, \dots, x_n \end{pmatrix} \\ &\quad (n, m = 0, 1, \dots). \end{aligned}$$

Now if $k = 1$, i.e. when T is quasi-nuclear, then $s = k = 1$, $A_0 = I$, so that we obtain Sikorski's formula for the determinant system of $I + T$ given in [4] (see Theorem 7). This solves the problem.

REFERENCES

- [1] A. Buraczewski : The determinant theory of generalized Fredholm operators, *Studia Math.* 32 (1953) 265-307.
- [2] A. Grothendieck : Produits tensoriels et topologiques espaces nucléaires, *Mémoires of Amer. Math. Soc.* 1955.
- [3] R. Sikorski : Determinant systems, *Studia Math.* 18 (1959) 145-161.
- [4] R. Sikorski : The determinant theory in Banach spaces, *Colloq. Math.* 8 (1961) 141-198.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF PAPUA NEW GUINEA
Received December 28, 1982.