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A GENERALIZATION OF DETERMINANT THEORY 
OF FREDHOLM OPERATORS IN BANACH SPACES 

1. In t roduct ion 
I t i s shown how to obtain e f f e c t i v e l y ana ly t ic formulae 

f o r the determinant systems of l i n e a r continuous mappings 
A • I + T i n Banach spaces, where T* i s a quas i -nuc lear (or 
nuclear) operator f o r some n a t u r a l k. The obtained r e s u l t 
1b a genera l i za t ion of the determinant theory of operators 
of the form I + T, T being quas i -nuc lea r , i . e . when k » 1. 

R. Sikorski [ 2 ] has shown how to construct e f f e c t i v e l y 
a determinant system f o r any l i n e a r and continuous n?edholm 
operator of the form I + T in a Banach space X, where T i s 
a quas i -nuclear opera tor . 

The purpose of t h i s paper i s t o show how to construot 
e f f e c t i v e l y a determinant system f o r Fredhola operators of 
the form I + T i n I under the assumption tha t T i s quasi-nuo-
l e a r f o r some pos i t ive in tege r k. Thus the obtained r e s u l t 
i s a genera l i za t ion of S i k o r s k i ' s theory . 

2. Pre l iminar ies 
In what fol lows Z and X denote two f ixed Banach spaces 

over the same r e a l or complex f i e l d JT. The l e t t e r s £,77 and 
x, y (with ind ices i f necessary; always denote elements of E 
and X, r e s p e c t i v e l y . Every mapping i n t o 3" i s oal led a func-
t i o n a l . We r e c a l l (see [4]) tha t 2 and X are conjugate i n 
the sense tha t there e x i s t s a continuous b i l i n e a r f unc t i ona l 

on S * X such tha t 
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A. Buraczewski 

(a) £x • 0 for every x e X implies £ » 0| 

(a1 ) t,x " 0 for every ^ e S implies x • 0. 

We assume that the norms in El and X satisfy the oonditions 

|| y - sap | \x\, ||z|| - sup Ux|. 
Ilx||«1 II5II<1 

Let op(E, X) be the class of a l l oontinuous bilinear fun-
ctionals A defined on E>X, £Ax being the value of A at (£, x) 
such that each A e op(S, X) can simultaneously be interpreted 
as an endomarphism ip * $ A in Z and as endomorphism y = Ax 
in X, defined by the relationship 

4Ax - A)x = ^(Ax). 

Clearly, a bilinear funotional A e op(S, X) interpreted as the 
endomorphism A Id S Is the adjoint of the endomorphism 
y • Ax in Xf and the elements of op(S, X) wil l be called ope-
rators. The bilinear funotional K defined by the formula 

*Kx - Kx0 • $0x, 

vhere and x„ are fixed non-zero elements, wil l be called 
' 0 0 * 

a one-dimensional operator, denoted by xQ* 

3. Main theorem 
Let s » 1 be an integer, let 

(1) o(0 » 1, c*-(»««*»ocB_1 

be a l l solutions of the equation a 8 = 1, and let Teop(£, 
Then we oan factorise the operator I - T8 as follows 

(2) I - Ts « ( I - T ) ( I - c^T) . . . ( I - c*8_1T). 

We now prove the following theorem which wil l be needed for 
our purpose. 
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Generalization of determinant theory 3 

T h e o r e m 1. Let T e t>p(S, X) be an operator suoh I, 
that T l a quasi-nuolear for some integer Then for every 
integer i ^ k there e x i s t s an Integer a > I such that 

(3) I - T8 - A0(I - T) =» (I - T)A0, 

where 

(4) A0 - { I - o<1TJ . . . ( I - c < 8 - 1 T ) 

i s lnvert ible and the a^ ( j = 1 , . . . , e - 1 ) are the numbers given 
in (1 ) . 

P r o o f . Suppose that the contrary holds, i ; e . there 
e x i s t s an integer I » k euoh that for a l l s > I the opera-
tor Aq defined by (4) i s not lnver t ib le . Let us choose an in-
teger s^ I and l e t 

I - T"1 = V ( I - T) ( I -o< ,1) . . . ( I - a <T), 

8 1 where &a . . » • • • »<*- _ « are a l l roots of the equation <x « 1 S.j , I , B̂  —1 
which d i f f e r from 1. Then there must ex i s t at l e a s t one faotor 
I - «_ -T, say, which i s not lnver t ib le . Consequently there B̂  , 1 
e x i s t s a point x^ e X such that 

x 1 - o t s 1
T x 1 a n d l l * l l | - 1 » 

where we denote c<_ , to a . for s impl ic i ty . Let us now choose B 1» 1 B̂  
an integer s » > s 1 s a t i s f y i n g the following condition. There 

s 9 
e x i s t s a root c<„ )i 1 of the equation c a 1 such that 

2 
o<_ i ota and the operator I - a „ T i s not lnver t ib le . Conse-

2 8 1 2 
quently there e x i s t s a point x 2 e X suoh that 

x 2 * ° < S 2 T x 2 a n d l l ^ l l " 1 * 
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Continuing this process we find inductively that there exist 

sequences 

X^ ^Xg <••. < 8j ^••11 

1 2 Bi 

f^j9• • • 

and 

suoh that 

(5) - 1, <*s / 1 U-1,2,...), 4 «_ for i / 
3  ei 8 i  Bi 

and 

(6) Xj = o(8 Txj, ||xj|| - 1 for i - 1,2,... . 
t) 

Formula (6) oan be re-written in the form 

(7) ^ X j - TXy 

there « ¿ J - for j - 1,2,... • 
3  Bi 

We now show that the set XQ " { X1* x2»•• •} ^ linearly 

independent. To this end suppose that 

(8) r ^ + r 2 x j 2 + ... + r ^ ^ - 0. 

Appyliag successively formula (7) to (8) we obtain after i 

steps (1 * 0 , 1 . . , p - 1 ) the system of equations 

(i - 0,1,...,p-1). 
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Sinoe a l l are d i f f e r e n t , we conclude that 

, • • . ,1 

Ji P. 
'Ji M, 

J ̂  J 2 »| 
4 o 

p.P-1 ftP-1 oP-1 
J 1 J 2

 J p 

aB a Vandermonde determinant* This proves that the vectors 
x, , . . . , x . are l inear ly independent and so the set X. i s l i -31 3p 0 

nearly independent* Consequently, the l inear set l in(Z0) 
spanned by the veotors x ^ x g , . . . i s an i n f i n i t e dimensional 
vector subspaoe of X. 

Sinoe the product of two quasi-nuolear operators i s nu-
clear (see ["2]) and therefore compaot, i t follows that T s i s 
compact f o r s » 2 k . Thus we now assume that s >2k, so that T8 

i s compact. 
Sow l e t UcLln(XQ) be any bounded s e t , and l e t 

r1*di + . . . + e u. 
P 3P 

Then, by vi r tue of (6) , we have 

(9) r<x. + . . . 1 J1 r "p 

I t follows from (6) that 

+ r x . - T s ( r 1 af x, + . . . + r_«® 
P j „ V 1 «J P n i 

D i i % 1 ( i - 1 , . . . , p ) 

and, in view of (9)» the subset U of Lin(XQ) i s the image of 
the compaot operator T8 . This means that every bounded subset U 
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of Lin(X 0 ) i s r e l a t i v e l y oompact. Consequently Lin(XQ) must be 
f i n i t e dimensional, which i s a c o n t r a d i c t i o n . This completes 
the proof of Theorem 1. 

Applying the same Theorem 1 to the operator -T instead 
of T , we obtain 

(10) I + ( - 1 ) S + 1 T S = A 0 ( I + T) « ( I + T)A 0 , 

where s ^ 1 , and 

(11) A0 - ( I + «^T) . . . ( I + Otg .^ ) 

i s i n v e r t i b l e . 

4 . Structure of a n a l y t i c formulae f o r the determinant 
system 

Let T e op(S, X) be suoh that T k i s a quas i -nuclear opera-
t o r f o r some pos i t ive in teger k. I t fol lows from Theorem 1, 
i n view of formula ( 4 ) , that there e x i s t s a pos i t ive Integer 
a £ k such that 

(12) i + T - A;1 ( i + ( - D S + 1 T 8 ) - ( i + ( - D ^ V J A ; 1 , 

where AQ i s given by (11)» 
Let F be a quas i -nuc leos , (see T 4 ] ) t whioh determines the 

quasi -nuolear operator T , i . e . 

(13) i - T x k « F ( x , U . 

which can also be wri t ten in the form 

(14) S f c ^ - I ^ f o x • $ y ) , 

rj and y being dummy v a r i a b l e s . For a f ixed operator 
C 6 op(S, X) l e t us define nuc le i CF and FC on op(Z, X) by 
the formulae 

(15) (CP)(A) - F(AC), (FC)(A) - P(CA)• 

- 490 -



Generalization of determinant theory 7 

Then in view of (13) we obtain 

(-16) (CF)(x.U = P(x.^C) = $CTx, 

(17) (FC)(x.*) - F(Cx.ii) = î TCx. 

It follows from the above formulae that the nucle 

( ( - 1 ) 8 + V - k ) P and F ( ( - 1 ) S + V - k ) (18) 

determine the same quasi-nuclear operator (-1)S+1T8 . 
We shal l use the following properties of determinant sy-

stems (see C3J)• 

If D. 
> • • • 

(n • 0 , 1 , 2 , . . . ) i s a determinant system 

for A € op(Z, X) and AQ€ op(E, X) i s invertible, then 

(19) 'ni .-1_ i®p »••• 
(n = 0 , 1 , 2 , . . . ) , 

i s a determinant system for A A, and similar ly , 

(20) T o 
"n\J1 •••• 

n o (n = 0 , 1 , 2 , . . . ) 

i s a determinant system for AAQ. 
To prove the structure of the determinant system for I + T 

and bearing in mind that F i s a given quasi^nuoleus of the 
k 

quasi-nuclear operator T we f i r s t obtain, on the basis of 
Theorem 7 in [4]» the determinant system for I + Tk as follows: 

Let F be a quasi-nucleus of Tk, and let (@n) be a deter-
minant system for I , i . e . 

(21) e_ - 1, e n\ x„ 
^1*1 ••• ^ixn 

for n-1,2, 
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8 A« Buraczewaki 

and l e t , fo r m,n « 0 , 1 , 2 , . . . , 

B « J - P p a **>n 

Than (Dn(P)), defined by the formula 

BBO 
V 

i s a determinant system fo r I + T • 
Suppose now that formulae (22), (23) hold and oonsider the 

nuolei in (18), which determine the same quasi-nuclear opera-
to r T8 , P being a quasi-nuoleus fo r Tk . In view of (18) and 
(T1] page 297), we obtain for m = 0 , 1 , 2 , . . . 

(24) 

t - 1 ) m ( s + 1 )
 l T 8-k p , (TS**^P) « 

mi u V b 

/ 1 . m( s+1) / r ^ , . . . , ^ , ^ , . . . , ^ 
^n -a Si 

and similarly 

(25) D „ n ( ^ - 1 ) 8 + 1 T 8 - k ) ( ^ 1 I * 

(.D-nts+D . a-k, «nS-k, 0 

¡1 ( F T ' v r ^ la?m 4 

( .1 )m(3-H ) /1?,®8"*, • • • 1 
nt P V l " , \ 7 m 0 n + m ••••»*•» 

" v r ' U ^ - ^ . . . . t ^ x , x D j • 

»•••»yn**!* * •*»xn 

x v . . * **n J 
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Generaliaation of determinant theory 9 

Consequently, bearing in mind formula (12), and in view of 
(19) and (20), we can obtain four formulae fo r the determinant 
system of the operator I + T. For example, by v i r tue of (24) 
and, (19) we obtain a determinant system (Lm) fo r I + T defined 
by 

D, *>n\ ^ n f 
n \ * 1 *n, 

y D r 1 

A n»»V x1 x n , m»0 

where 

D 
n,m\x 1 , . .» ,x j a 

( . 1 }«(«+1) / V — V $1 ^ 
= — V } ^ - - 9 

W V > ^ . . . . . T ^ A ^ Axq J * 

(n,m » 0 , 1 , 2 , . . . ) . 
Similarly, by vi r tue of (24) and (20), we obtain a determinant 
system (DQ) fo r I + T defined by 

gx&'-k) 
where 

D 

(s+1) ( V l T B ' k 

m ! V l ' * ' V « n + " 7m'x1»*»"*n J 

(n,m « 0 , 1 ) . 

Now if k - 1, i . e . when T i s qussi-nuclear , then s = k = 1, 
Aq = I , so that we obtain Sikorski ' s formula f o r the de te r -
minant system of I + T given in [4] (see Theorem 7) . This 
solves the problem. 
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