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FINSLER DIFFERENTIAL SPACE 

In this paper we «uggest a study of the theory of Finslers 
spaces on the d i f f e rent i a l f i n i t e dimensional spaces. We define 
a function Pi Tp(M,C) — R f u l f i l i n g the. conditions (1) and 
(2) . Further we define functions flF, F e and on the Rm 

and functions F, F and F on the T°(M,C) » Tp(M,C)-{o} (de f i -
nitions (3 ) , (20), (22), (7) , (11) and (29) respect ively) . 
The function F additionaly s a t i s f i e s condition (33). The ge-
neral ization of the Finslers space i s defined by th i s function 
as the pair ((M,C),F). Further we define the generalized no-
tion of indioatrix and the notion of metrio. 

Let (M,C) be a Hausdorff d i f f e r e n t i a l spaoe of f i n i t e d i -
mension. (The general theory of d i f f e ren t i a l spaces can be 
found in [6 ] ) . We consider the tangent bundle to (M,C) (C31): 
T(M,C) » U (T(M,C) ,C ' ) , where C' i s of small d i f f e r e n t i a l 

PeM r 1 ( -i structure on T(1I,C) containing set C0 =|c< o tt ;cxe c l^ j a^ ja iec j - * 
3r(v) « p for v e Tp(M fC), oc^(v) = v i a ) . 

Let T°(M,C) « (T(M ,C)-{0p ,p6M}, c J , { M f C ) _ | 0 . p f e M | ) where 
T(M,C) = I J T (M,C)• P 

peM p 

Let D be a set such that T°(M,C)c DcT(M,C). 
We shal l oonsider a function F6Cp suchthat 

(1) F(av) = a F(v) for a > 0 , veD and v 4 0, 

{?.) F(v) > 0 for v 6 D and v 4 0. 
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2 H. Borowik 

By e » (a^,...,em) we denote a basis of the linear space 
Tp(M,C) fop peM. In order to investigate the properties of 
function F we define a new function _P:Rm^>D_ — • R by the 
equation 

(3) eF(v1,...,vm) F ( v \ ) for (v\...,vm) e flD, 

where flD = { ( v 1 , v m ) | V h e h e d}. 
It is known that the function (3) is smooth ([7]). 
Wd denote by F ̂  the derivative of the function FsR111 — R 

with respect to the i-th variable* From (1) it follows that 

(4) eF^iav1 av®)«^ i(v1,...,vmj for a>0 and (v1,...,vm)eeD. 

We consider a different basis e' = (e*,,...,e_,) of Tn(M,C) 4 I m p 
such that e^, = e^. Then from (4) it follows that 

ei F{v̂ ',• • • »v°') = F(vh' eh/J = - eF(vhA^ vhA™, ). 

Hence it follows 

(5) ,/P,!' {v1',...,vB/J - . P ^ i A j , vhA*,) • Aj, 

and 

(6) fl,F|i/ (v1',...tvm')xi' = eF|l(v1,...,vm)x1, where x^A* x1'. 

Let T®(M,C) = Tp(M,C)-{0}. Using (6) we may associate with 
each arbitrary veT°(M,C), peM, the mapping F(v) sTp(M,C) —«-R 
defined by relation 

(7) F(v)(x) eF|i(v1,...,vm)xi for xeTp(M,C), 

where x - x^ej, v = v^eh. From (4) we have 
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F l n s l e r d i f f e r e n t i a l space 3 

F(av)(x) = F(v)(x) f o r each xeT p (M,C) . 

Hence i t fo l lows 

(8) F(av) = F(v) f o r a > 0 , veT°(M t C) . 
A 

Now i t i s evident t h a t the func t i on F i s p o s i t i v e l y homogeneous 
of degree 0. 

We oan e a s i l y v e r i f y the 

(9) F(v)(ax+by) = aF(v}(x)+bF(v)(y) 

f o r a , b € R , v eT£(M,C) i , J«T p(M , C ) , 

From (4) i t fo l lows t h a t 

(10) e F | i j { a v 1 , . . . f a v m ) a = e F | i 3 ( v 1 vm) 

f o r a > 0» ( v 1 , . . . . v m ) e D. 

We note t h a t in view of (5) f o r e ' = ( e ^ , . . . t e m , ) 

e' Pi i ' j ' x 1 ' ? * ' = e
F | i j { y 1 v B ) * V . 

Hence we can def ine A a f u n c t i o n which f o r each v«Tp(MKC) 
a s s o c i a t e s the mapping F(v):Tp(M>C)*Tp{M,C) —-R def ined by 
the r e l a t i o n 

(11) F(v) (x ,y ) s= e F | i ; j ( v 1 , . . . , v m ) x V f o r x,y €Tp(M,C), 

where x = and y = y ^ e . . 
£ 

The f u n c t i o n F i s we l l de f ined . Moreover from (10) we have 

A 1 

(12) F(av) (x ,y) = J - F ( v ) ( x , y ) f o r x,y eTp(M,C), veT°(M,C) and a>0. 

Hence 
F(av) = -L F(v) f o r v€T°(M,C) and a > 0 . a p 
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4 N. Borowik 

I t i s evident that the func t ion F i s pos i t ive ly homogeneous 
of degree -1 . By (1) and (3) we have 

(13) „F (av 1 , . . . t av m )=aF(v h e h ) f o r veT°(M,C) and a>0, where e u p h 
v = v % ' 

Prom (13) by E u l e r ' s theorem on homogeneous func t ions we have . 

(14) e F | i ( a v 1 a v ^ v 1 = F ( v \ ) 

and when a = 1 we have 

(15) e F | i ( v 1 , . . . , v m ) v i = F(v he h ) f o r ( v 1 , . . . , v m ) e f lD. 

From (7) and (15) i t fol lows tha t 

(16) F(v)(v) = F(v) f o r veT°(M,C). 

When we d i f f e r e n t i a t e (4) with respec t to a , we obtain 

(17) eP, i ; j {av 1 , . . . , av n i )v ; 5 = 0. 

Moreover, i f we set a a 1, then 

( 1 8 ) e P | i d ( v 1 " " » v m , v 5 x i = 0 f o r { y 1 y m ) feeD' 

Prom (11) and (12) i t fol lows tha t 

(19) F (v) (x f v) = 0 f o r v €T°(M,C), xeT p (M,C) , p e M. 

Now we s h a l l consider a new smooth func t ion Fe*eD —-R 
given by 

(20) F e (v 1 vmJ l F 2 ( v h e h ) f o r ( v \ . . . , v m ) s 9V, 

where gD = { ( v 1 , . . . ,vm) | v h e h * d}, Hence 

(21) F e | i ( v 1 vm) = P ( v \ ) e F ± (v 1 v°) 
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Pins l e r d i f f e r e n t i a l space 5 

and 

(22) P e l i j ( v 1 vm) = e P , j ( v 1 , . . . , v m ) . e F | i ( v 1 , . . . , v m ) + 

+ e P ( v 1 , . . . , v m ) . 0 P | i j ( v 1 , . . . , v m ) . 

Prom (15) and (18) we have 

(23) p e | i j ( v 1 v D , v i " e
p , 

and 

(24) P e | i j ( v 1 v m ) v V = P 2 ( v h e h ) . 

We may a l so deduoe the fol lowing e q u a l i t i e s 

(25a) ( v 1 ' , . . . , v m / ) = P e | i j { v h ' A h ' ' — ' v h ' A h , ) , 4 4 

and 

(25) P0/1 i ' j ' ( v 1 ' , . . . , v m ' ) w i ' Z j ' = P e | i d ( v 1 , . . . , v n i ) w i
Z ^ 

Using the e q u a l i t i e s (25) we may assoc ia te with each a r b i t r a r y 
veT°(M,C), peM, a mapping P( v) :Tp(M,C)*Tp(M,C) — R defined 
by the r e l a t i o n 

(26) P(v)(w,z) := F e | i ; J { v 1 , . . . , v m ) w i a 3 f o r w,a e Tp(M,C), 

The mapping P i s well def ined . Prom (24) and (26) i t fol lows 
tha t 

(27) P(v)(v ,v) = P2(v) f o r veT°(M,C). 

Now we s h a l l quote a few proper t i e s of the func t ions F, F 
and P. Prom (23) and (22) we have 
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6 N. Borowik 

(28) F (v ) (w,z ) = ' ( l ) * » . " * . P ( v ) ( v , z ) » P ( v ) ( v , w ) f 
HVJ F->(v) 

where v e T ° ( a f C ) , w,zeT p (M,C) . Prom (22), (7 ) , (11) and (26) 
we deduce that 

(29) F (v ) (w,z ) = P ( v ) ( z ) . F ( v ) ( w ) + f ( v ) ( w , z ) » F ( v ) . 

As a corollary from the def ini t ion F we obtain the ident i t ies 

(30) F (v ) (w,z ) = F ( v ) ( z ,w ) , 
and 

(31) P(v) (a1w1+a2w2tb1z1+b2z2) = a.,^ P l v K w ^ z , ) + 

+ a.jbgPfvHw.j.Zg) + a g b ^ i v j f w g . z ^ + a2bgP(v) (w 2 , z 2 ) 

for v e Tp(M,C), w,zeTp (M,C) , a1 ,a2,b1 ,b2 e R. 

Thus F(v) i s a bil inear symmetric mapping of Tp(M,C)* 
xTp(M,C) into R. 

Now we shall prove the following faots. 
S t a t e m e n t 1. I f veT° (M,C) , wts e l p (M ,C ) , 

pe l l and a> 0, then 

(32) F(av) = F ( v ) . 

P r o o f . Using (29) we have 

F(av) (w,z) = F (av ) ( z ) *F (av ) (w )+ F(av)(w) + F(av) (w,z )*F(av) = 

= F ( v ) ( z ) »F ( v ) (w ) + ^ P(v ) (w,z )*aP(v ) » F ( v ) (w , z ) . 

Thus (32) is true. 
Two basic assumptions (1) atnd (2 ) , which are analogous to 

the known assumptions in Finsler spaces (L~5]), have been used 
in the former considerations. Following the theories of these 
spaces a condition corresponding to the assumption of pos i t i -
veness of a quadratic form is formulated. 

Because of this we now additionally suppose that 

(33) F (v ) (w ,w)>0 for v,w e T®(MtC), p e M. 
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Finaler differential spaoe 7 

L e m m a 1* If v,w 6 T°(MfC)t pell and w = Av for A e R t 

then 

(34) F(v)(w,w)> 0« 

P r o o f * It should be notioed that flrom the Sohwarz 
inequality ve have 

(35J P(v)(w,w)*F(v)(vtv) >(P(v)(w,v))
2. 

Prom (28) it follows that F(v)(w,w) » p^Jj ^F(v){w,w) -

- (£j vHv,w)) 2\ I n v i e w o f ( 3 5 ) a n d ( 3 6 ) | ( v J ( w ) > 0 # 

F(v)(v,v) / 
We may now prove 
T h e o r e m 1 . If v,veT£(M,C) and v+veT°(M,C) then 

(36) P(v + v K F(v) + P(v). 

P r o o f . Let v,z€T°(M,C). Prom the Taylor theorem 
we have 

e
p < z 1 "J - eP(v

1,...,vm) + eP | 1{v\...,v
n i)(z i-v i) + 

+ J QPi;j(e
1v1+(i-e1 )z1 e V M i - e " ) « 0 ^ « 1 - ^ ) ^ - ^ ) , 

where z = z he h, v = v
ke k, 0 < e i < l . 

Hence P(z) = F(v)+F(v)(z-v) + -J P(u)(z-v,z-v) if (z-f)e T°(M,C) 

and u = (G hv h+(i-0 h) z
h)e he T°(M,C). Taking into account Lemma 1 

* A 

we obtain F(u)(z-v,z-v)> 0. Because P(v)(v) = F(v), therefore 

P(z) > P(v) (a) for v,zeTp(M,C). Hence F(v)> F(v+v)(v), 

F(v)> F(v+v)(v) and F(v)+F(v)> F(v+v)(v+v) = F(v+v). 

F(v)+F(v) = F(v+v) if and only if v = ;\v for j\>0. 

Let us introduce the definition 

(37) IndioatrixpF:={v€T°(M,C)}P
2(v) = l}={veT°(M,C)}F(vHv,v)=l}. 
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8 H. Borowik 

We may now define a set 

( 3 8 ) A F,P V : V E T P ( M T C ) N D AND F M O } . 

T h e o r e m 2. The set A.- is convex. 
1 »P 

P r o o f . 1°. Let v,v e T°(M,C), F(v) < 1 and F(v) 41. 
We consider w eT°(M,C) such that w «= (1-A)v + Av for A e <Ot1>. 

•i vie - of the inequality F(v+v) < F(v)+F(v) we have F(w) • 
-• + A v ) < (1-A)F(V) + A F ( v ) < 1 . 

2C. If w = 0, then in view of definition (38) w€A p p u { 0 } . 

Now w<> shall prove that A-,, i* 0. Let veT° (M.C) . Henoe 
t P P 

ve - . : . / T e A F , P ' 8 i n o e P ( V = ? { m r ) = f f i } = 1 - H e n ° 9 

H p , 4 0 . 

We may now define the length of an arbitrary vector 
v e T p ( M , C ) . The length of v is given by 

(39) | v|p 

F(v) when v 4 0 

0 when v » 0. 

Thus according to (1) and (2) i t follows that 

l P < M P + M P . 1° |v+w|p « M - + M , , 

2° | av [ p = a | v | p for a > 0 . 

I f we additionally assume that F( -v ) = F(v) for - v , v e I ° (M ,C ) , 
then the indicatriXpF is symmetric and the additional condition 

3 ° I a v I p = l a l l v l p 

i s to be imposed, where aeR . 
The formula 3° follows immediately from (30) and (1 ) . Namely 
for a < 0 we have |av|p = F(av) = F ( ( - a ) ( - v ) ) = -aF( -v ) = 
= | a|F(V) - |a||v|p. 

The indioatriXpF pl«ys the role of the unit sphere in the 
geometry of the vector space Tp(M,C). The pair (Tp(M,C)t| *| p ) , 

where | •|p satisfy conditions 1° and 2° w i l l be called a Min-
kowskian spaoe of function F. 
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Pins1er di f ferent ia l spaoe 9 

1' m' 

Now we turn to the expression Ffl| j/ ( v »•••tv ) = 

= Pe( v 1 ^ ) A j ' Ai ' • Hence V | i ' j ' k ' ( v , / , . . . . v n i ) x W - P e | i j k ( v 1 v * > * W . 

This suggest that we can easily (irrespectively of any 
basis) introduce a function F given by 

(40) F(v)(x,y,z) \ * e | i ; j l £ ( v 1 t v ° ) x V z k 

for v e T°(M,C) ,x ,y ,z 6 Tp(M,C), where v = x = ^ i » 
1 k y = y z ~ z 

As a corollary to (40) we obtain 
A s s e r t i o n 2. 

( i ) F(av)(x,y,z) » ^ F(v)(x,y,z) for a > 0 , 

veT°(M tC),x,y,Z€Tp(M,C), peM, 
^ ^ 

( i i ) F(v)(v,y,z) = P(v)(x,v,z) = F(v)(x,y,v) = 0 for 

v € Tp(MtC) ,x,y ,z e Tp(iU,C), peM. 

The pair ((M,C),F), where (M,C) i s a Hausdorff differen-
t i a l f in i te dimension space, P e c ' 0 s a t i s f i e s conditions 

^ T (M,C) 
(1) and (2 ) , and the function F i s defined by the relation 
(26), satisfying condition (33) . wil l be called a Pinsler d i f -
ferent ia l space in the sense of Sikorski. 
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