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Nadzieja Borowik

FINSLER DIFFERENTIAL SPACE

In this paper we suggest a study of the theory of Finslers
spaces on the differential finite dimensional spaces, We define
a function F: TP(M C) — R fulfiling the. conditions (1) and
(2). Further we define functions ,F, F, and Fg|1j OB the R

and funotions F, F and ¥ on the T°(M C) =T (M c)-{0} (defi-

nitions (3), (20), (22), (7}, (11) and (29) respeotively).

The function F additionaly satisfies condition (33). The ge-
neralization of the Finslers space is defined by this function
as the pair ((M,C),F). Purther we define the generalized no-
tion of indicatrix and the notion of metrio,

Let (M,C) be a Hausdorff differential space of finite di-
mension., (The general theory of differential spaces can be
found in [6]), We consider the tangent bundle to (M,C) ([3]):
(M,C) = U (T,(M,C),0'), where C' is of small differential

peM
structure on T(M c) containing set C, -{o(orr o€ C}U{u*;dec}
a(v) = p for veT (M C),y ty(v) = v(ot).

Let T°(M,C) = (T(M c)~{0,sp <M}, Cp (s, c)={o_;pen)) where
{M,C) = U T,(4,C). ?

Let D be a set such that T°(M,C)cDcT(M,C),
We shall oonsider a function F € Cp such<that

(1) Flav) = a F(v) for a>0, veDand v # 0,

{2) P(v) >0 for veDand v £ O,
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2 N, Borowik

By € = (e1,...,em) we denote & basis of the linear space
TP(M,C) fop p €M, In order to investigate the properties of
function F we define a new function eF:R"'DDe —= R by the
equation

(3) eF(v",...,vm) t= F(vheh) for (v1,...,vm) € gDs

where OD = {(v1 XXX ,vm);thhe D}o
It is known that the function (3) is smooth ([7]).
We denote by F , the derivative of the function F:R" —-R

with respect to the 1-th variable, From (1) it follows that

(4) eFli(av1,...,avm)=°F| 1(v1,...,v'"i_ for a>0 and (v1,...,vm)eeD.

We consider a differsnt basis e’ = (91, seses®p,) of T (M,C)
sach that ey, = Al e,. Then from (4) it follows that

4 ’ / / ‘ /
e’ F(v1 ,...,Vm) = F(vh eh/) F(thi:I eh) = eF(VhA;lI pooey thE./ )0

Hence it follows

’ : / Y i
(5) e/FI i (v‘.....vm) Fli(th;l' goee,y ¥V A;") o Ail

and

i .,1 4

!
i =Ai; X o

I} ’ .
(6) &Py (vhyeeeyv®xt = eFli(vh..._,v"’)xi, where x

Let Tg(m,c) = TP(M,C)-{O}. Using (6) we may associate with
each arbitrary ve'rg(m,c), pe M, the mapping ﬁ'(v):Tp(M,c) —=R

defined by relation

(7) Flv)(x) := eFli(v1,...,vm)xi for xeTp(M,C),

where x = xiei, v = vheh. From (4) we have
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Pinsler differential space 3

Flav)(x)

F(v)(x) for each xe¢ Tp(M,C).
Hence it follows
(8) Flav) = F(v) for a>o0, veTg(M,C).

Now it is evident that the function ﬁ is positively homogensous
of degree O.
We can eadily verify the

(9) F(v)(ax+by) = aﬁ(v)(x)-l»bﬁ(v),(y)
for a,b€R, Vv e'rg(M,C) x,3 € 7,(4,C).

From (4) it follows that

(10) °Fl ij(av1,....,avm)a = eF] 13(v1,...,vm)
for a >0, (v1,...,v"’) € 4D.
We note that in view of (5) for e’ = (e1: ,...,em,)

1 m’, 1’ _j§ i
e/Flil 2/ (V goeeyV )x yj =° [ij(v peeeyV )x j
Hence we can define a function § which for each veT°(M*C)

associates the mapping F(v) :T (M C)xT (M C) —R defined by
the relation

(1) Fv)(x,3) 1= oF 1307 seee ¥Mx'yd for x,3 €1 (u,0),

where x = xheh and y=3 °h'
The function F is well defined. Moreover from {10} we have

(12) F(av)(x,y) 1 a F(v)(x,y) for x,y €T (m cl, veT°(M C) and &0.

Hence

»

A
ﬁ(av) = %F(v) for veTg(M,C) and a >0,
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A
It is evident that the function F is positively homogeneous
of degree =-1. By (1) and (3) we have

(13) eF(:av1,...,a.v“’):aF(vheh) for veTg(M,c) and a>0, where
v=v @
h.

From (13) by Euler s theorem on homogeneous functions we have .
(14) eFli_(av1’.O.’avm)vi = P(vheh)

and when a = 1 we have

(15) eFli(v1,...,v"‘)vi = F(vheh) for (vl,.e.,v®) € D.

From (7) and (15) it follows that

(16)‘ F(v)(v) = P(v) for veTg(M,c).

When we differentiate (4) with respect to a, we obtaln
(17) oF, ij(av1,....a.vm)v3 = 0.

Moreover, if we set a = 1, then

(18) of| ij(v1,...,vm)vjxi =0 for (v',e..,v") € D.

From (11) and (12) it follows that
(19) ﬁ(v)(x,v) =0 for veTg(M,C), xeTp(M,C), peM,

Now we shall conslider a new smooth function Fe:eD ~—=R
given by

(20) Fe(v1,...,vm) 1= % Fe(vheh) for (v1,...,vm) €gDs
where D = {(v1,...,vm); vhehé D}. Hence

e

(21) Fe| i(_v1,...,vm) = F(vheh)0F| 1(v1gooo'vm)
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Fingler differential space 5

and
(22) Felij(v1’oo-’vm) = eFIJ(v“,....,vm)teFli(v1'...,vm) +
+ eF(v11000’Vm)'eFlij(v1,o..,vm)o

Prom (15) and (18) we have

{(23) Fe| i:](v1,...,vm)v:l = eFl J(v1,...,vm)oF(vheh)
and
(24) Felij(v1,...,vm)vivj = F2(vheh).

We may also deduce the following equalifies

1 m', _ )1 h, m i1
(258) Fevl i’ j’ (V see0e,yV ) = Fel id(thhl pooeyV Ah.l). A:jl Ai/

and
4 ¢ il o/
(25) Fe'l i’j/ (v1,...,vm)w za =Felij(v1,...,vm)wizj.

Using the equalities (25) we may associate with each arbitrary
v eTo(M C), peM, a mapping F(v):T (M C)xT (M C) — R defined
by the relation

(26) F(v)(w,z) := Fe|ij(v sesesVilw 19 for W,z €T (M c),

h s
v=v eh, -Wiei, ZSZJejo

The mapping F is well defined. From (24) and (26) it follows
that

(27) F(v)(v,v) = F2(v) for veT°(M,C).

Now we shall quote a few properties of the functions F, F
and . Prom (23) and (22) we have
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6 N. Borowik

A _ F(v)(wyz) _ F(v)(v,2)sF(v){v,w)
(28) F(V)(W,Z) = €2) - !F3(v) ’

where v e M°(i1,C), w',zeTp('M,C)_. Prom (22), (7), (11) and {26)
we deduce that

~ A I
(29) F{v)(w,z) = F(v)(z)of‘(v)(w)w F(v)(w,2)*F(v),
As a oorollary from the definition F we obtaln the identities

(30) F(v)(w,2) = F(v)(z,w),
and
(31) f(v)(a1w1+a2w2,b1z1+b222) = a,b, 5(v)(w1,z1) +

+ a1b2§(v)(w1,22)-+32b1§(v)(w2,z1)4-&2b2§(v)(w2,z2)

for v eTg(M,c), W,z eTp(M,C), 84585904,b, € Re

Thus F(v) is a bilineer symmetric mapping of T, (M,C)
xTp(M,C) into R,

Now we shall prove the followlng faotis.

Statement 1. If VET;(M,C), w,z €T (M,C),
pEM and a>0, then

(32) Flav) = F(v).

Proof. Using (29) we have
Flav)(w,z) = ﬁ(av)(z)Oﬁ(av)(w)+-§(av)(w)+-§(av)(w,z)'F(av) =

= B(v)(z)oF(v)(w) + L Fiw)(w,z) aP(v) = F(v)(w,2).

1
a
Thus {32) is true.

Two basic assumptions (1) amd (2), which are analogous to
the known assumptions in Finsler spaces ((5]), have been used
in the former considerations. Following the theories of these
spaces a condition corresponding to the assumption of positi-
veness of a quadratic form is formulated.

Because of this we now additionally suppose that

(33) F(v)(w,w)>0 for v,wem;(m,c), p € M.
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Lemma 1. va,we'.l'g(n,c), peM and w = Av for AeR,
then

(34) #(v) (w,w) > 0.

Proof. It should be noticed that from the Schwarsz
inequality we have

(35) F(v) (w,w) o F(v) (v,v) > (F(v) (w,7)) 2,

Prom (28) it follows that F(v)(w,w) = ——(—17 (f('ﬂ(w,w) -

(F(v)(v w)) ). In view of (35) and (36) F(v)(w,w))O.
F(v)(v,v)

We may now prove :
Theorem 1, If v,ve'rg(m,C) and v4Ve Tg(M,C) then
(36) F(v + V)< F(v) + F(V).

Froof. Let v,ze TS(M,C). From the Taylor theorem
we have

oFlzlheeyz™ = R(v!,.0l,v®) 4 SFrlvleee, v (2tvt) 4

+ % eFij(91V1+(1-61)21,...,6%m+(1-6m)zm)(zi v )(zj 3),

where z = zhsh, v = vkek, 0<ei?1.
Hence F(z) = F(v)+§(v)(z-v) + ; ?(u)(z-v z2=v) if (z2=f )eTo(M C)
and u = (ehvh+(1-9h)zh)eh T2(M,C). Taking into account Lemma 1
we obtain F(u)(z-v z=-v) > 0, Because F(v)(v) = F(v), therefore
F(z)>F(v)(z.} for v,zeTp(M,c). Hence F(v)>F(v+\7)(v),
F(¥) > F(v47) (V) and P(V)+F(F) > P(va¥) (v47) = F(v47).
F(v)+F(V) = F(v+V) if and only if v = Av for A >0.

Let us introduce the definition
(37) Indicatrixpm={veTg(M,C);Fz(vj=1}={ve1'g(m,0);ﬁ(v)(v,v)=1}.
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8 N. Borowik

We may now define a set
(38) bg,p t={ vive D, (K,C) oD and F(v) <1}

Theorem 2, The set Af,pu{o} is oconvex, |

Proof. 1% |1Let vﬁeTg(M,c), P(v) < 1 and P(¥) <1,
We consider w eTg(M,C) guch that w = (1-1)v + A% for A € <0,1),
1 vies of the inequality F(v+7v) < F{v)+F(V) we have F(w) =
ST Ar T +A7) < (1=-2)P(v) + AP(V) <1,

~<

2"« Tf w = 0, then in view of definition (38) w GAF’pu{O}.

Now we shall prove that Ap £ g, Let v eTg(M,C). Hence

v, - _—_:,:‘;TGAF’p. since F(vo) = F(ﬂ%)—) ‘%’ 1. Hencs
ip , # O

We may now define the langth of an arbitrary veoctor
v eTp(M,C). The length of v 1is given by

F(v) when v £0
(39) I VIF-= 0 when v = 0O,

Thus according to (1) and (2) it follows that
1° |vew] g <] V| p#]|W] 5y

2° |av|p = a|v|p for &3>0,

If we additionally assume that F(-v) = F(v) for -v,vc-Tg(M,C),
then the indicatripr is symmetric and the additional condition

3° |av|p = |a]|v]p

is to be imposed, where ac€R,
The formula 3° follows immediately from (30) and (1). Namely
for a<0 we have |av|, = F(av) = F((-a)(~v)) = -aF(-v) =
=|a|F(v) = |a]|v]ge

The indicatrix F plays the role of the unit sphere in the
geomatry of the vector space Tp(M,C). The pair (TP(M,C),I °|P).

where | ¢ IF satiefy conditions 1° and 2° will be called a Min~-
kowsklian space of function P, '
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/ I
Now we turn to the expression Fe[j’i’(v1""’vm ) =

= e} ij(th;’ soee DvnAﬁ’ )Aj, Ail « Hence
’ ’ il s j k
Fe', 1 jl X (v1”"'vm) X ya Z = elijk(v gpese,yV )x p A

This suggest that we can easily (lrrespectively of any
basis) introduce a function F given by

(40) f(V)(x,y,I) = ‘%‘ FOI ijk(v1,...,vm)xiyjzk
for veT°(M,C),x,y,ze'l‘p(M,C), whers v = vheh, X = xiei,

P
J = 33037 2 = 2 Ope
As a corollary to (40) we obtain
Ldssertion 2,

(1) Flav)(x,y,2) = %-f(v)(x.y,z) for a>0,
ve Tg(M,C) »X 9T 92 € Tp(M,C) , DEM,

(11) %h”vq¢)=§WHxﬂﬂ)=§hﬂmyﬂ)=0fw
ve TS(M,C) )Xy T 52 € Tp(m,C) , PEM,

The pair ((M,C),F), where (M,C) is a Hausdorff differen=-

tial finlte dimension space, Fé&CTo(M c) gatigfles conditions
?

(1) and (2), and the function F is defined by the relation
{26), satisfying condition (33), will be called a Finsler dif-
ferential spacs in the sense of Sikorski,
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