

Nadzieja Borowik

FINSLER DIFFERENTIAL SPACE

In this paper we suggest a study of the theory of Finslers spaces on the differential finite dimensional spaces. We define a function $F: T_p(M, C) \rightarrow \mathbb{R}$ fulfilling the conditions (1) and (2). Further we define functions ${}_e F$, F_e and $F_{e|ij}$ on the \mathbb{R}^m and functions \hat{F} , \tilde{F} and \widetilde{F} on the $T_p^0(M, C) = T_p(M, C) - \{0\}$ (definitions (3), (20), (22), (7), (11) and (29) respectively). The function \widetilde{F} additionaly satisfies condition (33). The generalization of the Finslers space is defined by this function as the pair $((M, C), F)$. Further we define the generalized notion of indicatrix and the notion of metric.

Let (M, C) be a Hausdorff differential space of finite dimension. (The general theory of differential spaces can be found in [6]). We consider the tangent bundle to (M, C) ([3]): $T(M, C) = \bigcup_{p \in M} (T_p(M, C), C')$, where C' is of small differential structure on $T(M, C)$ containing set $C_0 = \{\alpha \circ \pi; \alpha \in C\} \cup \{\alpha_*; \alpha \in C\}$, $\pi(v) = p$ for $v \in T_p(M, C)$, $\alpha_*(v) = v(\alpha)$.

Let $T^0(M, C) = (T(M, C) - \{0_p; p \in M\}, C'_{T(M, C) - \{0_p; p \in M\}})$ where $T(M, C) = \bigcup_{p \in M} T_p(M, C)$.

Let D be a set such that $T^0(M, C) \subset D \subset T(M, C)$.

We shall consider a function $F \in C'_D$ such that

$$(1) \quad F(av) = a F(v) \quad \text{for } a > 0, v \in D \text{ and } v \neq 0,$$

$$(2) \quad F(v) > 0 \quad \text{for } v \in D \text{ and } v \neq 0.$$

By $e = (e_1, \dots, e_m)$ we denote a basis of the linear space $T_p(M, C)$ for $p \in M$. In order to investigate the properties of function F we define a new function $e^F: R^m \supset D_e \rightarrow R$ by the equation

$$(3) \quad e^F(v^1, \dots, v^m) := F(v^h e_h) \quad \text{for } (v^1, \dots, v^m) \in e^D,$$

where $e^D = \{(v^1, \dots, v^m); v^h e_h \in D\}$.

It is known that the function (3) is smooth ([7]).

We denote by $F_{|i}$ the derivative of the function $F: R^m \rightarrow R$ with respect to the i -th variable. From (1) it follows that

$$(4) \quad e^F_{|i}(av^1, \dots, av^m) = e^F_{|i}(v^1, \dots, v^m) \quad \text{for } a > 0 \text{ and } (v^1, \dots, v^m) \in e^D.$$

We consider a different basis $e' = (e'_1, \dots, e'_{m'})$ of $T_p(M, C)$ such that $e'_{i'} = A_{i'}^1 e_i$. Then from (4) it follows that

$$e'^F(v^1, \dots, v^m) = F(v^h e_{h'}) = F(v^{h'} A_{h'}^1 e_h) = e^F(v^{h'} A_{h'}^1, \dots, v^{h'} A_{h'}^m).$$

Hence it follows

$$(5) \quad e'^F_{|i'}(v^1, \dots, v^m) = e^F_{|i}(v^{h'} A_{h'}^1, \dots, v^{h'} A_{h'}^m) \cdot A_{i'}^1$$

and

$$(6) \quad e'^F_{|i'}(v^1, \dots, v^m) x^{i'} = e^F_{|i}(v^1, \dots, v^m) x^i, \quad \text{where } x^i = A_{i'}^1 x^{i'}.$$

Let $T_p^0(M, C) = T_p(M, C) - \{0\}$. Using (6) we may associate with each arbitrary $v \in T_p^0(M, C)$, $p \in M$, the mapping $\hat{F}(v): T_p(M, C) \rightarrow R$ defined by relation

$$(7) \quad \hat{F}(v)(x) := e^F_{|i}(v^1, \dots, v^m) x^i \quad \text{for } x \in T_p(M, C),$$

where $x = x^i e_i$, $v = v^h e_h$. From (4) we have

$$\hat{F}(av)(x) = \hat{F}(v)(x) \text{ for each } x \in T_p^0(M, C).$$

Hence it follows

$$(8) \quad \hat{F}(av) = \hat{F}(v) \text{ for } a > 0, v \in T_p^0(M, C).$$

Now it is evident that the function \hat{F} is positively homogeneous of degree 0.

We can easily verify the

$$(9) \quad \hat{F}(v)(ax+by) = a\hat{F}(v)(x) + b\hat{F}(v)(y)$$

for $a, b \in \mathbb{R}$, $v \in T_p^0(M, C)$ $x, y \in T_p(M, C)$.

From (4) it follows that

$$(10) \quad e^F_{ij}(av^1, \dots, av^m)a = e^F_{ij}(v^1, \dots, v^m)$$

for $a > 0$, $(v^1, \dots, v^m) \in e^D$.

We note that in view of (5) for $e' = (e_1, \dots, e_m)$

$$e' F_{i' j'}(v^1, \dots, v^m) x^{i'} y^{j'} = e^F_{ij}(v^1, \dots, v^m) x^i y^j.$$

Hence we can define a function \hat{F} , which for each $v \in T_p^0(M, C)$ associates the mapping $\hat{F}(v) : T_p(M, C) \times T_p(M, C) \rightarrow \mathbb{R}$ defined by the relation

$$(11) \quad \hat{F}(v)(x, y) := e^F_{ij}(v^1, \dots, v^m) x^i y^j \text{ for } x, y \in T_p(M, C),$$

where $x = x^h e_h$ and $y = y^h e_h$.

The function \hat{F} is well defined. Moreover from (10) we have

$$(12) \quad \hat{F}(av)(x, y) = \frac{1}{a} F(v)(x, y) \text{ for } x, y \in T_p(M, C), v \in T_p^0(M, C) \text{ and } a > 0.$$

Hence

$$\hat{F}(av) = \frac{1}{a} \hat{F}(v) \text{ for } v \in T_p^0(M, C) \text{ and } a > 0.$$

It is evident that the function \hat{F} is positively homogeneous of degree -1. By (1) and (3) we have

$$(13) \quad e^F(av^1, \dots, av^m) = aF(v^h e_h) \text{ for } v \in T_p^0(M, C) \text{ and } a > 0, \text{ where } v = v^h e_h.$$

From (13) by Euler's theorem on homogeneous functions we have

$$(14) \quad e^{F_{|1}}(av^1, \dots, av^m)v^1 = F(v^h e_h)$$

and when $a = 1$ we have

$$(15) \quad e^{F_{|1}}(v^1, \dots, v^m)v^1 = F(v^h e_h) \text{ for } (v^1, \dots, v^m) \in e^D.$$

From (7) and (15) it follows that

$$(16) \quad \hat{F}(v)(v) = F(v) \text{ for } v \in T_p^0(M, C).$$

When we differentiate (4) with respect to a , we obtain

$$(17) \quad e^{F_{|1j}}(av^1, \dots, av^m)v^j = 0.$$

Moreover, if we set $a = 1$, then

$$(18) \quad e^{F_{|1j}}(v^1, \dots, v^m)v^j x^1 = 0 \text{ for } (v^1, \dots, v^m) \in e^D.$$

From (11) and (12) it follows that

$$(19) \quad \hat{F}(v)(x, v) = 0 \text{ for } v \in T_p^0(M, C), x \in T_p(M, C), p \in M.$$

Now we shall consider a new smooth function $F_e: e^D \rightarrow \mathbb{R}$ given by

$$(20) \quad F_e(v^1, \dots, v^m) := \frac{1}{2} F^2(v^h e_h) \text{ for } (v^1, \dots, v^m) \in e^D,$$

where $e^D = \{(v^1, \dots, v^m); v^h e_h \in D\}$. Hence

$$(21) \quad F_{e|1}(v^1, \dots, v^m) = F(v^h e_h) e^{F_{|1}}(v^1, \dots, v^m)$$

and

$$(22) \quad F_{e|ij}(v^1, \dots, v^m) = eF_{|j}(v^1, \dots, v^m) \cdot eF_{|i}(v^1, \dots, v^m) + \\ + eF(v^1, \dots, v^m) \cdot eF_{|ij}(v^1, \dots, v^m).$$

From (15) and (18) we have

$$(23) \quad F_{e|ij}(v^1, \dots, v^m)v^i = eF_{|j}(v^1, \dots, v^m) \cdot F(v^h e_h)$$

and

$$(24) \quad F_{e|ij}(v^1, \dots, v^m)v^i v^j = F^2(v^h e_h).$$

We may also deduce the following equalities

$$(25a) \quad F_{e'|i'j'}(v^1, \dots, v^m) = F_{e|ij}(v^h A_{h'}^1, \dots, v^h A_{h'}^m) \cdot A_{j'}^i A_{i'}^j$$

and

$$(25) \quad F_{e'|i'j'}(v^1, \dots, v^m) w^{i'} z^{j'} = F_{e|ij}(v^1, \dots, v^m) w^i z^j.$$

Using the equalities (25) we may associate with each arbitrary $v \in T_p^0(M, C)$, $p \in M$, a mapping $\tilde{F}(v) : T_p(M, C) \times T_p(M, C) \rightarrow \mathbb{R}$ defined by the relation

$$(26) \quad \tilde{F}(v)(w, z) := F_{e|ij}(v^1, \dots, v^m) w^i z^j \quad \text{for } w, z \in T_p(M, C), \\ v = v^h e_h, w = w^i e_i, z = z^j e_j.$$

The mapping \tilde{F} is well defined. From (24) and (26) it follows that

$$(27) \quad \tilde{F}(v)(v, v) = F^2(v) \quad \text{for } v \in T_p^0(M, C).$$

Now we shall quote a few properties of the functions \tilde{F} , \hat{F} and $\hat{\tilde{F}}$. From (23) and (22) we have

$$(28) \quad \hat{\hat{F}}(v)(w, z) = \frac{\tilde{F}(v)(w, z)}{F(v)} - \frac{\tilde{F}(v)(v, z) \cdot \tilde{F}(v)(v, w)}{F^3(v)},$$

where $v \in T_p^0(M, C)$, $w, z \in T_p(M, C)$. From (22), (7), (11) and (26) we deduce that

$$(29) \quad \tilde{F}(v)(w, z) = \hat{F}(v)(z) \cdot \hat{F}(v)(w) + \hat{\hat{F}}(v)(w, z) \cdot F(v).$$

As a corollary from the definition \tilde{F} we obtain the identities

$$(30) \quad \tilde{F}(v)(w, z) = \tilde{F}(v)(z, w),$$

and

$$(31) \quad \tilde{F}(v)(a_1 w_1 + a_2 w_2, b_1 z_1 + b_2 z_2) = a_1 b_1 \tilde{F}(v)(w_1, z_1) + \\ + a_1 b_2 \tilde{F}(v)(w_1, z_2) + a_2 b_1 \tilde{F}(v)(w_2, z_1) + a_2 b_2 \tilde{F}(v)(w_2, z_2)$$

for $v \in T_p^0(M, C)$, $w, z \in T_p(M, C)$, $a_1, a_2, b_1, b_2 \in \mathbb{R}$.

Thus $\tilde{F}(v)$ is a bilinear symmetric mapping of $T_p(M, C) \times T_p(M, C)$ into \mathbb{R} .

Now we shall prove the following facts.

Statement 1. If $v \in T_p^0(M, C)$, $w, z \in T_p(M, C)$, $p \in M$ and $a > 0$, then

$$(32) \quad \tilde{F}(av) = \tilde{F}(v).$$

Proof. Using (29) we have

$$\begin{aligned} \tilde{F}(av)(w, z) &= \hat{F}(av)(z) \cdot \hat{F}(av)(w) + \hat{\hat{F}}(av)(w) + \hat{\hat{F}}(av)(w, z) \cdot F(av) = \\ &= \hat{F}(v)(z) \cdot \hat{F}(v)(w) + \frac{1}{a} \hat{F}(v)(w, z) \cdot aF(v) = \tilde{F}(v)(w, z). \end{aligned}$$

Thus (32) is true.

Two basic assumptions (1) and (2), which are analogous to the known assumptions in Finsler spaces ([5]), have been used in the former considerations. Following the theories of these spaces a condition corresponding to the assumption of positiveness of a quadratic form is formulated.

Because of this we now additionally suppose that

$$(33) \quad \tilde{F}(v)(w, w) > 0 \quad \text{for } v, w \in T_p^0(M, C), p \in M.$$

Lemma 1. If $v, w \in T_p^0(M, C)$, $p \in M$ and $w = \lambda v$ for $\lambda \in \mathbb{R}$, then

$$(34) \quad \hat{F}(v)(w, w) > 0.$$

Proof. It should be noticed that from the Schwarz inequality we have

$$(35) \quad \tilde{F}(v)(w, w) \cdot \tilde{F}(v)(v, v) > (\tilde{F}(v)(w, v))^2.$$

From (28) it follows that $\hat{F}(v)(w, w) = \frac{1}{\tilde{F}(v)} (\tilde{F}(v)(w, w) - \frac{(\tilde{F}(v)(v, w))^2}{\tilde{F}(v)(v, v)})$. In view of (35) and (36) $\hat{F}(v)(w, w) > 0$.

We may now prove

Theorem 1. If $v, \bar{v} \in T_p^0(M, C)$ and $v + \bar{v} \in T_p^0(M, C)$ then

$$(36) \quad F(v + \bar{v}) \leq F(v) + F(\bar{v}).$$

Proof. Let $v, z \in T_p^0(M, C)$. From the Taylor theorem we have

$$e^{F(z^1, \dots, z^m)} = e^{F(v^1, \dots, v^m)} + e^{F|_i(v^1, \dots, v^m)}(z^i - v^i) + \\ + \frac{1}{2} e^{F_{ij}}(\theta^1 v^1 + (1-\theta^1)z^1, \dots, \theta^m v^m + (1-\theta^m)z^m)(z^i - v^i)(z^j - v^j),$$

where $z = z^h e_h$, $v = v^k e_k$, $0 < \theta^i < 1$.

Hence $F(z) = F(v) + \hat{F}(v)(z - v) + \frac{1}{2} \hat{F}(u)(z - v, z - v)$ if $(z - v) \in T_p^0(M, C)$ and $u = (\theta^h v^h + (1-\theta^h)z^h) e_h \in T_p^0(M, C)$. Taking into account Lemma 1 we obtain $\hat{F}(u)(z - v, z - v) > 0$. Because $\hat{F}(v)(v) = F(v)$, therefore $F(z) > \hat{F}(v)(z)$ for $v, z \in T_p^0(M, C)$. Hence $F(v) > \hat{F}(v + \bar{v})(v)$, $F(\bar{v}) > \hat{F}(v + \bar{v})(\bar{v})$ and $F(v) + F(\bar{v}) > \hat{F}(v + \bar{v})(v + \bar{v}) = F(v + \bar{v})$.

$F(v) + F(\bar{v}) = F(v + \bar{v})$ if and only if $v = \lambda \bar{v}$ for $\lambda > 0$.

Let us introduce the definition

$$(37) \quad \text{Indicatrix}_p F := \{v \in T_p^0(M, C); F^2(v) = 1\} = \{v \in T_p^0(M, C); \tilde{F}(v)(v, v) = 1\}.$$

We may now define a set

$$(38) \quad A_{F,p} := \{ v : v \in T_p^0(M,C) \cap D \text{ and } F(v) \leq 1 \}.$$

Theorem 2. The set $A_{F,p} \cup \{0\}$ is convex.

Proof. 1°. Let $v, \bar{v} \in T_p^0(M,C)$, $F(v) \leq 1$ and $F(\bar{v}) \leq 1$.

We consider $w \in T_p^0(M,C)$ such that $w = (1-\lambda)v + \lambda \bar{v}$ for $\lambda \in (0,1)$.

In view of the inequality $F(v+\bar{v}) \leq F(v) + F(\bar{v})$ we have $F(w) = F((1-\lambda)v + \lambda \bar{v}) \leq (1-\lambda)F(v) + \lambda F(\bar{v}) \leq 1$.

2°. If $w = 0$, then in view of definition (38) $w \in A_{F,p} \cup \{0\}$.

Now we shall prove that $A_{F,p} \neq \emptyset$. Let $v \in T_p^0(M,C)$. Hence

$v_0 = \frac{v}{F(v)} \in A_{F,p}$, since $F(v_0) = F\left(\frac{v}{F(v)}\right) = \frac{F(v)}{F(v)} = 1$. Hence $A_{F,p} \neq \emptyset$.

We may now define the length of an arbitrary vector $v \in T_p^0(M,C)$. The length of v is given by

$$(39) \quad |v|_F = \begin{cases} F(v) & \text{when } v \neq 0 \\ 0 & \text{when } v = 0. \end{cases}$$

Thus according to (1) and (2) it follows that

$$1^0 \quad |v+w|_F \leq |v|_F + |w|_F,$$

$$2^0 \quad |av|_F = a|v|_F \text{ for } a \geq 0.$$

If we additionally assume that $F(-v) = F(v)$ for $-v, v \in T_p^0(M,C)$, then the indicatrix F is symmetric and the additional condition

$$3^0 \quad |av|_F = |a||v|_F$$

is to be imposed, where $a \in \mathbb{R}$.

The formula 3^0 follows immediately from (30) and (1). Namely for $a < 0$ we have $|av|_F = F(av) = F((-a)(-v)) = -aF(-v) = -|a|F(v) = |a||v|_F$.

The indicatrix F plays the role of the unit sphere in the geometry of the vector space $T_p^0(M,C)$. The pair $(T_p^0(M,C), |\cdot|_F)$, where $|\cdot|_F$ satisfy conditions 1^0 and 2^0 will be called a Minkowskian space of function F .

Now we turn to the expression $F_{e|j'i'}(v^1, \dots, v^{m'}) = F_{e|ij}(v^{h' A_h^1}, \dots, v^{h' A_h^m}) A_j^j, A_{i'}^{i'}.$ Hence $F_{e'|i'j'k'}(v^1, \dots, v^{m'}) x^{i'} y^{j'} z^{k'} = F_{e|ijk}(v^1, \dots, v^m) x^i y^j z^k.$

This suggest that we can easily (irrespectively of any basis) introduce a function \tilde{F} given by

$$(40) \quad \tilde{F}(v)(x, y, z) := \frac{1}{2} F_{e|ijk}(v^1, \dots, v^m) x^i y^j z^k$$

for $v \in T_p^0(M, C)$, $x, y, z \in T_p(M, C)$, where $v = v^h e_h$, $x = x^i e_i$, $y = y^j e_j$, $z = z^k e_k$.

As a corollary to (40) we obtain

A s s e r t i o n 2.

$$(i) \quad \tilde{F}(av)(x, y, z) = \frac{1}{a} \tilde{F}(v)(x, y, z) \text{ for } a > 0,$$

$$v \in T_p^0(M, C), x, y, z \in T_p(M, C), p \in M,$$

$$(ii) \quad \tilde{F}(v)(v, y, z) = \tilde{F}(v)(x, v, z) = \tilde{F}(v)(x, y, v) = 0 \text{ for}$$

$$v \in T_p^0(M, C), x, y, z \in T_p(M, C), p \in M.$$

The pair $((M, C), F)$, where (M, C) is a Hausdorff differential finite dimension space, $F \in C_{T_p^0(M, C)}'$ satisfies conditions (1) and (2), and the function \tilde{F} is defined by the relation (26), satisfying condition (33), will be called a Finsler differential space in the sense of Sikorski.

BIBLIOGRAPHY

- [1] H. A k b a r - Z a d e h : Les espaces de Finsler et certaines de leurs generalizations, Ann. Sci. Ecole Norm. Sup (3) 80 (1963) 1-79.
- [2] K. C e g i e ɼ k a : The differential space of a differential module, Bull. Soc. Sci. Letters Łódź 28 (1978), 14.
- [3] M. M a t s u m o t o : Foundations of Finsler Geometry and special Finsler spaces, Berlin 1977.

- [4] H. Matuszczyk : Ślebodziński's formula for Lie derivative of tensor fields in a differential space, Czechoslovakian-GDR-Polish Scientific School on Differential Geometry, February 1978.
- [5] H. Rund : The differential geometry of Finsler space, Berlin 1959.
- [6] R. Sikorski : Wstęp do geometrii różniczkowej, Warszawa 1972.
- [7] W. Waliszewski : Finsler differential spaces, Coll. Math. (to appear).

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY,
15-351 BIAŁYSTOK

Received December 13, 1982.